linux/arch/powerpc/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  PowerPC version
   4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
   5 *
   6 *  Derived from "arch/i386/mm/fault.c"
   7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *
   9 *  Modified by Cort Dougan and Paul Mackerras.
  10 *
  11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  12 */
  13
  14#include <linux/signal.h>
  15#include <linux/sched.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/kernel.h>
  18#include <linux/errno.h>
  19#include <linux/string.h>
  20#include <linux/types.h>
  21#include <linux/pagemap.h>
  22#include <linux/ptrace.h>
  23#include <linux/mman.h>
  24#include <linux/mm.h>
  25#include <linux/interrupt.h>
  26#include <linux/highmem.h>
  27#include <linux/extable.h>
  28#include <linux/kprobes.h>
  29#include <linux/kdebug.h>
  30#include <linux/perf_event.h>
  31#include <linux/ratelimit.h>
  32#include <linux/context_tracking.h>
  33#include <linux/hugetlb.h>
  34#include <linux/uaccess.h>
  35#include <linux/kfence.h>
  36#include <linux/pkeys.h>
  37
  38#include <asm/firmware.h>
  39#include <asm/interrupt.h>
  40#include <asm/page.h>
  41#include <asm/mmu.h>
  42#include <asm/mmu_context.h>
  43#include <asm/siginfo.h>
  44#include <asm/debug.h>
  45#include <asm/kup.h>
  46#include <asm/inst.h>
  47
  48
  49/*
  50 * do_page_fault error handling helpers
  51 */
  52
  53static int
  54__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
  55{
  56        /*
  57         * If we are in kernel mode, bail out with a SEGV, this will
  58         * be caught by the assembly which will restore the non-volatile
  59         * registers before calling bad_page_fault()
  60         */
  61        if (!user_mode(regs))
  62                return SIGSEGV;
  63
  64        _exception(SIGSEGV, regs, si_code, address);
  65
  66        return 0;
  67}
  68
  69static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
  70{
  71        return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
  72}
  73
  74static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
  75{
  76        struct mm_struct *mm = current->mm;
  77
  78        /*
  79         * Something tried to access memory that isn't in our memory map..
  80         * Fix it, but check if it's kernel or user first..
  81         */
  82        mmap_read_unlock(mm);
  83
  84        return __bad_area_nosemaphore(regs, address, si_code);
  85}
  86
  87static noinline int bad_area(struct pt_regs *regs, unsigned long address)
  88{
  89        return __bad_area(regs, address, SEGV_MAPERR);
  90}
  91
  92static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
  93                                    struct vm_area_struct *vma)
  94{
  95        struct mm_struct *mm = current->mm;
  96        int pkey;
  97
  98        /*
  99         * We don't try to fetch the pkey from page table because reading
 100         * page table without locking doesn't guarantee stable pte value.
 101         * Hence the pkey value that we return to userspace can be different
 102         * from the pkey that actually caused access error.
 103         *
 104         * It does *not* guarantee that the VMA we find here
 105         * was the one that we faulted on.
 106         *
 107         * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 108         * 2. T1   : set AMR to deny access to pkey=4, touches, page
 109         * 3. T1   : faults...
 110         * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 111         * 5. T1   : enters fault handler, takes mmap_lock, etc...
 112         * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 113         *           faulted on a pte with its pkey=4.
 114         */
 115        pkey = vma_pkey(vma);
 116
 117        mmap_read_unlock(mm);
 118
 119        /*
 120         * If we are in kernel mode, bail out with a SEGV, this will
 121         * be caught by the assembly which will restore the non-volatile
 122         * registers before calling bad_page_fault()
 123         */
 124        if (!user_mode(regs))
 125                return SIGSEGV;
 126
 127        _exception_pkey(regs, address, pkey);
 128
 129        return 0;
 130}
 131
 132static noinline int bad_access(struct pt_regs *regs, unsigned long address)
 133{
 134        return __bad_area(regs, address, SEGV_ACCERR);
 135}
 136
 137static int do_sigbus(struct pt_regs *regs, unsigned long address,
 138                     vm_fault_t fault)
 139{
 140        if (!user_mode(regs))
 141                return SIGBUS;
 142
 143        current->thread.trap_nr = BUS_ADRERR;
 144#ifdef CONFIG_MEMORY_FAILURE
 145        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 146                unsigned int lsb = 0; /* shutup gcc */
 147
 148                pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 149                        current->comm, current->pid, address);
 150
 151                if (fault & VM_FAULT_HWPOISON_LARGE)
 152                        lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 153                if (fault & VM_FAULT_HWPOISON)
 154                        lsb = PAGE_SHIFT;
 155
 156                force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 157                return 0;
 158        }
 159
 160#endif
 161        force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 162        return 0;
 163}
 164
 165static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
 166                                vm_fault_t fault)
 167{
 168        /*
 169         * Kernel page fault interrupted by SIGKILL. We have no reason to
 170         * continue processing.
 171         */
 172        if (fatal_signal_pending(current) && !user_mode(regs))
 173                return SIGKILL;
 174
 175        /* Out of memory */
 176        if (fault & VM_FAULT_OOM) {
 177                /*
 178                 * We ran out of memory, or some other thing happened to us that
 179                 * made us unable to handle the page fault gracefully.
 180                 */
 181                if (!user_mode(regs))
 182                        return SIGSEGV;
 183                pagefault_out_of_memory();
 184        } else {
 185                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 186                             VM_FAULT_HWPOISON_LARGE))
 187                        return do_sigbus(regs, addr, fault);
 188                else if (fault & VM_FAULT_SIGSEGV)
 189                        return bad_area_nosemaphore(regs, addr);
 190                else
 191                        BUG();
 192        }
 193        return 0;
 194}
 195
 196/* Is this a bad kernel fault ? */
 197static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
 198                             unsigned long address, bool is_write)
 199{
 200        int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
 201
 202        if (is_exec) {
 203                pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
 204                                    address >= TASK_SIZE ? "exec-protected" : "user",
 205                                    address,
 206                                    from_kuid(&init_user_ns, current_uid()));
 207
 208                // Kernel exec fault is always bad
 209                return true;
 210        }
 211
 212        // Kernel fault on kernel address is bad
 213        if (address >= TASK_SIZE)
 214                return true;
 215
 216        // Read/write fault blocked by KUAP is bad, it can never succeed.
 217        if (bad_kuap_fault(regs, address, is_write)) {
 218                pr_crit_ratelimited("Kernel attempted to %s user page (%lx) - exploit attempt? (uid: %d)\n",
 219                                    is_write ? "write" : "read", address,
 220                                    from_kuid(&init_user_ns, current_uid()));
 221
 222                // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
 223                if (!search_exception_tables(regs->nip))
 224                        return true;
 225
 226                // Read/write fault in a valid region (the exception table search passed
 227                // above), but blocked by KUAP is bad, it can never succeed.
 228                return WARN(true, "Bug: %s fault blocked by KUAP!", is_write ? "Write" : "Read");
 229        }
 230
 231        // What's left? Kernel fault on user and allowed by KUAP in the faulting context.
 232        return false;
 233}
 234
 235static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
 236                              struct vm_area_struct *vma)
 237{
 238        /*
 239         * Make sure to check the VMA so that we do not perform
 240         * faults just to hit a pkey fault as soon as we fill in a
 241         * page. Only called for current mm, hence foreign == 0
 242         */
 243        if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
 244                return true;
 245
 246        return false;
 247}
 248
 249static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
 250{
 251        /*
 252         * Allow execution from readable areas if the MMU does not
 253         * provide separate controls over reading and executing.
 254         *
 255         * Note: That code used to not be enabled for 4xx/BookE.
 256         * It is now as I/D cache coherency for these is done at
 257         * set_pte_at() time and I see no reason why the test
 258         * below wouldn't be valid on those processors. This -may-
 259         * break programs compiled with a really old ABI though.
 260         */
 261        if (is_exec) {
 262                return !(vma->vm_flags & VM_EXEC) &&
 263                        (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
 264                         !(vma->vm_flags & (VM_READ | VM_WRITE)));
 265        }
 266
 267        if (is_write) {
 268                if (unlikely(!(vma->vm_flags & VM_WRITE)))
 269                        return true;
 270                return false;
 271        }
 272
 273        if (unlikely(!vma_is_accessible(vma)))
 274                return true;
 275        /*
 276         * We should ideally do the vma pkey access check here. But in the
 277         * fault path, handle_mm_fault() also does the same check. To avoid
 278         * these multiple checks, we skip it here and handle access error due
 279         * to pkeys later.
 280         */
 281        return false;
 282}
 283
 284#ifdef CONFIG_PPC_SMLPAR
 285static inline void cmo_account_page_fault(void)
 286{
 287        if (firmware_has_feature(FW_FEATURE_CMO)) {
 288                u32 page_ins;
 289
 290                preempt_disable();
 291                page_ins = be32_to_cpu(get_lppaca()->page_ins);
 292                page_ins += 1 << PAGE_FACTOR;
 293                get_lppaca()->page_ins = cpu_to_be32(page_ins);
 294                preempt_enable();
 295        }
 296}
 297#else
 298static inline void cmo_account_page_fault(void) { }
 299#endif /* CONFIG_PPC_SMLPAR */
 300
 301static void sanity_check_fault(bool is_write, bool is_user,
 302                               unsigned long error_code, unsigned long address)
 303{
 304        /*
 305         * Userspace trying to access kernel address, we get PROTFAULT for that.
 306         */
 307        if (is_user && address >= TASK_SIZE) {
 308                if ((long)address == -1)
 309                        return;
 310
 311                pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
 312                                   current->comm, current->pid, address,
 313                                   from_kuid(&init_user_ns, current_uid()));
 314                return;
 315        }
 316
 317        if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
 318                return;
 319
 320        /*
 321         * For hash translation mode, we should never get a
 322         * PROTFAULT. Any update to pte to reduce access will result in us
 323         * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
 324         * fault instead of DSISR_PROTFAULT.
 325         *
 326         * A pte update to relax the access will not result in a hash page table
 327         * entry invalidate and hence can result in DSISR_PROTFAULT.
 328         * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
 329         * the special !is_write in the below conditional.
 330         *
 331         * For platforms that doesn't supports coherent icache and do support
 332         * per page noexec bit, we do setup things such that we do the
 333         * sync between D/I cache via fault. But that is handled via low level
 334         * hash fault code (hash_page_do_lazy_icache()) and we should not reach
 335         * here in such case.
 336         *
 337         * For wrong access that can result in PROTFAULT, the above vma->vm_flags
 338         * check should handle those and hence we should fall to the bad_area
 339         * handling correctly.
 340         *
 341         * For embedded with per page exec support that doesn't support coherent
 342         * icache we do get PROTFAULT and we handle that D/I cache sync in
 343         * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
 344         * is conditional for server MMU.
 345         *
 346         * For radix, we can get prot fault for autonuma case, because radix
 347         * page table will have them marked noaccess for user.
 348         */
 349        if (radix_enabled() || is_write)
 350                return;
 351
 352        WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
 353}
 354
 355/*
 356 * Define the correct "is_write" bit in error_code based
 357 * on the processor family
 358 */
 359#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
 360#define page_fault_is_write(__err)      ((__err) & ESR_DST)
 361#else
 362#define page_fault_is_write(__err)      ((__err) & DSISR_ISSTORE)
 363#endif
 364
 365#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
 366#define page_fault_is_bad(__err)        (0)
 367#elif defined(CONFIG_PPC_8xx)
 368#define page_fault_is_bad(__err)        ((__err) & DSISR_NOEXEC_OR_G)
 369#elif defined(CONFIG_PPC64)
 370#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_64S)
 371#else
 372#define page_fault_is_bad(__err)        ((__err) & DSISR_BAD_FAULT_32S)
 373#endif
 374
 375/*
 376 * For 600- and 800-family processors, the error_code parameter is DSISR
 377 * for a data fault, SRR1 for an instruction fault.
 378 * For 400-family processors the error_code parameter is ESR for a data fault,
 379 * 0 for an instruction fault.
 380 * For 64-bit processors, the error_code parameter is DSISR for a data access
 381 * fault, SRR1 & 0x08000000 for an instruction access fault.
 382 *
 383 * The return value is 0 if the fault was handled, or the signal
 384 * number if this is a kernel fault that can't be handled here.
 385 */
 386static int ___do_page_fault(struct pt_regs *regs, unsigned long address,
 387                           unsigned long error_code)
 388{
 389        struct vm_area_struct * vma;
 390        struct mm_struct *mm = current->mm;
 391        unsigned int flags = FAULT_FLAG_DEFAULT;
 392        int is_exec = TRAP(regs) == INTERRUPT_INST_STORAGE;
 393        int is_user = user_mode(regs);
 394        int is_write = page_fault_is_write(error_code);
 395        vm_fault_t fault, major = 0;
 396        bool kprobe_fault = kprobe_page_fault(regs, 11);
 397
 398        if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
 399                return 0;
 400
 401        if (unlikely(page_fault_is_bad(error_code))) {
 402                if (is_user) {
 403                        _exception(SIGBUS, regs, BUS_OBJERR, address);
 404                        return 0;
 405                }
 406                return SIGBUS;
 407        }
 408
 409        /* Additional sanity check(s) */
 410        sanity_check_fault(is_write, is_user, error_code, address);
 411
 412        /*
 413         * The kernel should never take an execute fault nor should it
 414         * take a page fault to a kernel address or a page fault to a user
 415         * address outside of dedicated places
 416         */
 417        if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) {
 418                if (kfence_handle_page_fault(address, is_write, regs))
 419                        return 0;
 420
 421                return SIGSEGV;
 422        }
 423
 424        /*
 425         * If we're in an interrupt, have no user context or are running
 426         * in a region with pagefaults disabled then we must not take the fault
 427         */
 428        if (unlikely(faulthandler_disabled() || !mm)) {
 429                if (is_user)
 430                        printk_ratelimited(KERN_ERR "Page fault in user mode"
 431                                           " with faulthandler_disabled()=%d"
 432                                           " mm=%p\n",
 433                                           faulthandler_disabled(), mm);
 434                return bad_area_nosemaphore(regs, address);
 435        }
 436
 437        interrupt_cond_local_irq_enable(regs);
 438
 439        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 440
 441        /*
 442         * We want to do this outside mmap_lock, because reading code around nip
 443         * can result in fault, which will cause a deadlock when called with
 444         * mmap_lock held
 445         */
 446        if (is_user)
 447                flags |= FAULT_FLAG_USER;
 448        if (is_write)
 449                flags |= FAULT_FLAG_WRITE;
 450        if (is_exec)
 451                flags |= FAULT_FLAG_INSTRUCTION;
 452
 453        /* When running in the kernel we expect faults to occur only to
 454         * addresses in user space.  All other faults represent errors in the
 455         * kernel and should generate an OOPS.  Unfortunately, in the case of an
 456         * erroneous fault occurring in a code path which already holds mmap_lock
 457         * we will deadlock attempting to validate the fault against the
 458         * address space.  Luckily the kernel only validly references user
 459         * space from well defined areas of code, which are listed in the
 460         * exceptions table.
 461         *
 462         * As the vast majority of faults will be valid we will only perform
 463         * the source reference check when there is a possibility of a deadlock.
 464         * Attempt to lock the address space, if we cannot we then validate the
 465         * source.  If this is invalid we can skip the address space check,
 466         * thus avoiding the deadlock.
 467         */
 468        if (unlikely(!mmap_read_trylock(mm))) {
 469                if (!is_user && !search_exception_tables(regs->nip))
 470                        return bad_area_nosemaphore(regs, address);
 471
 472retry:
 473                mmap_read_lock(mm);
 474        } else {
 475                /*
 476                 * The above down_read_trylock() might have succeeded in
 477                 * which case we'll have missed the might_sleep() from
 478                 * down_read():
 479                 */
 480                might_sleep();
 481        }
 482
 483        vma = find_vma(mm, address);
 484        if (unlikely(!vma))
 485                return bad_area(regs, address);
 486
 487        if (unlikely(vma->vm_start > address)) {
 488                if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
 489                        return bad_area(regs, address);
 490
 491                if (unlikely(expand_stack(vma, address)))
 492                        return bad_area(regs, address);
 493        }
 494
 495        if (unlikely(access_pkey_error(is_write, is_exec,
 496                                       (error_code & DSISR_KEYFAULT), vma)))
 497                return bad_access_pkey(regs, address, vma);
 498
 499        if (unlikely(access_error(is_write, is_exec, vma)))
 500                return bad_access(regs, address);
 501
 502        /*
 503         * If for any reason at all we couldn't handle the fault,
 504         * make sure we exit gracefully rather than endlessly redo
 505         * the fault.
 506         */
 507        fault = handle_mm_fault(vma, address, flags, regs);
 508
 509        major |= fault & VM_FAULT_MAJOR;
 510
 511        if (fault_signal_pending(fault, regs))
 512                return user_mode(regs) ? 0 : SIGBUS;
 513
 514        /*
 515         * Handle the retry right now, the mmap_lock has been released in that
 516         * case.
 517         */
 518        if (unlikely(fault & VM_FAULT_RETRY)) {
 519                if (flags & FAULT_FLAG_ALLOW_RETRY) {
 520                        flags |= FAULT_FLAG_TRIED;
 521                        goto retry;
 522                }
 523        }
 524
 525        mmap_read_unlock(current->mm);
 526
 527        if (unlikely(fault & VM_FAULT_ERROR))
 528                return mm_fault_error(regs, address, fault);
 529
 530        /*
 531         * Major/minor page fault accounting.
 532         */
 533        if (major)
 534                cmo_account_page_fault();
 535
 536        return 0;
 537}
 538NOKPROBE_SYMBOL(___do_page_fault);
 539
 540static __always_inline void __do_page_fault(struct pt_regs *regs)
 541{
 542        long err;
 543
 544        err = ___do_page_fault(regs, regs->dar, regs->dsisr);
 545        if (unlikely(err))
 546                bad_page_fault(regs, err);
 547}
 548
 549DEFINE_INTERRUPT_HANDLER(do_page_fault)
 550{
 551        __do_page_fault(regs);
 552}
 553
 554#ifdef CONFIG_PPC_BOOK3S_64
 555/* Same as do_page_fault but interrupt entry has already run in do_hash_fault */
 556void hash__do_page_fault(struct pt_regs *regs)
 557{
 558        __do_page_fault(regs);
 559}
 560NOKPROBE_SYMBOL(hash__do_page_fault);
 561#endif
 562
 563/*
 564 * bad_page_fault is called when we have a bad access from the kernel.
 565 * It is called from the DSI and ISI handlers in head.S and from some
 566 * of the procedures in traps.c.
 567 */
 568static void __bad_page_fault(struct pt_regs *regs, int sig)
 569{
 570        int is_write = page_fault_is_write(regs->dsisr);
 571
 572        /* kernel has accessed a bad area */
 573
 574        switch (TRAP(regs)) {
 575        case INTERRUPT_DATA_STORAGE:
 576        case INTERRUPT_DATA_SEGMENT:
 577        case INTERRUPT_H_DATA_STORAGE:
 578                pr_alert("BUG: %s on %s at 0x%08lx\n",
 579                         regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
 580                         "Unable to handle kernel data access",
 581                         is_write ? "write" : "read", regs->dar);
 582                break;
 583        case INTERRUPT_INST_STORAGE:
 584        case INTERRUPT_INST_SEGMENT:
 585                pr_alert("BUG: Unable to handle kernel instruction fetch%s",
 586                         regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
 587                break;
 588        case INTERRUPT_ALIGNMENT:
 589                pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
 590                         regs->dar);
 591                break;
 592        default:
 593                pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
 594                         regs->dar);
 595                break;
 596        }
 597        printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
 598                regs->nip);
 599
 600        if (task_stack_end_corrupted(current))
 601                printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 602
 603        die("Kernel access of bad area", regs, sig);
 604}
 605
 606void bad_page_fault(struct pt_regs *regs, int sig)
 607{
 608        const struct exception_table_entry *entry;
 609
 610        /* Are we prepared to handle this fault?  */
 611        entry = search_exception_tables(instruction_pointer(regs));
 612        if (entry)
 613                instruction_pointer_set(regs, extable_fixup(entry));
 614        else
 615                __bad_page_fault(regs, sig);
 616}
 617
 618#ifdef CONFIG_PPC_BOOK3S_64
 619DEFINE_INTERRUPT_HANDLER(do_bad_page_fault_segv)
 620{
 621        bad_page_fault(regs, SIGSEGV);
 622}
 623#endif
 624