linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/moduleparam.h>
  19#include <linux/swap.h>
  20#include <linux/swapops.h>
  21#include <linux/kmemleak.h>
  22#include <asm/pgalloc.h>
  23#include <asm/tlb.h>
  24#include <asm/setup.h>
  25#include <asm/hugetlb.h>
  26#include <asm/pte-walk.h>
  27
  28bool hugetlb_disabled = false;
  29
  30#define hugepd_none(hpd)        (hpd_val(hpd) == 0)
  31
  32#define PTE_T_ORDER     (__builtin_ffs(sizeof(pte_basic_t)) - \
  33                         __builtin_ffs(sizeof(void *)))
  34
  35pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
  36{
  37        /*
  38         * Only called for hugetlbfs pages, hence can ignore THP and the
  39         * irq disabled walk.
  40         */
  41        return __find_linux_pte(mm->pgd, addr, NULL, NULL);
  42}
  43
  44static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  45                           unsigned long address, unsigned int pdshift,
  46                           unsigned int pshift, spinlock_t *ptl)
  47{
  48        struct kmem_cache *cachep;
  49        pte_t *new;
  50        int i;
  51        int num_hugepd;
  52
  53        if (pshift >= pdshift) {
  54                cachep = PGT_CACHE(PTE_T_ORDER);
  55                num_hugepd = 1 << (pshift - pdshift);
  56        } else {
  57                cachep = PGT_CACHE(pdshift - pshift);
  58                num_hugepd = 1;
  59        }
  60
  61        if (!cachep) {
  62                WARN_ONCE(1, "No page table cache created for hugetlb tables");
  63                return -ENOMEM;
  64        }
  65
  66        new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
  67
  68        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  69        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  70
  71        if (!new)
  72                return -ENOMEM;
  73
  74        /*
  75         * Make sure other cpus find the hugepd set only after a
  76         * properly initialized page table is visible to them.
  77         * For more details look for comment in __pte_alloc().
  78         */
  79        smp_wmb();
  80
  81        spin_lock(ptl);
  82        /*
  83         * We have multiple higher-level entries that point to the same
  84         * actual pte location.  Fill in each as we go and backtrack on error.
  85         * We need all of these so the DTLB pgtable walk code can find the
  86         * right higher-level entry without knowing if it's a hugepage or not.
  87         */
  88        for (i = 0; i < num_hugepd; i++, hpdp++) {
  89                if (unlikely(!hugepd_none(*hpdp)))
  90                        break;
  91                hugepd_populate(hpdp, new, pshift);
  92        }
  93        /* If we bailed from the for loop early, an error occurred, clean up */
  94        if (i < num_hugepd) {
  95                for (i = i - 1 ; i >= 0; i--, hpdp--)
  96                        *hpdp = __hugepd(0);
  97                kmem_cache_free(cachep, new);
  98        } else {
  99                kmemleak_ignore(new);
 100        }
 101        spin_unlock(ptl);
 102        return 0;
 103}
 104
 105/*
 106 * At this point we do the placement change only for BOOK3S 64. This would
 107 * possibly work on other subarchs.
 108 */
 109pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 110                      unsigned long addr, unsigned long sz)
 111{
 112        pgd_t *pg;
 113        p4d_t *p4;
 114        pud_t *pu;
 115        pmd_t *pm;
 116        hugepd_t *hpdp = NULL;
 117        unsigned pshift = __ffs(sz);
 118        unsigned pdshift = PGDIR_SHIFT;
 119        spinlock_t *ptl;
 120
 121        addr &= ~(sz-1);
 122        pg = pgd_offset(mm, addr);
 123        p4 = p4d_offset(pg, addr);
 124
 125#ifdef CONFIG_PPC_BOOK3S_64
 126        if (pshift == PGDIR_SHIFT)
 127                /* 16GB huge page */
 128                return (pte_t *) p4;
 129        else if (pshift > PUD_SHIFT) {
 130                /*
 131                 * We need to use hugepd table
 132                 */
 133                ptl = &mm->page_table_lock;
 134                hpdp = (hugepd_t *)p4;
 135        } else {
 136                pdshift = PUD_SHIFT;
 137                pu = pud_alloc(mm, p4, addr);
 138                if (!pu)
 139                        return NULL;
 140                if (pshift == PUD_SHIFT)
 141                        return (pte_t *)pu;
 142                else if (pshift > PMD_SHIFT) {
 143                        ptl = pud_lockptr(mm, pu);
 144                        hpdp = (hugepd_t *)pu;
 145                } else {
 146                        pdshift = PMD_SHIFT;
 147                        pm = pmd_alloc(mm, pu, addr);
 148                        if (!pm)
 149                                return NULL;
 150                        if (pshift == PMD_SHIFT)
 151                                /* 16MB hugepage */
 152                                return (pte_t *)pm;
 153                        else {
 154                                ptl = pmd_lockptr(mm, pm);
 155                                hpdp = (hugepd_t *)pm;
 156                        }
 157                }
 158        }
 159#else
 160        if (pshift >= PGDIR_SHIFT) {
 161                ptl = &mm->page_table_lock;
 162                hpdp = (hugepd_t *)p4;
 163        } else {
 164                pdshift = PUD_SHIFT;
 165                pu = pud_alloc(mm, p4, addr);
 166                if (!pu)
 167                        return NULL;
 168                if (pshift >= PUD_SHIFT) {
 169                        ptl = pud_lockptr(mm, pu);
 170                        hpdp = (hugepd_t *)pu;
 171                } else {
 172                        pdshift = PMD_SHIFT;
 173                        pm = pmd_alloc(mm, pu, addr);
 174                        if (!pm)
 175                                return NULL;
 176                        ptl = pmd_lockptr(mm, pm);
 177                        hpdp = (hugepd_t *)pm;
 178                }
 179        }
 180#endif
 181        if (!hpdp)
 182                return NULL;
 183
 184        if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
 185                return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
 186
 187        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 188
 189        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
 190                                                  pdshift, pshift, ptl))
 191                return NULL;
 192
 193        return hugepte_offset(*hpdp, addr, pdshift);
 194}
 195
 196#ifdef CONFIG_PPC_BOOK3S_64
 197/*
 198 * Tracks gpages after the device tree is scanned and before the
 199 * huge_boot_pages list is ready on pseries.
 200 */
 201#define MAX_NUMBER_GPAGES       1024
 202__initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
 203__initdata static unsigned nr_gpages;
 204
 205/*
 206 * Build list of addresses of gigantic pages.  This function is used in early
 207 * boot before the buddy allocator is setup.
 208 */
 209void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 210{
 211        if (!addr)
 212                return;
 213        while (number_of_pages > 0) {
 214                gpage_freearray[nr_gpages] = addr;
 215                nr_gpages++;
 216                number_of_pages--;
 217                addr += page_size;
 218        }
 219}
 220
 221static int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
 222{
 223        struct huge_bootmem_page *m;
 224        if (nr_gpages == 0)
 225                return 0;
 226        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 227        gpage_freearray[nr_gpages] = 0;
 228        list_add(&m->list, &huge_boot_pages);
 229        m->hstate = hstate;
 230        return 1;
 231}
 232#endif
 233
 234
 235int __init alloc_bootmem_huge_page(struct hstate *h)
 236{
 237
 238#ifdef CONFIG_PPC_BOOK3S_64
 239        if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
 240                return pseries_alloc_bootmem_huge_page(h);
 241#endif
 242        return __alloc_bootmem_huge_page(h);
 243}
 244
 245#ifndef CONFIG_PPC_BOOK3S_64
 246#define HUGEPD_FREELIST_SIZE \
 247        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 248
 249struct hugepd_freelist {
 250        struct rcu_head rcu;
 251        unsigned int index;
 252        void *ptes[];
 253};
 254
 255static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 256
 257static void hugepd_free_rcu_callback(struct rcu_head *head)
 258{
 259        struct hugepd_freelist *batch =
 260                container_of(head, struct hugepd_freelist, rcu);
 261        unsigned int i;
 262
 263        for (i = 0; i < batch->index; i++)
 264                kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
 265
 266        free_page((unsigned long)batch);
 267}
 268
 269static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 270{
 271        struct hugepd_freelist **batchp;
 272
 273        batchp = &get_cpu_var(hugepd_freelist_cur);
 274
 275        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 276            mm_is_thread_local(tlb->mm)) {
 277                kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
 278                put_cpu_var(hugepd_freelist_cur);
 279                return;
 280        }
 281
 282        if (*batchp == NULL) {
 283                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 284                (*batchp)->index = 0;
 285        }
 286
 287        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 288        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 289                call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
 290                *batchp = NULL;
 291        }
 292        put_cpu_var(hugepd_freelist_cur);
 293}
 294#else
 295static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
 296#endif
 297
 298/* Return true when the entry to be freed maps more than the area being freed */
 299static bool range_is_outside_limits(unsigned long start, unsigned long end,
 300                                    unsigned long floor, unsigned long ceiling,
 301                                    unsigned long mask)
 302{
 303        if ((start & mask) < floor)
 304                return true;
 305        if (ceiling) {
 306                ceiling &= mask;
 307                if (!ceiling)
 308                        return true;
 309        }
 310        return end - 1 > ceiling - 1;
 311}
 312
 313static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 314                              unsigned long start, unsigned long end,
 315                              unsigned long floor, unsigned long ceiling)
 316{
 317        pte_t *hugepte = hugepd_page(*hpdp);
 318        int i;
 319
 320        unsigned long pdmask = ~((1UL << pdshift) - 1);
 321        unsigned int num_hugepd = 1;
 322        unsigned int shift = hugepd_shift(*hpdp);
 323
 324        /* Note: On fsl the hpdp may be the first of several */
 325        if (shift > pdshift)
 326                num_hugepd = 1 << (shift - pdshift);
 327
 328        if (range_is_outside_limits(start, end, floor, ceiling, pdmask))
 329                return;
 330
 331        for (i = 0; i < num_hugepd; i++, hpdp++)
 332                *hpdp = __hugepd(0);
 333
 334        if (shift >= pdshift)
 335                hugepd_free(tlb, hugepte);
 336        else
 337                pgtable_free_tlb(tlb, hugepte,
 338                                 get_hugepd_cache_index(pdshift - shift));
 339}
 340
 341static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 342                                   unsigned long addr, unsigned long end,
 343                                   unsigned long floor, unsigned long ceiling)
 344{
 345        pgtable_t token = pmd_pgtable(*pmd);
 346
 347        if (range_is_outside_limits(addr, end, floor, ceiling, PMD_MASK))
 348                return;
 349
 350        pmd_clear(pmd);
 351        pte_free_tlb(tlb, token, addr);
 352        mm_dec_nr_ptes(tlb->mm);
 353}
 354
 355static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 356                                   unsigned long addr, unsigned long end,
 357                                   unsigned long floor, unsigned long ceiling)
 358{
 359        pmd_t *pmd;
 360        unsigned long next;
 361        unsigned long start;
 362
 363        start = addr;
 364        do {
 365                unsigned long more;
 366
 367                pmd = pmd_offset(pud, addr);
 368                next = pmd_addr_end(addr, end);
 369                if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 370                        if (pmd_none_or_clear_bad(pmd))
 371                                continue;
 372
 373                        /*
 374                         * if it is not hugepd pointer, we should already find
 375                         * it cleared.
 376                         */
 377                        WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
 378
 379                        hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
 380
 381                        continue;
 382                }
 383                /*
 384                 * Increment next by the size of the huge mapping since
 385                 * there may be more than one entry at this level for a
 386                 * single hugepage, but all of them point to
 387                 * the same kmem cache that holds the hugepte.
 388                 */
 389                more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 390                if (more > next)
 391                        next = more;
 392
 393                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 394                                  addr, next, floor, ceiling);
 395        } while (addr = next, addr != end);
 396
 397        if (range_is_outside_limits(start, end, floor, ceiling, PUD_MASK))
 398                return;
 399
 400        pmd = pmd_offset(pud, start & PUD_MASK);
 401        pud_clear(pud);
 402        pmd_free_tlb(tlb, pmd, start & PUD_MASK);
 403        mm_dec_nr_pmds(tlb->mm);
 404}
 405
 406static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 407                                   unsigned long addr, unsigned long end,
 408                                   unsigned long floor, unsigned long ceiling)
 409{
 410        pud_t *pud;
 411        unsigned long next;
 412        unsigned long start;
 413
 414        start = addr;
 415        do {
 416                pud = pud_offset(p4d, addr);
 417                next = pud_addr_end(addr, end);
 418                if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 419                        if (pud_none_or_clear_bad(pud))
 420                                continue;
 421                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 422                                               ceiling);
 423                } else {
 424                        unsigned long more;
 425                        /*
 426                         * Increment next by the size of the huge mapping since
 427                         * there may be more than one entry at this level for a
 428                         * single hugepage, but all of them point to
 429                         * the same kmem cache that holds the hugepte.
 430                         */
 431                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 432                        if (more > next)
 433                                next = more;
 434
 435                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 436                                          addr, next, floor, ceiling);
 437                }
 438        } while (addr = next, addr != end);
 439
 440        if (range_is_outside_limits(start, end, floor, ceiling, PGDIR_MASK))
 441                return;
 442
 443        pud = pud_offset(p4d, start & PGDIR_MASK);
 444        p4d_clear(p4d);
 445        pud_free_tlb(tlb, pud, start & PGDIR_MASK);
 446        mm_dec_nr_puds(tlb->mm);
 447}
 448
 449/*
 450 * This function frees user-level page tables of a process.
 451 */
 452void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 453                            unsigned long addr, unsigned long end,
 454                            unsigned long floor, unsigned long ceiling)
 455{
 456        pgd_t *pgd;
 457        p4d_t *p4d;
 458        unsigned long next;
 459
 460        /*
 461         * Because there are a number of different possible pagetable
 462         * layouts for hugepage ranges, we limit knowledge of how
 463         * things should be laid out to the allocation path
 464         * (huge_pte_alloc(), above).  Everything else works out the
 465         * structure as it goes from information in the hugepd
 466         * pointers.  That means that we can't here use the
 467         * optimization used in the normal page free_pgd_range(), of
 468         * checking whether we're actually covering a large enough
 469         * range to have to do anything at the top level of the walk
 470         * instead of at the bottom.
 471         *
 472         * To make sense of this, you should probably go read the big
 473         * block comment at the top of the normal free_pgd_range(),
 474         * too.
 475         */
 476
 477        do {
 478                next = pgd_addr_end(addr, end);
 479                pgd = pgd_offset(tlb->mm, addr);
 480                p4d = p4d_offset(pgd, addr);
 481                if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 482                        if (p4d_none_or_clear_bad(p4d))
 483                                continue;
 484                        hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 485                } else {
 486                        unsigned long more;
 487                        /*
 488                         * Increment next by the size of the huge mapping since
 489                         * there may be more than one entry at the pgd level
 490                         * for a single hugepage, but all of them point to the
 491                         * same kmem cache that holds the hugepte.
 492                         */
 493                        more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 494                        if (more > next)
 495                                next = more;
 496
 497                        free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
 498                                          addr, next, floor, ceiling);
 499                }
 500        } while (addr = next, addr != end);
 501}
 502
 503struct page *follow_huge_pd(struct vm_area_struct *vma,
 504                            unsigned long address, hugepd_t hpd,
 505                            int flags, int pdshift)
 506{
 507        pte_t *ptep;
 508        spinlock_t *ptl;
 509        struct page *page = NULL;
 510        unsigned long mask;
 511        int shift = hugepd_shift(hpd);
 512        struct mm_struct *mm = vma->vm_mm;
 513
 514retry:
 515        /*
 516         * hugepage directory entries are protected by mm->page_table_lock
 517         * Use this instead of huge_pte_lockptr
 518         */
 519        ptl = &mm->page_table_lock;
 520        spin_lock(ptl);
 521
 522        ptep = hugepte_offset(hpd, address, pdshift);
 523        if (pte_present(*ptep)) {
 524                mask = (1UL << shift) - 1;
 525                page = pte_page(*ptep);
 526                page += ((address & mask) >> PAGE_SHIFT);
 527                if (flags & FOLL_GET)
 528                        get_page(page);
 529        } else {
 530                if (is_hugetlb_entry_migration(*ptep)) {
 531                        spin_unlock(ptl);
 532                        __migration_entry_wait(mm, ptep, ptl);
 533                        goto retry;
 534                }
 535        }
 536        spin_unlock(ptl);
 537        return page;
 538}
 539
 540#ifdef CONFIG_PPC_MM_SLICES
 541unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 542                                        unsigned long len, unsigned long pgoff,
 543                                        unsigned long flags)
 544{
 545        struct hstate *hstate = hstate_file(file);
 546        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 547
 548#ifdef CONFIG_PPC_RADIX_MMU
 549        if (radix_enabled())
 550                return radix__hugetlb_get_unmapped_area(file, addr, len,
 551                                                       pgoff, flags);
 552#endif
 553        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 554}
 555#endif
 556
 557unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 558{
 559        /* With radix we don't use slice, so derive it from vma*/
 560        if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
 561                unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 562
 563                return 1UL << mmu_psize_to_shift(psize);
 564        }
 565        return vma_kernel_pagesize(vma);
 566}
 567
 568bool __init arch_hugetlb_valid_size(unsigned long size)
 569{
 570        int shift = __ffs(size);
 571        int mmu_psize;
 572
 573        /* Check that it is a page size supported by the hardware and
 574         * that it fits within pagetable and slice limits. */
 575        if (size <= PAGE_SIZE || !is_power_of_2(size))
 576                return false;
 577
 578        mmu_psize = check_and_get_huge_psize(shift);
 579        if (mmu_psize < 0)
 580                return false;
 581
 582        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 583
 584        return true;
 585}
 586
 587static int __init add_huge_page_size(unsigned long long size)
 588{
 589        int shift = __ffs(size);
 590
 591        if (!arch_hugetlb_valid_size((unsigned long)size))
 592                return -EINVAL;
 593
 594        hugetlb_add_hstate(shift - PAGE_SHIFT);
 595        return 0;
 596}
 597
 598static int __init hugetlbpage_init(void)
 599{
 600        bool configured = false;
 601        int psize;
 602
 603        if (hugetlb_disabled) {
 604                pr_info("HugeTLB support is disabled!\n");
 605                return 0;
 606        }
 607
 608        if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
 609            !mmu_has_feature(MMU_FTR_16M_PAGE))
 610                return -ENODEV;
 611
 612        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 613                unsigned shift;
 614                unsigned pdshift;
 615
 616                if (!mmu_psize_defs[psize].shift)
 617                        continue;
 618
 619                shift = mmu_psize_to_shift(psize);
 620
 621#ifdef CONFIG_PPC_BOOK3S_64
 622                if (shift > PGDIR_SHIFT)
 623                        continue;
 624                else if (shift > PUD_SHIFT)
 625                        pdshift = PGDIR_SHIFT;
 626                else if (shift > PMD_SHIFT)
 627                        pdshift = PUD_SHIFT;
 628                else
 629                        pdshift = PMD_SHIFT;
 630#else
 631                if (shift < PUD_SHIFT)
 632                        pdshift = PMD_SHIFT;
 633                else if (shift < PGDIR_SHIFT)
 634                        pdshift = PUD_SHIFT;
 635                else
 636                        pdshift = PGDIR_SHIFT;
 637#endif
 638
 639                if (add_huge_page_size(1ULL << shift) < 0)
 640                        continue;
 641                /*
 642                 * if we have pdshift and shift value same, we don't
 643                 * use pgt cache for hugepd.
 644                 */
 645                if (pdshift > shift) {
 646                        if (!IS_ENABLED(CONFIG_PPC_8xx))
 647                                pgtable_cache_add(pdshift - shift);
 648                } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
 649                           IS_ENABLED(CONFIG_PPC_8xx)) {
 650                        pgtable_cache_add(PTE_T_ORDER);
 651                }
 652
 653                configured = true;
 654        }
 655
 656        if (configured) {
 657                if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
 658                        hugetlbpage_init_default();
 659        } else
 660                pr_info("Failed to initialize. Disabling HugeTLB");
 661
 662        return 0;
 663}
 664
 665arch_initcall(hugetlbpage_init);
 666
 667void __init gigantic_hugetlb_cma_reserve(void)
 668{
 669        unsigned long order = 0;
 670
 671        if (radix_enabled())
 672                order = PUD_SHIFT - PAGE_SHIFT;
 673        else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
 674                /*
 675                 * For pseries we do use ibm,expected#pages for reserving 16G pages.
 676                 */
 677                order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
 678
 679        if (order) {
 680                VM_WARN_ON(order < MAX_ORDER);
 681                hugetlb_cma_reserve(order);
 682        }
 683}
 684