linux/arch/powerpc/perf/imc-pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * In-Memory Collection (IMC) Performance Monitor counter support.
   4 *
   5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
   6 *           (C) 2017 Anju T Sudhakar, IBM Corporation.
   7 *           (C) 2017 Hemant K Shaw, IBM Corporation.
   8 */
   9#include <linux/perf_event.h>
  10#include <linux/slab.h>
  11#include <asm/opal.h>
  12#include <asm/imc-pmu.h>
  13#include <asm/cputhreads.h>
  14#include <asm/smp.h>
  15#include <linux/string.h>
  16
  17/* Nest IMC data structures and variables */
  18
  19/*
  20 * Used to avoid races in counting the nest-pmu units during hotplug
  21 * register and unregister
  22 */
  23static DEFINE_MUTEX(nest_init_lock);
  24static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
  25static struct imc_pmu **per_nest_pmu_arr;
  26static cpumask_t nest_imc_cpumask;
  27static struct imc_pmu_ref *nest_imc_refc;
  28static int nest_pmus;
  29
  30/* Core IMC data structures and variables */
  31
  32static cpumask_t core_imc_cpumask;
  33static struct imc_pmu_ref *core_imc_refc;
  34static struct imc_pmu *core_imc_pmu;
  35
  36/* Thread IMC data structures and variables */
  37
  38static DEFINE_PER_CPU(u64 *, thread_imc_mem);
  39static struct imc_pmu *thread_imc_pmu;
  40static int thread_imc_mem_size;
  41
  42/* Trace IMC data structures */
  43static DEFINE_PER_CPU(u64 *, trace_imc_mem);
  44static struct imc_pmu_ref *trace_imc_refc;
  45static int trace_imc_mem_size;
  46
  47/*
  48 * Global data structure used to avoid races between thread,
  49 * core and trace-imc
  50 */
  51static struct imc_pmu_ref imc_global_refc = {
  52        .lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
  53        .id = 0,
  54        .refc = 0,
  55};
  56
  57static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
  58{
  59        return container_of(event->pmu, struct imc_pmu, pmu);
  60}
  61
  62PMU_FORMAT_ATTR(event, "config:0-61");
  63PMU_FORMAT_ATTR(offset, "config:0-31");
  64PMU_FORMAT_ATTR(rvalue, "config:32");
  65PMU_FORMAT_ATTR(mode, "config:33-40");
  66static struct attribute *imc_format_attrs[] = {
  67        &format_attr_event.attr,
  68        &format_attr_offset.attr,
  69        &format_attr_rvalue.attr,
  70        &format_attr_mode.attr,
  71        NULL,
  72};
  73
  74static struct attribute_group imc_format_group = {
  75        .name = "format",
  76        .attrs = imc_format_attrs,
  77};
  78
  79/* Format attribute for imc trace-mode */
  80PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
  81PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
  82PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
  83PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
  84static struct attribute *trace_imc_format_attrs[] = {
  85        &format_attr_event.attr,
  86        &format_attr_cpmc_reserved.attr,
  87        &format_attr_cpmc_event.attr,
  88        &format_attr_cpmc_samplesel.attr,
  89        &format_attr_cpmc_load.attr,
  90        NULL,
  91};
  92
  93static struct attribute_group trace_imc_format_group = {
  94.name = "format",
  95.attrs = trace_imc_format_attrs,
  96};
  97
  98/* Get the cpumask printed to a buffer "buf" */
  99static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
 100                                        struct device_attribute *attr,
 101                                        char *buf)
 102{
 103        struct pmu *pmu = dev_get_drvdata(dev);
 104        struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
 105        cpumask_t *active_mask;
 106
 107        switch(imc_pmu->domain){
 108        case IMC_DOMAIN_NEST:
 109                active_mask = &nest_imc_cpumask;
 110                break;
 111        case IMC_DOMAIN_CORE:
 112                active_mask = &core_imc_cpumask;
 113                break;
 114        default:
 115                return 0;
 116        }
 117
 118        return cpumap_print_to_pagebuf(true, buf, active_mask);
 119}
 120
 121static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
 122
 123static struct attribute *imc_pmu_cpumask_attrs[] = {
 124        &dev_attr_cpumask.attr,
 125        NULL,
 126};
 127
 128static struct attribute_group imc_pmu_cpumask_attr_group = {
 129        .attrs = imc_pmu_cpumask_attrs,
 130};
 131
 132/* device_str_attr_create : Populate event "name" and string "str" in attribute */
 133static struct attribute *device_str_attr_create(const char *name, const char *str)
 134{
 135        struct perf_pmu_events_attr *attr;
 136
 137        attr = kzalloc(sizeof(*attr), GFP_KERNEL);
 138        if (!attr)
 139                return NULL;
 140        sysfs_attr_init(&attr->attr.attr);
 141
 142        attr->event_str = str;
 143        attr->attr.attr.name = name;
 144        attr->attr.attr.mode = 0444;
 145        attr->attr.show = perf_event_sysfs_show;
 146
 147        return &attr->attr.attr;
 148}
 149
 150static int imc_parse_event(struct device_node *np, const char *scale,
 151                                  const char *unit, const char *prefix,
 152                                  u32 base, struct imc_events *event)
 153{
 154        const char *s;
 155        u32 reg;
 156
 157        if (of_property_read_u32(np, "reg", &reg))
 158                goto error;
 159        /* Add the base_reg value to the "reg" */
 160        event->value = base + reg;
 161
 162        if (of_property_read_string(np, "event-name", &s))
 163                goto error;
 164
 165        event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
 166        if (!event->name)
 167                goto error;
 168
 169        if (of_property_read_string(np, "scale", &s))
 170                s = scale;
 171
 172        if (s) {
 173                event->scale = kstrdup(s, GFP_KERNEL);
 174                if (!event->scale)
 175                        goto error;
 176        }
 177
 178        if (of_property_read_string(np, "unit", &s))
 179                s = unit;
 180
 181        if (s) {
 182                event->unit = kstrdup(s, GFP_KERNEL);
 183                if (!event->unit)
 184                        goto error;
 185        }
 186
 187        return 0;
 188error:
 189        kfree(event->unit);
 190        kfree(event->scale);
 191        kfree(event->name);
 192        return -EINVAL;
 193}
 194
 195/*
 196 * imc_free_events: Function to cleanup the events list, having
 197 *                  "nr_entries".
 198 */
 199static void imc_free_events(struct imc_events *events, int nr_entries)
 200{
 201        int i;
 202
 203        /* Nothing to clean, return */
 204        if (!events)
 205                return;
 206        for (i = 0; i < nr_entries; i++) {
 207                kfree(events[i].unit);
 208                kfree(events[i].scale);
 209                kfree(events[i].name);
 210        }
 211
 212        kfree(events);
 213}
 214
 215/*
 216 * update_events_in_group: Update the "events" information in an attr_group
 217 *                         and assign the attr_group to the pmu "pmu".
 218 */
 219static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
 220{
 221        struct attribute_group *attr_group;
 222        struct attribute **attrs, *dev_str;
 223        struct device_node *np, *pmu_events;
 224        u32 handle, base_reg;
 225        int i = 0, j = 0, ct, ret;
 226        const char *prefix, *g_scale, *g_unit;
 227        const char *ev_val_str, *ev_scale_str, *ev_unit_str;
 228
 229        if (!of_property_read_u32(node, "events", &handle))
 230                pmu_events = of_find_node_by_phandle(handle);
 231        else
 232                return 0;
 233
 234        /* Did not find any node with a given phandle */
 235        if (!pmu_events)
 236                return 0;
 237
 238        /* Get a count of number of child nodes */
 239        ct = of_get_child_count(pmu_events);
 240
 241        /* Get the event prefix */
 242        if (of_property_read_string(node, "events-prefix", &prefix))
 243                return 0;
 244
 245        /* Get a global unit and scale data if available */
 246        if (of_property_read_string(node, "scale", &g_scale))
 247                g_scale = NULL;
 248
 249        if (of_property_read_string(node, "unit", &g_unit))
 250                g_unit = NULL;
 251
 252        /* "reg" property gives out the base offset of the counters data */
 253        of_property_read_u32(node, "reg", &base_reg);
 254
 255        /* Allocate memory for the events */
 256        pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
 257        if (!pmu->events)
 258                return -ENOMEM;
 259
 260        ct = 0;
 261        /* Parse the events and update the struct */
 262        for_each_child_of_node(pmu_events, np) {
 263                ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
 264                if (!ret)
 265                        ct++;
 266        }
 267
 268        /* Allocate memory for attribute group */
 269        attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
 270        if (!attr_group) {
 271                imc_free_events(pmu->events, ct);
 272                return -ENOMEM;
 273        }
 274
 275        /*
 276         * Allocate memory for attributes.
 277         * Since we have count of events for this pmu, we also allocate
 278         * memory for the scale and unit attribute for now.
 279         * "ct" has the total event structs added from the events-parent node.
 280         * So allocate three times the "ct" (this includes event, event_scale and
 281         * event_unit).
 282         */
 283        attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
 284        if (!attrs) {
 285                kfree(attr_group);
 286                imc_free_events(pmu->events, ct);
 287                return -ENOMEM;
 288        }
 289
 290        attr_group->name = "events";
 291        attr_group->attrs = attrs;
 292        do {
 293                ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
 294                dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
 295                if (!dev_str)
 296                        continue;
 297
 298                attrs[j++] = dev_str;
 299                if (pmu->events[i].scale) {
 300                        ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
 301                        dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
 302                        if (!dev_str)
 303                                continue;
 304
 305                        attrs[j++] = dev_str;
 306                }
 307
 308                if (pmu->events[i].unit) {
 309                        ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
 310                        dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
 311                        if (!dev_str)
 312                                continue;
 313
 314                        attrs[j++] = dev_str;
 315                }
 316        } while (++i < ct);
 317
 318        /* Save the event attribute */
 319        pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
 320
 321        return 0;
 322}
 323
 324/* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
 325static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
 326{
 327        return per_cpu(local_nest_imc_refc, cpu);
 328}
 329
 330static void nest_change_cpu_context(int old_cpu, int new_cpu)
 331{
 332        struct imc_pmu **pn = per_nest_pmu_arr;
 333
 334        if (old_cpu < 0 || new_cpu < 0)
 335                return;
 336
 337        while (*pn) {
 338                perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
 339                pn++;
 340        }
 341}
 342
 343static int ppc_nest_imc_cpu_offline(unsigned int cpu)
 344{
 345        int nid, target = -1;
 346        const struct cpumask *l_cpumask;
 347        struct imc_pmu_ref *ref;
 348
 349        /*
 350         * Check in the designated list for this cpu. Dont bother
 351         * if not one of them.
 352         */
 353        if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
 354                return 0;
 355
 356        /*
 357         * Check whether nest_imc is registered. We could end up here if the
 358         * cpuhotplug callback registration fails. i.e, callback invokes the
 359         * offline path for all successfully registered nodes. At this stage,
 360         * nest_imc pmu will not be registered and we should return here.
 361         *
 362         * We return with a zero since this is not an offline failure. And
 363         * cpuhp_setup_state() returns the actual failure reason to the caller,
 364         * which in turn will call the cleanup routine.
 365         */
 366        if (!nest_pmus)
 367                return 0;
 368
 369        /*
 370         * Now that this cpu is one of the designated,
 371         * find a next cpu a) which is online and b) in same chip.
 372         */
 373        nid = cpu_to_node(cpu);
 374        l_cpumask = cpumask_of_node(nid);
 375        target = cpumask_last(l_cpumask);
 376
 377        /*
 378         * If this(target) is the last cpu in the cpumask for this chip,
 379         * check for any possible online cpu in the chip.
 380         */
 381        if (unlikely(target == cpu))
 382                target = cpumask_any_but(l_cpumask, cpu);
 383
 384        /*
 385         * Update the cpumask with the target cpu and
 386         * migrate the context if needed
 387         */
 388        if (target >= 0 && target < nr_cpu_ids) {
 389                cpumask_set_cpu(target, &nest_imc_cpumask);
 390                nest_change_cpu_context(cpu, target);
 391        } else {
 392                opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 393                                       get_hard_smp_processor_id(cpu));
 394                /*
 395                 * If this is the last cpu in this chip then, skip the reference
 396                 * count mutex lock and make the reference count on this chip zero.
 397                 */
 398                ref = get_nest_pmu_ref(cpu);
 399                if (!ref)
 400                        return -EINVAL;
 401
 402                ref->refc = 0;
 403        }
 404        return 0;
 405}
 406
 407static int ppc_nest_imc_cpu_online(unsigned int cpu)
 408{
 409        const struct cpumask *l_cpumask;
 410        static struct cpumask tmp_mask;
 411        int res;
 412
 413        /* Get the cpumask of this node */
 414        l_cpumask = cpumask_of_node(cpu_to_node(cpu));
 415
 416        /*
 417         * If this is not the first online CPU on this node, then
 418         * just return.
 419         */
 420        if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
 421                return 0;
 422
 423        /*
 424         * If this is the first online cpu on this node
 425         * disable the nest counters by making an OPAL call.
 426         */
 427        res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 428                                     get_hard_smp_processor_id(cpu));
 429        if (res)
 430                return res;
 431
 432        /* Make this CPU the designated target for counter collection */
 433        cpumask_set_cpu(cpu, &nest_imc_cpumask);
 434        return 0;
 435}
 436
 437static int nest_pmu_cpumask_init(void)
 438{
 439        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
 440                                 "perf/powerpc/imc:online",
 441                                 ppc_nest_imc_cpu_online,
 442                                 ppc_nest_imc_cpu_offline);
 443}
 444
 445static void nest_imc_counters_release(struct perf_event *event)
 446{
 447        int rc, node_id;
 448        struct imc_pmu_ref *ref;
 449
 450        if (event->cpu < 0)
 451                return;
 452
 453        node_id = cpu_to_node(event->cpu);
 454
 455        /*
 456         * See if we need to disable the nest PMU.
 457         * If no events are currently in use, then we have to take a
 458         * mutex to ensure that we don't race with another task doing
 459         * enable or disable the nest counters.
 460         */
 461        ref = get_nest_pmu_ref(event->cpu);
 462        if (!ref)
 463                return;
 464
 465        /* Take the mutex lock for this node and then decrement the reference count */
 466        mutex_lock(&ref->lock);
 467        if (ref->refc == 0) {
 468                /*
 469                 * The scenario where this is true is, when perf session is
 470                 * started, followed by offlining of all cpus in a given node.
 471                 *
 472                 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
 473                 * function set the ref->count to zero, if the cpu which is
 474                 * about to offline is the last cpu in a given node and make
 475                 * an OPAL call to disable the engine in that node.
 476                 *
 477                 */
 478                mutex_unlock(&ref->lock);
 479                return;
 480        }
 481        ref->refc--;
 482        if (ref->refc == 0) {
 483                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
 484                                            get_hard_smp_processor_id(event->cpu));
 485                if (rc) {
 486                        mutex_unlock(&ref->lock);
 487                        pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
 488                        return;
 489                }
 490        } else if (ref->refc < 0) {
 491                WARN(1, "nest-imc: Invalid event reference count\n");
 492                ref->refc = 0;
 493        }
 494        mutex_unlock(&ref->lock);
 495}
 496
 497static int nest_imc_event_init(struct perf_event *event)
 498{
 499        int chip_id, rc, node_id;
 500        u32 l_config, config = event->attr.config;
 501        struct imc_mem_info *pcni;
 502        struct imc_pmu *pmu;
 503        struct imc_pmu_ref *ref;
 504        bool flag = false;
 505
 506        if (event->attr.type != event->pmu->type)
 507                return -ENOENT;
 508
 509        /* Sampling not supported */
 510        if (event->hw.sample_period)
 511                return -EINVAL;
 512
 513        if (event->cpu < 0)
 514                return -EINVAL;
 515
 516        pmu = imc_event_to_pmu(event);
 517
 518        /* Sanity check for config (event offset) */
 519        if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
 520                return -EINVAL;
 521
 522        /*
 523         * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
 524         * Get the base memory addresss for this cpu.
 525         */
 526        chip_id = cpu_to_chip_id(event->cpu);
 527
 528        /* Return, if chip_id is not valid */
 529        if (chip_id < 0)
 530                return -ENODEV;
 531
 532        pcni = pmu->mem_info;
 533        do {
 534                if (pcni->id == chip_id) {
 535                        flag = true;
 536                        break;
 537                }
 538                pcni++;
 539        } while (pcni->vbase != 0);
 540
 541        if (!flag)
 542                return -ENODEV;
 543
 544        /*
 545         * Add the event offset to the base address.
 546         */
 547        l_config = config & IMC_EVENT_OFFSET_MASK;
 548        event->hw.event_base = (u64)pcni->vbase + l_config;
 549        node_id = cpu_to_node(event->cpu);
 550
 551        /*
 552         * Get the imc_pmu_ref struct for this node.
 553         * Take the mutex lock and then increment the count of nest pmu events
 554         * inited.
 555         */
 556        ref = get_nest_pmu_ref(event->cpu);
 557        if (!ref)
 558                return -EINVAL;
 559
 560        mutex_lock(&ref->lock);
 561        if (ref->refc == 0) {
 562                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
 563                                             get_hard_smp_processor_id(event->cpu));
 564                if (rc) {
 565                        mutex_unlock(&ref->lock);
 566                        pr_err("nest-imc: Unable to start the counters for node %d\n",
 567                                                                        node_id);
 568                        return rc;
 569                }
 570        }
 571        ++ref->refc;
 572        mutex_unlock(&ref->lock);
 573
 574        event->destroy = nest_imc_counters_release;
 575        return 0;
 576}
 577
 578/*
 579 * core_imc_mem_init : Initializes memory for the current core.
 580 *
 581 * Uses alloc_pages_node() and uses the returned address as an argument to
 582 * an opal call to configure the pdbar. The address sent as an argument is
 583 * converted to physical address before the opal call is made. This is the
 584 * base address at which the core imc counters are populated.
 585 */
 586static int core_imc_mem_init(int cpu, int size)
 587{
 588        int nid, rc = 0, core_id = (cpu / threads_per_core);
 589        struct imc_mem_info *mem_info;
 590        struct page *page;
 591
 592        /*
 593         * alloc_pages_node() will allocate memory for core in the
 594         * local node only.
 595         */
 596        nid = cpu_to_node(cpu);
 597        mem_info = &core_imc_pmu->mem_info[core_id];
 598        mem_info->id = core_id;
 599
 600        /* We need only vbase for core counters */
 601        page = alloc_pages_node(nid,
 602                                GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 603                                __GFP_NOWARN, get_order(size));
 604        if (!page)
 605                return -ENOMEM;
 606        mem_info->vbase = page_address(page);
 607
 608        /* Init the mutex */
 609        core_imc_refc[core_id].id = core_id;
 610        mutex_init(&core_imc_refc[core_id].lock);
 611
 612        rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
 613                                __pa((void *)mem_info->vbase),
 614                                get_hard_smp_processor_id(cpu));
 615        if (rc) {
 616                free_pages((u64)mem_info->vbase, get_order(size));
 617                mem_info->vbase = NULL;
 618        }
 619
 620        return rc;
 621}
 622
 623static bool is_core_imc_mem_inited(int cpu)
 624{
 625        struct imc_mem_info *mem_info;
 626        int core_id = (cpu / threads_per_core);
 627
 628        mem_info = &core_imc_pmu->mem_info[core_id];
 629        if (!mem_info->vbase)
 630                return false;
 631
 632        return true;
 633}
 634
 635static int ppc_core_imc_cpu_online(unsigned int cpu)
 636{
 637        const struct cpumask *l_cpumask;
 638        static struct cpumask tmp_mask;
 639        int ret = 0;
 640
 641        /* Get the cpumask for this core */
 642        l_cpumask = cpu_sibling_mask(cpu);
 643
 644        /* If a cpu for this core is already set, then, don't do anything */
 645        if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
 646                return 0;
 647
 648        if (!is_core_imc_mem_inited(cpu)) {
 649                ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
 650                if (ret) {
 651                        pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
 652                        return ret;
 653                }
 654        }
 655
 656        /* set the cpu in the mask */
 657        cpumask_set_cpu(cpu, &core_imc_cpumask);
 658        return 0;
 659}
 660
 661static int ppc_core_imc_cpu_offline(unsigned int cpu)
 662{
 663        unsigned int core_id;
 664        int ncpu;
 665        struct imc_pmu_ref *ref;
 666
 667        /*
 668         * clear this cpu out of the mask, if not present in the mask,
 669         * don't bother doing anything.
 670         */
 671        if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
 672                return 0;
 673
 674        /*
 675         * Check whether core_imc is registered. We could end up here
 676         * if the cpuhotplug callback registration fails. i.e, callback
 677         * invokes the offline path for all sucessfully registered cpus.
 678         * At this stage, core_imc pmu will not be registered and we
 679         * should return here.
 680         *
 681         * We return with a zero since this is not an offline failure.
 682         * And cpuhp_setup_state() returns the actual failure reason
 683         * to the caller, which inturn will call the cleanup routine.
 684         */
 685        if (!core_imc_pmu->pmu.event_init)
 686                return 0;
 687
 688        /* Find any online cpu in that core except the current "cpu" */
 689        ncpu = cpumask_last(cpu_sibling_mask(cpu));
 690
 691        if (unlikely(ncpu == cpu))
 692                ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
 693
 694        if (ncpu >= 0 && ncpu < nr_cpu_ids) {
 695                cpumask_set_cpu(ncpu, &core_imc_cpumask);
 696                perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
 697        } else {
 698                /*
 699                 * If this is the last cpu in this core then, skip taking refernce
 700                 * count mutex lock for this core and directly zero "refc" for
 701                 * this core.
 702                 */
 703                opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 704                                       get_hard_smp_processor_id(cpu));
 705                core_id = cpu / threads_per_core;
 706                ref = &core_imc_refc[core_id];
 707                if (!ref)
 708                        return -EINVAL;
 709
 710                ref->refc = 0;
 711                /*
 712                 * Reduce the global reference count, if this is the
 713                 * last cpu in this core and core-imc event running
 714                 * in this cpu.
 715                 */
 716                mutex_lock(&imc_global_refc.lock);
 717                if (imc_global_refc.id == IMC_DOMAIN_CORE)
 718                        imc_global_refc.refc--;
 719
 720                mutex_unlock(&imc_global_refc.lock);
 721        }
 722        return 0;
 723}
 724
 725static int core_imc_pmu_cpumask_init(void)
 726{
 727        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
 728                                 "perf/powerpc/imc_core:online",
 729                                 ppc_core_imc_cpu_online,
 730                                 ppc_core_imc_cpu_offline);
 731}
 732
 733static void reset_global_refc(struct perf_event *event)
 734{
 735                mutex_lock(&imc_global_refc.lock);
 736                imc_global_refc.refc--;
 737
 738                /*
 739                 * If no other thread is running any
 740                 * event for this domain(thread/core/trace),
 741                 * set the global id to zero.
 742                 */
 743                if (imc_global_refc.refc <= 0) {
 744                        imc_global_refc.refc = 0;
 745                        imc_global_refc.id = 0;
 746                }
 747                mutex_unlock(&imc_global_refc.lock);
 748}
 749
 750static void core_imc_counters_release(struct perf_event *event)
 751{
 752        int rc, core_id;
 753        struct imc_pmu_ref *ref;
 754
 755        if (event->cpu < 0)
 756                return;
 757        /*
 758         * See if we need to disable the IMC PMU.
 759         * If no events are currently in use, then we have to take a
 760         * mutex to ensure that we don't race with another task doing
 761         * enable or disable the core counters.
 762         */
 763        core_id = event->cpu / threads_per_core;
 764
 765        /* Take the mutex lock and decrement the refernce count for this core */
 766        ref = &core_imc_refc[core_id];
 767        if (!ref)
 768                return;
 769
 770        mutex_lock(&ref->lock);
 771        if (ref->refc == 0) {
 772                /*
 773                 * The scenario where this is true is, when perf session is
 774                 * started, followed by offlining of all cpus in a given core.
 775                 *
 776                 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
 777                 * function set the ref->count to zero, if the cpu which is
 778                 * about to offline is the last cpu in a given core and make
 779                 * an OPAL call to disable the engine in that core.
 780                 *
 781                 */
 782                mutex_unlock(&ref->lock);
 783                return;
 784        }
 785        ref->refc--;
 786        if (ref->refc == 0) {
 787                rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
 788                                            get_hard_smp_processor_id(event->cpu));
 789                if (rc) {
 790                        mutex_unlock(&ref->lock);
 791                        pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
 792                        return;
 793                }
 794        } else if (ref->refc < 0) {
 795                WARN(1, "core-imc: Invalid event reference count\n");
 796                ref->refc = 0;
 797        }
 798        mutex_unlock(&ref->lock);
 799
 800        reset_global_refc(event);
 801}
 802
 803static int core_imc_event_init(struct perf_event *event)
 804{
 805        int core_id, rc;
 806        u64 config = event->attr.config;
 807        struct imc_mem_info *pcmi;
 808        struct imc_pmu *pmu;
 809        struct imc_pmu_ref *ref;
 810
 811        if (event->attr.type != event->pmu->type)
 812                return -ENOENT;
 813
 814        /* Sampling not supported */
 815        if (event->hw.sample_period)
 816                return -EINVAL;
 817
 818        if (event->cpu < 0)
 819                return -EINVAL;
 820
 821        event->hw.idx = -1;
 822        pmu = imc_event_to_pmu(event);
 823
 824        /* Sanity check for config (event offset) */
 825        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 826                return -EINVAL;
 827
 828        if (!is_core_imc_mem_inited(event->cpu))
 829                return -ENODEV;
 830
 831        core_id = event->cpu / threads_per_core;
 832        pcmi = &core_imc_pmu->mem_info[core_id];
 833        if ((!pcmi->vbase))
 834                return -ENODEV;
 835
 836        /* Get the core_imc mutex for this core */
 837        ref = &core_imc_refc[core_id];
 838        if (!ref)
 839                return -EINVAL;
 840
 841        /*
 842         * Core pmu units are enabled only when it is used.
 843         * See if this is triggered for the first time.
 844         * If yes, take the mutex lock and enable the core counters.
 845         * If not, just increment the count in core_imc_refc struct.
 846         */
 847        mutex_lock(&ref->lock);
 848        if (ref->refc == 0) {
 849                rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
 850                                             get_hard_smp_processor_id(event->cpu));
 851                if (rc) {
 852                        mutex_unlock(&ref->lock);
 853                        pr_err("core-imc: Unable to start the counters for core %d\n",
 854                                                                        core_id);
 855                        return rc;
 856                }
 857        }
 858        ++ref->refc;
 859        mutex_unlock(&ref->lock);
 860
 861        /*
 862         * Since the system can run either in accumulation or trace-mode
 863         * of IMC at a time, core-imc events are allowed only if no other
 864         * trace/thread imc events are enabled/monitored.
 865         *
 866         * Take the global lock, and check the refc.id
 867         * to know whether any other trace/thread imc
 868         * events are running.
 869         */
 870        mutex_lock(&imc_global_refc.lock);
 871        if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
 872                /*
 873                 * No other trace/thread imc events are running in
 874                 * the system, so set the refc.id to core-imc.
 875                 */
 876                imc_global_refc.id = IMC_DOMAIN_CORE;
 877                imc_global_refc.refc++;
 878        } else {
 879                mutex_unlock(&imc_global_refc.lock);
 880                return -EBUSY;
 881        }
 882        mutex_unlock(&imc_global_refc.lock);
 883
 884        event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
 885        event->destroy = core_imc_counters_release;
 886        return 0;
 887}
 888
 889/*
 890 * Allocates a page of memory for each of the online cpus, and load
 891 * LDBAR with 0.
 892 * The physical base address of the page allocated for a cpu will be
 893 * written to the LDBAR for that cpu, when the thread-imc event
 894 * is added.
 895 *
 896 * LDBAR Register Layout:
 897 *
 898 *  0          4         8         12        16        20        24        28
 899 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 900 *   | |       [   ]    [                   Counter Address [8:50]
 901 *   | * Mode    |
 902 *   |           * PB Scope
 903 *   * Enable/Disable
 904 *
 905 *  32        36        40        44        48        52        56        60
 906 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
 907 *           Counter Address [8:50]              ]
 908 *
 909 */
 910static int thread_imc_mem_alloc(int cpu_id, int size)
 911{
 912        u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
 913        int nid = cpu_to_node(cpu_id);
 914
 915        if (!local_mem) {
 916                struct page *page;
 917                /*
 918                 * This case could happen only once at start, since we dont
 919                 * free the memory in cpu offline path.
 920                 */
 921                page = alloc_pages_node(nid,
 922                                  GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
 923                                  __GFP_NOWARN, get_order(size));
 924                if (!page)
 925                        return -ENOMEM;
 926                local_mem = page_address(page);
 927
 928                per_cpu(thread_imc_mem, cpu_id) = local_mem;
 929        }
 930
 931        mtspr(SPRN_LDBAR, 0);
 932        return 0;
 933}
 934
 935static int ppc_thread_imc_cpu_online(unsigned int cpu)
 936{
 937        return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
 938}
 939
 940static int ppc_thread_imc_cpu_offline(unsigned int cpu)
 941{
 942        /*
 943         * Set the bit 0 of LDBAR to zero.
 944         *
 945         * If bit 0 of LDBAR is unset, it will stop posting
 946         * the counter data to memory.
 947         * For thread-imc, bit 0 of LDBAR will be set to 1 in the
 948         * event_add function. So reset this bit here, to stop the updates
 949         * to memory in the cpu_offline path.
 950         */
 951        mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
 952
 953        /* Reduce the refc if thread-imc event running on this cpu */
 954        mutex_lock(&imc_global_refc.lock);
 955        if (imc_global_refc.id == IMC_DOMAIN_THREAD)
 956                imc_global_refc.refc--;
 957        mutex_unlock(&imc_global_refc.lock);
 958
 959        return 0;
 960}
 961
 962static int thread_imc_cpu_init(void)
 963{
 964        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
 965                          "perf/powerpc/imc_thread:online",
 966                          ppc_thread_imc_cpu_online,
 967                          ppc_thread_imc_cpu_offline);
 968}
 969
 970static int thread_imc_event_init(struct perf_event *event)
 971{
 972        u32 config = event->attr.config;
 973        struct task_struct *target;
 974        struct imc_pmu *pmu;
 975
 976        if (event->attr.type != event->pmu->type)
 977                return -ENOENT;
 978
 979        if (!perfmon_capable())
 980                return -EACCES;
 981
 982        /* Sampling not supported */
 983        if (event->hw.sample_period)
 984                return -EINVAL;
 985
 986        event->hw.idx = -1;
 987        pmu = imc_event_to_pmu(event);
 988
 989        /* Sanity check for config offset */
 990        if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
 991                return -EINVAL;
 992
 993        target = event->hw.target;
 994        if (!target)
 995                return -EINVAL;
 996
 997        mutex_lock(&imc_global_refc.lock);
 998        /*
 999         * Check if any other trace/core imc events are running in the
1000         * system, if not set the global id to thread-imc.
1001         */
1002        if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1003                imc_global_refc.id = IMC_DOMAIN_THREAD;
1004                imc_global_refc.refc++;
1005        } else {
1006                mutex_unlock(&imc_global_refc.lock);
1007                return -EBUSY;
1008        }
1009        mutex_unlock(&imc_global_refc.lock);
1010
1011        event->pmu->task_ctx_nr = perf_sw_context;
1012        event->destroy = reset_global_refc;
1013        return 0;
1014}
1015
1016static bool is_thread_imc_pmu(struct perf_event *event)
1017{
1018        if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1019                return true;
1020
1021        return false;
1022}
1023
1024static u64 * get_event_base_addr(struct perf_event *event)
1025{
1026        u64 addr;
1027
1028        if (is_thread_imc_pmu(event)) {
1029                addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1030                return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1031        }
1032
1033        return (u64 *)event->hw.event_base;
1034}
1035
1036static void thread_imc_pmu_start_txn(struct pmu *pmu,
1037                                     unsigned int txn_flags)
1038{
1039        if (txn_flags & ~PERF_PMU_TXN_ADD)
1040                return;
1041        perf_pmu_disable(pmu);
1042}
1043
1044static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1045{
1046        perf_pmu_enable(pmu);
1047}
1048
1049static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1050{
1051        perf_pmu_enable(pmu);
1052        return 0;
1053}
1054
1055static u64 imc_read_counter(struct perf_event *event)
1056{
1057        u64 *addr, data;
1058
1059        /*
1060         * In-Memory Collection (IMC) counters are free flowing counters.
1061         * So we take a snapshot of the counter value on enable and save it
1062         * to calculate the delta at later stage to present the event counter
1063         * value.
1064         */
1065        addr = get_event_base_addr(event);
1066        data = be64_to_cpu(READ_ONCE(*addr));
1067        local64_set(&event->hw.prev_count, data);
1068
1069        return data;
1070}
1071
1072static void imc_event_update(struct perf_event *event)
1073{
1074        u64 counter_prev, counter_new, final_count;
1075
1076        counter_prev = local64_read(&event->hw.prev_count);
1077        counter_new = imc_read_counter(event);
1078        final_count = counter_new - counter_prev;
1079
1080        /* Update the delta to the event count */
1081        local64_add(final_count, &event->count);
1082}
1083
1084static void imc_event_start(struct perf_event *event, int flags)
1085{
1086        /*
1087         * In Memory Counters are free flowing counters. HW or the microcode
1088         * keeps adding to the counter offset in memory. To get event
1089         * counter value, we snapshot the value here and we calculate
1090         * delta at later point.
1091         */
1092        imc_read_counter(event);
1093}
1094
1095static void imc_event_stop(struct perf_event *event, int flags)
1096{
1097        /*
1098         * Take a snapshot and calculate the delta and update
1099         * the event counter values.
1100         */
1101        imc_event_update(event);
1102}
1103
1104static int imc_event_add(struct perf_event *event, int flags)
1105{
1106        if (flags & PERF_EF_START)
1107                imc_event_start(event, flags);
1108
1109        return 0;
1110}
1111
1112static int thread_imc_event_add(struct perf_event *event, int flags)
1113{
1114        int core_id;
1115        struct imc_pmu_ref *ref;
1116        u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1117
1118        if (flags & PERF_EF_START)
1119                imc_event_start(event, flags);
1120
1121        if (!is_core_imc_mem_inited(smp_processor_id()))
1122                return -EINVAL;
1123
1124        core_id = smp_processor_id() / threads_per_core;
1125        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1126        mtspr(SPRN_LDBAR, ldbar_value);
1127
1128        /*
1129         * imc pmus are enabled only when it is used.
1130         * See if this is triggered for the first time.
1131         * If yes, take the mutex lock and enable the counters.
1132         * If not, just increment the count in ref count struct.
1133         */
1134        ref = &core_imc_refc[core_id];
1135        if (!ref)
1136                return -EINVAL;
1137
1138        mutex_lock(&ref->lock);
1139        if (ref->refc == 0) {
1140                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1141                    get_hard_smp_processor_id(smp_processor_id()))) {
1142                        mutex_unlock(&ref->lock);
1143                        pr_err("thread-imc: Unable to start the counter\
1144                                for core %d\n", core_id);
1145                        return -EINVAL;
1146                }
1147        }
1148        ++ref->refc;
1149        mutex_unlock(&ref->lock);
1150        return 0;
1151}
1152
1153static void thread_imc_event_del(struct perf_event *event, int flags)
1154{
1155
1156        int core_id;
1157        struct imc_pmu_ref *ref;
1158
1159        core_id = smp_processor_id() / threads_per_core;
1160        ref = &core_imc_refc[core_id];
1161        if (!ref) {
1162                pr_debug("imc: Failed to get event reference count\n");
1163                return;
1164        }
1165
1166        mutex_lock(&ref->lock);
1167        ref->refc--;
1168        if (ref->refc == 0) {
1169                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1170                    get_hard_smp_processor_id(smp_processor_id()))) {
1171                        mutex_unlock(&ref->lock);
1172                        pr_err("thread-imc: Unable to stop the counters\
1173                                for core %d\n", core_id);
1174                        return;
1175                }
1176        } else if (ref->refc < 0) {
1177                ref->refc = 0;
1178        }
1179        mutex_unlock(&ref->lock);
1180
1181        /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1182        mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1183
1184        /*
1185         * Take a snapshot and calculate the delta and update
1186         * the event counter values.
1187         */
1188        imc_event_update(event);
1189}
1190
1191/*
1192 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1193 */
1194static int trace_imc_mem_alloc(int cpu_id, int size)
1195{
1196        u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1197        int phys_id = cpu_to_node(cpu_id), rc = 0;
1198        int core_id = (cpu_id / threads_per_core);
1199
1200        if (!local_mem) {
1201                struct page *page;
1202
1203                page = alloc_pages_node(phys_id,
1204                                GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1205                                __GFP_NOWARN, get_order(size));
1206                if (!page)
1207                        return -ENOMEM;
1208                local_mem = page_address(page);
1209                per_cpu(trace_imc_mem, cpu_id) = local_mem;
1210
1211                /* Initialise the counters for trace mode */
1212                rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1213                                            get_hard_smp_processor_id(cpu_id));
1214                if (rc) {
1215                        pr_info("IMC:opal init failed for trace imc\n");
1216                        return rc;
1217                }
1218        }
1219
1220        /* Init the mutex, if not already */
1221        trace_imc_refc[core_id].id = core_id;
1222        mutex_init(&trace_imc_refc[core_id].lock);
1223
1224        mtspr(SPRN_LDBAR, 0);
1225        return 0;
1226}
1227
1228static int ppc_trace_imc_cpu_online(unsigned int cpu)
1229{
1230        return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1231}
1232
1233static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1234{
1235        /*
1236         * No need to set bit 0 of LDBAR to zero, as
1237         * it is set to zero for imc trace-mode
1238         *
1239         * Reduce the refc if any trace-imc event running
1240         * on this cpu.
1241         */
1242        mutex_lock(&imc_global_refc.lock);
1243        if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1244                imc_global_refc.refc--;
1245        mutex_unlock(&imc_global_refc.lock);
1246
1247        return 0;
1248}
1249
1250static int trace_imc_cpu_init(void)
1251{
1252        return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1253                          "perf/powerpc/imc_trace:online",
1254                          ppc_trace_imc_cpu_online,
1255                          ppc_trace_imc_cpu_offline);
1256}
1257
1258static u64 get_trace_imc_event_base_addr(void)
1259{
1260        return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1261}
1262
1263/*
1264 * Function to parse trace-imc data obtained
1265 * and to prepare the perf sample.
1266 */
1267static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1268                                    struct perf_sample_data *data,
1269                                    u64 *prev_tb,
1270                                    struct perf_event_header *header,
1271                                    struct perf_event *event)
1272{
1273        /* Sanity checks for a valid record */
1274        if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1275                *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1276        else
1277                return -EINVAL;
1278
1279        if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1280                         be64_to_cpu(READ_ONCE(mem->tb2)))
1281                return -EINVAL;
1282
1283        /* Prepare perf sample */
1284        data->ip =  be64_to_cpu(READ_ONCE(mem->ip));
1285        data->period = event->hw.last_period;
1286
1287        header->type = PERF_RECORD_SAMPLE;
1288        header->size = sizeof(*header) + event->header_size;
1289        header->misc = 0;
1290
1291        if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1292                switch (IMC_TRACE_RECORD_VAL_HVPR(be64_to_cpu(READ_ONCE(mem->val)))) {
1293                case 0:/* when MSR HV and PR not set in the trace-record */
1294                        header->misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1295                        break;
1296                case 1: /* MSR HV is 0 and PR is 1 */
1297                        header->misc |= PERF_RECORD_MISC_GUEST_USER;
1298                        break;
1299                case 2: /* MSR HV is 1 and PR is 0 */
1300                        header->misc |= PERF_RECORD_MISC_KERNEL;
1301                        break;
1302                case 3: /* MSR HV is 1 and PR is 1 */
1303                        header->misc |= PERF_RECORD_MISC_USER;
1304                        break;
1305                default:
1306                        pr_info("IMC: Unable to set the flag based on MSR bits\n");
1307                        break;
1308                }
1309        } else {
1310                if (is_kernel_addr(data->ip))
1311                        header->misc |= PERF_RECORD_MISC_KERNEL;
1312                else
1313                        header->misc |= PERF_RECORD_MISC_USER;
1314        }
1315        perf_event_header__init_id(header, data, event);
1316
1317        return 0;
1318}
1319
1320static void dump_trace_imc_data(struct perf_event *event)
1321{
1322        struct trace_imc_data *mem;
1323        int i, ret;
1324        u64 prev_tb = 0;
1325
1326        mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1327        for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1328                i++, mem++) {
1329                struct perf_sample_data data;
1330                struct perf_event_header header;
1331
1332                ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1333                if (ret) /* Exit, if not a valid record */
1334                        break;
1335                else {
1336                        /* If this is a valid record, create the sample */
1337                        struct perf_output_handle handle;
1338
1339                        if (perf_output_begin(&handle, &data, event, header.size))
1340                                return;
1341
1342                        perf_output_sample(&handle, &header, &data, event);
1343                        perf_output_end(&handle);
1344                }
1345        }
1346}
1347
1348static int trace_imc_event_add(struct perf_event *event, int flags)
1349{
1350        int core_id = smp_processor_id() / threads_per_core;
1351        struct imc_pmu_ref *ref = NULL;
1352        u64 local_mem, ldbar_value;
1353
1354        /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1355        local_mem = get_trace_imc_event_base_addr();
1356        ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1357
1358        /* trace-imc reference count */
1359        if (trace_imc_refc)
1360                ref = &trace_imc_refc[core_id];
1361        if (!ref) {
1362                pr_debug("imc: Failed to get the event reference count\n");
1363                return -EINVAL;
1364        }
1365
1366        mtspr(SPRN_LDBAR, ldbar_value);
1367        mutex_lock(&ref->lock);
1368        if (ref->refc == 0) {
1369                if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1370                                get_hard_smp_processor_id(smp_processor_id()))) {
1371                        mutex_unlock(&ref->lock);
1372                        pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1373                        return -EINVAL;
1374                }
1375        }
1376        ++ref->refc;
1377        mutex_unlock(&ref->lock);
1378        return 0;
1379}
1380
1381static void trace_imc_event_read(struct perf_event *event)
1382{
1383        return;
1384}
1385
1386static void trace_imc_event_stop(struct perf_event *event, int flags)
1387{
1388        u64 local_mem = get_trace_imc_event_base_addr();
1389        dump_trace_imc_data(event);
1390        memset((void *)local_mem, 0, sizeof(u64));
1391}
1392
1393static void trace_imc_event_start(struct perf_event *event, int flags)
1394{
1395        return;
1396}
1397
1398static void trace_imc_event_del(struct perf_event *event, int flags)
1399{
1400        int core_id = smp_processor_id() / threads_per_core;
1401        struct imc_pmu_ref *ref = NULL;
1402
1403        if (trace_imc_refc)
1404                ref = &trace_imc_refc[core_id];
1405        if (!ref) {
1406                pr_debug("imc: Failed to get event reference count\n");
1407                return;
1408        }
1409
1410        mutex_lock(&ref->lock);
1411        ref->refc--;
1412        if (ref->refc == 0) {
1413                if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1414                                get_hard_smp_processor_id(smp_processor_id()))) {
1415                        mutex_unlock(&ref->lock);
1416                        pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1417                        return;
1418                }
1419        } else if (ref->refc < 0) {
1420                ref->refc = 0;
1421        }
1422        mutex_unlock(&ref->lock);
1423
1424        trace_imc_event_stop(event, flags);
1425}
1426
1427static int trace_imc_event_init(struct perf_event *event)
1428{
1429        if (event->attr.type != event->pmu->type)
1430                return -ENOENT;
1431
1432        if (!perfmon_capable())
1433                return -EACCES;
1434
1435        /* Return if this is a couting event */
1436        if (event->attr.sample_period == 0)
1437                return -ENOENT;
1438
1439        /*
1440         * Take the global lock, and make sure
1441         * no other thread is running any core/thread imc
1442         * events
1443         */
1444        mutex_lock(&imc_global_refc.lock);
1445        if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1446                /*
1447                 * No core/thread imc events are running in the
1448                 * system, so set the refc.id to trace-imc.
1449                 */
1450                imc_global_refc.id = IMC_DOMAIN_TRACE;
1451                imc_global_refc.refc++;
1452        } else {
1453                mutex_unlock(&imc_global_refc.lock);
1454                return -EBUSY;
1455        }
1456        mutex_unlock(&imc_global_refc.lock);
1457
1458        event->hw.idx = -1;
1459
1460        event->pmu->task_ctx_nr = perf_hw_context;
1461        event->destroy = reset_global_refc;
1462        return 0;
1463}
1464
1465/* update_pmu_ops : Populate the appropriate operations for "pmu" */
1466static int update_pmu_ops(struct imc_pmu *pmu)
1467{
1468        pmu->pmu.task_ctx_nr = perf_invalid_context;
1469        pmu->pmu.add = imc_event_add;
1470        pmu->pmu.del = imc_event_stop;
1471        pmu->pmu.start = imc_event_start;
1472        pmu->pmu.stop = imc_event_stop;
1473        pmu->pmu.read = imc_event_update;
1474        pmu->pmu.attr_groups = pmu->attr_groups;
1475        pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1476        pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1477
1478        switch (pmu->domain) {
1479        case IMC_DOMAIN_NEST:
1480                pmu->pmu.event_init = nest_imc_event_init;
1481                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1482                break;
1483        case IMC_DOMAIN_CORE:
1484                pmu->pmu.event_init = core_imc_event_init;
1485                pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1486                break;
1487        case IMC_DOMAIN_THREAD:
1488                pmu->pmu.event_init = thread_imc_event_init;
1489                pmu->pmu.add = thread_imc_event_add;
1490                pmu->pmu.del = thread_imc_event_del;
1491                pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1492                pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1493                pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1494                break;
1495        case IMC_DOMAIN_TRACE:
1496                pmu->pmu.event_init = trace_imc_event_init;
1497                pmu->pmu.add = trace_imc_event_add;
1498                pmu->pmu.del = trace_imc_event_del;
1499                pmu->pmu.start = trace_imc_event_start;
1500                pmu->pmu.stop = trace_imc_event_stop;
1501                pmu->pmu.read = trace_imc_event_read;
1502                pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1503                break;
1504        default:
1505                break;
1506        }
1507
1508        return 0;
1509}
1510
1511/* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1512static int init_nest_pmu_ref(void)
1513{
1514        int nid, i, cpu;
1515
1516        nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1517                                                                GFP_KERNEL);
1518
1519        if (!nest_imc_refc)
1520                return -ENOMEM;
1521
1522        i = 0;
1523        for_each_node(nid) {
1524                /*
1525                 * Mutex lock to avoid races while tracking the number of
1526                 * sessions using the chip's nest pmu units.
1527                 */
1528                mutex_init(&nest_imc_refc[i].lock);
1529
1530                /*
1531                 * Loop to init the "id" with the node_id. Variable "i" initialized to
1532                 * 0 and will be used as index to the array. "i" will not go off the
1533                 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1534                 * nodes only.
1535                 */
1536                nest_imc_refc[i++].id = nid;
1537        }
1538
1539        /*
1540         * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1541         * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1542         */
1543        for_each_possible_cpu(cpu) {
1544                nid = cpu_to_node(cpu);
1545                for (i = 0; i < num_possible_nodes(); i++) {
1546                        if (nest_imc_refc[i].id == nid) {
1547                                per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1548                                break;
1549                        }
1550                }
1551        }
1552        return 0;
1553}
1554
1555static void cleanup_all_core_imc_memory(void)
1556{
1557        int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1558        struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1559        int size = core_imc_pmu->counter_mem_size;
1560
1561        /* mem_info will never be NULL */
1562        for (i = 0; i < nr_cores; i++) {
1563                if (ptr[i].vbase)
1564                        free_pages((u64)ptr[i].vbase, get_order(size));
1565        }
1566
1567        kfree(ptr);
1568        kfree(core_imc_refc);
1569}
1570
1571static void thread_imc_ldbar_disable(void *dummy)
1572{
1573        /*
1574         * By setting 0th bit of LDBAR to zero, we disable thread-imc
1575         * updates to memory.
1576         */
1577        mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1578}
1579
1580void thread_imc_disable(void)
1581{
1582        on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1583}
1584
1585static void cleanup_all_thread_imc_memory(void)
1586{
1587        int i, order = get_order(thread_imc_mem_size);
1588
1589        for_each_online_cpu(i) {
1590                if (per_cpu(thread_imc_mem, i))
1591                        free_pages((u64)per_cpu(thread_imc_mem, i), order);
1592
1593        }
1594}
1595
1596static void cleanup_all_trace_imc_memory(void)
1597{
1598        int i, order = get_order(trace_imc_mem_size);
1599
1600        for_each_online_cpu(i) {
1601                if (per_cpu(trace_imc_mem, i))
1602                        free_pages((u64)per_cpu(trace_imc_mem, i), order);
1603
1604        }
1605        kfree(trace_imc_refc);
1606}
1607
1608/* Function to free the attr_groups which are dynamically allocated */
1609static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1610{
1611        if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1612                kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1613        kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1614}
1615
1616/*
1617 * Common function to unregister cpu hotplug callback and
1618 * free the memory.
1619 * TODO: Need to handle pmu unregistering, which will be
1620 * done in followup series.
1621 */
1622static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1623{
1624        if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1625                mutex_lock(&nest_init_lock);
1626                if (nest_pmus == 1) {
1627                        cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1628                        kfree(nest_imc_refc);
1629                        kfree(per_nest_pmu_arr);
1630                        per_nest_pmu_arr = NULL;
1631                }
1632
1633                if (nest_pmus > 0)
1634                        nest_pmus--;
1635                mutex_unlock(&nest_init_lock);
1636        }
1637
1638        /* Free core_imc memory */
1639        if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1640                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1641                cleanup_all_core_imc_memory();
1642        }
1643
1644        /* Free thread_imc memory */
1645        if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1646                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1647                cleanup_all_thread_imc_memory();
1648        }
1649
1650        if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1651                cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1652                cleanup_all_trace_imc_memory();
1653        }
1654}
1655
1656/*
1657 * Function to unregister thread-imc if core-imc
1658 * is not registered.
1659 */
1660void unregister_thread_imc(void)
1661{
1662        imc_common_cpuhp_mem_free(thread_imc_pmu);
1663        imc_common_mem_free(thread_imc_pmu);
1664        perf_pmu_unregister(&thread_imc_pmu->pmu);
1665}
1666
1667/*
1668 * imc_mem_init : Function to support memory allocation for core imc.
1669 */
1670static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1671                                                                int pmu_index)
1672{
1673        const char *s;
1674        int nr_cores, cpu, res = -ENOMEM;
1675
1676        if (of_property_read_string(parent, "name", &s))
1677                return -ENODEV;
1678
1679        switch (pmu_ptr->domain) {
1680        case IMC_DOMAIN_NEST:
1681                /* Update the pmu name */
1682                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1683                if (!pmu_ptr->pmu.name)
1684                        goto err;
1685
1686                /* Needed for hotplug/migration */
1687                if (!per_nest_pmu_arr) {
1688                        per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1689                                                sizeof(struct imc_pmu *),
1690                                                GFP_KERNEL);
1691                        if (!per_nest_pmu_arr)
1692                                goto err;
1693                }
1694                per_nest_pmu_arr[pmu_index] = pmu_ptr;
1695                break;
1696        case IMC_DOMAIN_CORE:
1697                /* Update the pmu name */
1698                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1699                if (!pmu_ptr->pmu.name)
1700                        goto err;
1701
1702                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1703                pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1704                                                                GFP_KERNEL);
1705
1706                if (!pmu_ptr->mem_info)
1707                        goto err;
1708
1709                core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1710                                                                GFP_KERNEL);
1711
1712                if (!core_imc_refc) {
1713                        kfree(pmu_ptr->mem_info);
1714                        goto err;
1715                }
1716
1717                core_imc_pmu = pmu_ptr;
1718                break;
1719        case IMC_DOMAIN_THREAD:
1720                /* Update the pmu name */
1721                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1722                if (!pmu_ptr->pmu.name)
1723                        goto err;
1724
1725                thread_imc_mem_size = pmu_ptr->counter_mem_size;
1726                for_each_online_cpu(cpu) {
1727                        res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1728                        if (res) {
1729                                cleanup_all_thread_imc_memory();
1730                                goto err;
1731                        }
1732                }
1733
1734                thread_imc_pmu = pmu_ptr;
1735                break;
1736        case IMC_DOMAIN_TRACE:
1737                /* Update the pmu name */
1738                pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1739                if (!pmu_ptr->pmu.name)
1740                        return -ENOMEM;
1741
1742                nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1743                trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1744                                                                GFP_KERNEL);
1745                if (!trace_imc_refc)
1746                        return -ENOMEM;
1747
1748                trace_imc_mem_size = pmu_ptr->counter_mem_size;
1749                for_each_online_cpu(cpu) {
1750                        res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1751                        if (res) {
1752                                cleanup_all_trace_imc_memory();
1753                                goto err;
1754                        }
1755                }
1756                break;
1757        default:
1758                return -EINVAL;
1759        }
1760
1761        return 0;
1762err:
1763        return res;
1764}
1765
1766/*
1767 * init_imc_pmu : Setup and register the IMC pmu device.
1768 *
1769 * @parent:     Device tree unit node
1770 * @pmu_ptr:    memory allocated for this pmu
1771 * @pmu_idx:    Count of nest pmc registered
1772 *
1773 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1774 * Handles failure cases and accordingly frees memory.
1775 */
1776int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1777{
1778        int ret;
1779
1780        ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1781        if (ret)
1782                goto err_free_mem;
1783
1784        switch (pmu_ptr->domain) {
1785        case IMC_DOMAIN_NEST:
1786                /*
1787                * Nest imc pmu need only one cpu per chip, we initialize the
1788                * cpumask for the first nest imc pmu and use the same for the
1789                * rest. To handle the cpuhotplug callback unregister, we track
1790                * the number of nest pmus in "nest_pmus".
1791                */
1792                mutex_lock(&nest_init_lock);
1793                if (nest_pmus == 0) {
1794                        ret = init_nest_pmu_ref();
1795                        if (ret) {
1796                                mutex_unlock(&nest_init_lock);
1797                                kfree(per_nest_pmu_arr);
1798                                per_nest_pmu_arr = NULL;
1799                                goto err_free_mem;
1800                        }
1801                        /* Register for cpu hotplug notification. */
1802                        ret = nest_pmu_cpumask_init();
1803                        if (ret) {
1804                                mutex_unlock(&nest_init_lock);
1805                                kfree(nest_imc_refc);
1806                                kfree(per_nest_pmu_arr);
1807                                per_nest_pmu_arr = NULL;
1808                                goto err_free_mem;
1809                        }
1810                }
1811                nest_pmus++;
1812                mutex_unlock(&nest_init_lock);
1813                break;
1814        case IMC_DOMAIN_CORE:
1815                ret = core_imc_pmu_cpumask_init();
1816                if (ret) {
1817                        cleanup_all_core_imc_memory();
1818                        goto err_free_mem;
1819                }
1820
1821                break;
1822        case IMC_DOMAIN_THREAD:
1823                ret = thread_imc_cpu_init();
1824                if (ret) {
1825                        cleanup_all_thread_imc_memory();
1826                        goto err_free_mem;
1827                }
1828
1829                break;
1830        case IMC_DOMAIN_TRACE:
1831                ret = trace_imc_cpu_init();
1832                if (ret) {
1833                        cleanup_all_trace_imc_memory();
1834                        goto err_free_mem;
1835                }
1836
1837                break;
1838        default:
1839                return  -EINVAL;        /* Unknown domain */
1840        }
1841
1842        ret = update_events_in_group(parent, pmu_ptr);
1843        if (ret)
1844                goto err_free_cpuhp_mem;
1845
1846        ret = update_pmu_ops(pmu_ptr);
1847        if (ret)
1848                goto err_free_cpuhp_mem;
1849
1850        ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1851        if (ret)
1852                goto err_free_cpuhp_mem;
1853
1854        pr_debug("%s performance monitor hardware support registered\n",
1855                                                        pmu_ptr->pmu.name);
1856
1857        return 0;
1858
1859err_free_cpuhp_mem:
1860        imc_common_cpuhp_mem_free(pmu_ptr);
1861err_free_mem:
1862        imc_common_mem_free(pmu_ptr);
1863        return ret;
1864}
1865