linux/arch/powerpc/platforms/cell/pmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Cell Broadband Engine Performance Monitor
   4 *
   5 * (C) Copyright IBM Corporation 2001,2006
   6 *
   7 * Author:
   8 *    David Erb (djerb@us.ibm.com)
   9 *    Kevin Corry (kevcorry@us.ibm.com)
  10 */
  11
  12#include <linux/interrupt.h>
  13#include <linux/irqdomain.h>
  14#include <linux/types.h>
  15#include <linux/export.h>
  16#include <asm/io.h>
  17#include <asm/irq_regs.h>
  18#include <asm/machdep.h>
  19#include <asm/pmc.h>
  20#include <asm/reg.h>
  21#include <asm/spu.h>
  22#include <asm/cell-regs.h>
  23
  24#include "interrupt.h"
  25
  26/*
  27 * When writing to write-only mmio addresses, save a shadow copy. All of the
  28 * registers are 32-bit, but stored in the upper-half of a 64-bit field in
  29 * pmd_regs.
  30 */
  31
  32#define WRITE_WO_MMIO(reg, x)                                   \
  33        do {                                                    \
  34                u32 _x = (x);                                   \
  35                struct cbe_pmd_regs __iomem *pmd_regs;          \
  36                struct cbe_pmd_shadow_regs *shadow_regs;        \
  37                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  38                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  39                out_be64(&(pmd_regs->reg), (((u64)_x) << 32));  \
  40                shadow_regs->reg = _x;                          \
  41        } while (0)
  42
  43#define READ_SHADOW_REG(val, reg)                               \
  44        do {                                                    \
  45                struct cbe_pmd_shadow_regs *shadow_regs;        \
  46                shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
  47                (val) = shadow_regs->reg;                       \
  48        } while (0)
  49
  50#define READ_MMIO_UPPER32(val, reg)                             \
  51        do {                                                    \
  52                struct cbe_pmd_regs __iomem *pmd_regs;          \
  53                pmd_regs = cbe_get_cpu_pmd_regs(cpu);           \
  54                (val) = (u32)(in_be64(&pmd_regs->reg) >> 32);   \
  55        } while (0)
  56
  57/*
  58 * Physical counter registers.
  59 * Each physical counter can act as one 32-bit counter or two 16-bit counters.
  60 */
  61
  62u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
  63{
  64        u32 val_in_latch, val = 0;
  65
  66        if (phys_ctr < NR_PHYS_CTRS) {
  67                READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
  68
  69                /* Read the latch or the actual counter, whichever is newer. */
  70                if (val_in_latch & (1 << phys_ctr)) {
  71                        READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
  72                } else {
  73                        READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
  74                }
  75        }
  76
  77        return val;
  78}
  79EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
  80
  81void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
  82{
  83        struct cbe_pmd_shadow_regs *shadow_regs;
  84        u32 pm_ctrl;
  85
  86        if (phys_ctr < NR_PHYS_CTRS) {
  87                /* Writing to a counter only writes to a hardware latch.
  88                 * The new value is not propagated to the actual counter
  89                 * until the performance monitor is enabled.
  90                 */
  91                WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
  92
  93                pm_ctrl = cbe_read_pm(cpu, pm_control);
  94                if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
  95                        /* The counters are already active, so we need to
  96                         * rewrite the pm_control register to "re-enable"
  97                         * the PMU.
  98                         */
  99                        cbe_write_pm(cpu, pm_control, pm_ctrl);
 100                } else {
 101                        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 102                        shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
 103                }
 104        }
 105}
 106EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
 107
 108/*
 109 * "Logical" counter registers.
 110 * These will read/write 16-bits or 32-bits depending on the
 111 * current size of the counter. Counters 4 - 7 are always 16-bit.
 112 */
 113
 114u32 cbe_read_ctr(u32 cpu, u32 ctr)
 115{
 116        u32 val;
 117        u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 118
 119        val = cbe_read_phys_ctr(cpu, phys_ctr);
 120
 121        if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
 122                val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
 123
 124        return val;
 125}
 126EXPORT_SYMBOL_GPL(cbe_read_ctr);
 127
 128void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
 129{
 130        u32 phys_ctr;
 131        u32 phys_val;
 132
 133        phys_ctr = ctr & (NR_PHYS_CTRS - 1);
 134
 135        if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
 136                phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
 137
 138                if (ctr < NR_PHYS_CTRS)
 139                        val = (val << 16) | (phys_val & 0xffff);
 140                else
 141                        val = (val & 0xffff) | (phys_val & 0xffff0000);
 142        }
 143
 144        cbe_write_phys_ctr(cpu, phys_ctr, val);
 145}
 146EXPORT_SYMBOL_GPL(cbe_write_ctr);
 147
 148/*
 149 * Counter-control registers.
 150 * Each "logical" counter has a corresponding control register.
 151 */
 152
 153u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
 154{
 155        u32 pm07_control = 0;
 156
 157        if (ctr < NR_CTRS)
 158                READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
 159
 160        return pm07_control;
 161}
 162EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
 163
 164void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
 165{
 166        if (ctr < NR_CTRS)
 167                WRITE_WO_MMIO(pm07_control[ctr], val);
 168}
 169EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
 170
 171/*
 172 * Other PMU control registers. Most of these are write-only.
 173 */
 174
 175u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
 176{
 177        u32 val = 0;
 178
 179        switch (reg) {
 180        case group_control:
 181                READ_SHADOW_REG(val, group_control);
 182                break;
 183
 184        case debug_bus_control:
 185                READ_SHADOW_REG(val, debug_bus_control);
 186                break;
 187
 188        case trace_address:
 189                READ_MMIO_UPPER32(val, trace_address);
 190                break;
 191
 192        case ext_tr_timer:
 193                READ_SHADOW_REG(val, ext_tr_timer);
 194                break;
 195
 196        case pm_status:
 197                READ_MMIO_UPPER32(val, pm_status);
 198                break;
 199
 200        case pm_control:
 201                READ_SHADOW_REG(val, pm_control);
 202                break;
 203
 204        case pm_interval:
 205                READ_MMIO_UPPER32(val, pm_interval);
 206                break;
 207
 208        case pm_start_stop:
 209                READ_SHADOW_REG(val, pm_start_stop);
 210                break;
 211        }
 212
 213        return val;
 214}
 215EXPORT_SYMBOL_GPL(cbe_read_pm);
 216
 217void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
 218{
 219        switch (reg) {
 220        case group_control:
 221                WRITE_WO_MMIO(group_control, val);
 222                break;
 223
 224        case debug_bus_control:
 225                WRITE_WO_MMIO(debug_bus_control, val);
 226                break;
 227
 228        case trace_address:
 229                WRITE_WO_MMIO(trace_address, val);
 230                break;
 231
 232        case ext_tr_timer:
 233                WRITE_WO_MMIO(ext_tr_timer, val);
 234                break;
 235
 236        case pm_status:
 237                WRITE_WO_MMIO(pm_status, val);
 238                break;
 239
 240        case pm_control:
 241                WRITE_WO_MMIO(pm_control, val);
 242                break;
 243
 244        case pm_interval:
 245                WRITE_WO_MMIO(pm_interval, val);
 246                break;
 247
 248        case pm_start_stop:
 249                WRITE_WO_MMIO(pm_start_stop, val);
 250                break;
 251        }
 252}
 253EXPORT_SYMBOL_GPL(cbe_write_pm);
 254
 255/*
 256 * Get/set the size of a physical counter to either 16 or 32 bits.
 257 */
 258
 259u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
 260{
 261        u32 pm_ctrl, size = 0;
 262
 263        if (phys_ctr < NR_PHYS_CTRS) {
 264                pm_ctrl = cbe_read_pm(cpu, pm_control);
 265                size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
 266        }
 267
 268        return size;
 269}
 270EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
 271
 272void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
 273{
 274        u32 pm_ctrl;
 275
 276        if (phys_ctr < NR_PHYS_CTRS) {
 277                pm_ctrl = cbe_read_pm(cpu, pm_control);
 278                switch (ctr_size) {
 279                case 16:
 280                        pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
 281                        break;
 282
 283                case 32:
 284                        pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
 285                        break;
 286                }
 287                cbe_write_pm(cpu, pm_control, pm_ctrl);
 288        }
 289}
 290EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
 291
 292/*
 293 * Enable/disable the entire performance monitoring unit.
 294 * When we enable the PMU, all pending writes to counters get committed.
 295 */
 296
 297void cbe_enable_pm(u32 cpu)
 298{
 299        struct cbe_pmd_shadow_regs *shadow_regs;
 300        u32 pm_ctrl;
 301
 302        shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
 303        shadow_regs->counter_value_in_latch = 0;
 304
 305        pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
 306        cbe_write_pm(cpu, pm_control, pm_ctrl);
 307}
 308EXPORT_SYMBOL_GPL(cbe_enable_pm);
 309
 310void cbe_disable_pm(u32 cpu)
 311{
 312        u32 pm_ctrl;
 313        pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
 314        cbe_write_pm(cpu, pm_control, pm_ctrl);
 315}
 316EXPORT_SYMBOL_GPL(cbe_disable_pm);
 317
 318/*
 319 * Reading from the trace_buffer.
 320 * The trace buffer is two 64-bit registers. Reading from
 321 * the second half automatically increments the trace_address.
 322 */
 323
 324void cbe_read_trace_buffer(u32 cpu, u64 *buf)
 325{
 326        struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
 327
 328        *buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
 329        *buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
 330}
 331EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
 332
 333/*
 334 * Enabling/disabling interrupts for the entire performance monitoring unit.
 335 */
 336
 337u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
 338{
 339        /* Reading pm_status clears the interrupt bits. */
 340        return cbe_read_pm(cpu, pm_status);
 341}
 342EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
 343
 344void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
 345{
 346        /* Set which node and thread will handle the next interrupt. */
 347        iic_set_interrupt_routing(cpu, thread, 0);
 348
 349        /* Enable the interrupt bits in the pm_status register. */
 350        if (mask)
 351                cbe_write_pm(cpu, pm_status, mask);
 352}
 353EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
 354
 355void cbe_disable_pm_interrupts(u32 cpu)
 356{
 357        cbe_get_and_clear_pm_interrupts(cpu);
 358        cbe_write_pm(cpu, pm_status, 0);
 359}
 360EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
 361
 362static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
 363{
 364        perf_irq(get_irq_regs());
 365        return IRQ_HANDLED;
 366}
 367
 368static int __init cbe_init_pm_irq(void)
 369{
 370        unsigned int irq;
 371        int rc, node;
 372
 373        for_each_online_node(node) {
 374                irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
 375                                               (node << IIC_IRQ_NODE_SHIFT));
 376                if (!irq) {
 377                        printk("ERROR: Unable to allocate irq for node %d\n",
 378                               node);
 379                        return -EINVAL;
 380                }
 381
 382                rc = request_irq(irq, cbe_pm_irq,
 383                                 0, "cbe-pmu-0", NULL);
 384                if (rc) {
 385                        printk("ERROR: Request for irq on node %d failed\n",
 386                               node);
 387                        return rc;
 388                }
 389        }
 390
 391        return 0;
 392}
 393machine_arch_initcall(cell, cbe_init_pm_irq);
 394
 395void cbe_sync_irq(int node)
 396{
 397        unsigned int irq;
 398
 399        irq = irq_find_mapping(NULL,
 400                               IIC_IRQ_IOEX_PMI
 401                               | (node << IIC_IRQ_NODE_SHIFT));
 402
 403        if (!irq) {
 404                printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
 405                "for node %d\n", irq, node);
 406                return;
 407        }
 408
 409        synchronize_irq(irq);
 410}
 411EXPORT_SYMBOL_GPL(cbe_sync_irq);
 412
 413