linux/arch/riscv/mm/context.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Regents of the University of California
   4 * Copyright (C) 2017 SiFive
   5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
   6 */
   7
   8#include <linux/bitops.h>
   9#include <linux/cpumask.h>
  10#include <linux/mm.h>
  11#include <linux/percpu.h>
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/static_key.h>
  15#include <asm/tlbflush.h>
  16#include <asm/cacheflush.h>
  17#include <asm/mmu_context.h>
  18
  19#ifdef CONFIG_MMU
  20
  21DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
  22
  23static unsigned long asid_bits;
  24static unsigned long num_asids;
  25static unsigned long asid_mask;
  26
  27static atomic_long_t current_version;
  28
  29static DEFINE_RAW_SPINLOCK(context_lock);
  30static cpumask_t context_tlb_flush_pending;
  31static unsigned long *context_asid_map;
  32
  33static DEFINE_PER_CPU(atomic_long_t, active_context);
  34static DEFINE_PER_CPU(unsigned long, reserved_context);
  35
  36static bool check_update_reserved_context(unsigned long cntx,
  37                                          unsigned long newcntx)
  38{
  39        int cpu;
  40        bool hit = false;
  41
  42        /*
  43         * Iterate over the set of reserved CONTEXT looking for a match.
  44         * If we find one, then we can update our mm to use new CONTEXT
  45         * (i.e. the same CONTEXT in the current_version) but we can't
  46         * exit the loop early, since we need to ensure that all copies
  47         * of the old CONTEXT are updated to reflect the mm. Failure to do
  48         * so could result in us missing the reserved CONTEXT in a future
  49         * version.
  50         */
  51        for_each_possible_cpu(cpu) {
  52                if (per_cpu(reserved_context, cpu) == cntx) {
  53                        hit = true;
  54                        per_cpu(reserved_context, cpu) = newcntx;
  55                }
  56        }
  57
  58        return hit;
  59}
  60
  61static void __flush_context(void)
  62{
  63        int i;
  64        unsigned long cntx;
  65
  66        /* Must be called with context_lock held */
  67        lockdep_assert_held(&context_lock);
  68
  69        /* Update the list of reserved ASIDs and the ASID bitmap. */
  70        bitmap_clear(context_asid_map, 0, num_asids);
  71
  72        /* Mark already active ASIDs as used */
  73        for_each_possible_cpu(i) {
  74                cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
  75                /*
  76                 * If this CPU has already been through a rollover, but
  77                 * hasn't run another task in the meantime, we must preserve
  78                 * its reserved CONTEXT, as this is the only trace we have of
  79                 * the process it is still running.
  80                 */
  81                if (cntx == 0)
  82                        cntx = per_cpu(reserved_context, i);
  83
  84                __set_bit(cntx & asid_mask, context_asid_map);
  85                per_cpu(reserved_context, i) = cntx;
  86        }
  87
  88        /* Mark ASID #0 as used because it is used at boot-time */
  89        __set_bit(0, context_asid_map);
  90
  91        /* Queue a TLB invalidation for each CPU on next context-switch */
  92        cpumask_setall(&context_tlb_flush_pending);
  93}
  94
  95static unsigned long __new_context(struct mm_struct *mm)
  96{
  97        static u32 cur_idx = 1;
  98        unsigned long cntx = atomic_long_read(&mm->context.id);
  99        unsigned long asid, ver = atomic_long_read(&current_version);
 100
 101        /* Must be called with context_lock held */
 102        lockdep_assert_held(&context_lock);
 103
 104        if (cntx != 0) {
 105                unsigned long newcntx = ver | (cntx & asid_mask);
 106
 107                /*
 108                 * If our current CONTEXT was active during a rollover, we
 109                 * can continue to use it and this was just a false alarm.
 110                 */
 111                if (check_update_reserved_context(cntx, newcntx))
 112                        return newcntx;
 113
 114                /*
 115                 * We had a valid CONTEXT in a previous life, so try to
 116                 * re-use it if possible.
 117                 */
 118                if (!__test_and_set_bit(cntx & asid_mask, context_asid_map))
 119                        return newcntx;
 120        }
 121
 122        /*
 123         * Allocate a free ASID. If we can't find one then increment
 124         * current_version and flush all ASIDs.
 125         */
 126        asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
 127        if (asid != num_asids)
 128                goto set_asid;
 129
 130        /* We're out of ASIDs, so increment current_version */
 131        ver = atomic_long_add_return_relaxed(num_asids, &current_version);
 132
 133        /* Flush everything  */
 134        __flush_context();
 135
 136        /* We have more ASIDs than CPUs, so this will always succeed */
 137        asid = find_next_zero_bit(context_asid_map, num_asids, 1);
 138
 139set_asid:
 140        __set_bit(asid, context_asid_map);
 141        cur_idx = asid;
 142        return asid | ver;
 143}
 144
 145static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
 146{
 147        unsigned long flags;
 148        bool need_flush_tlb = false;
 149        unsigned long cntx, old_active_cntx;
 150
 151        cntx = atomic_long_read(&mm->context.id);
 152
 153        /*
 154         * If our active_context is non-zero and the context matches the
 155         * current_version, then we update the active_context entry with a
 156         * relaxed cmpxchg.
 157         *
 158         * Following is how we handle racing with a concurrent rollover:
 159         *
 160         * - We get a zero back from the cmpxchg and end up waiting on the
 161         *   lock. Taking the lock synchronises with the rollover and so
 162         *   we are forced to see the updated verion.
 163         *
 164         * - We get a valid context back from the cmpxchg then we continue
 165         *   using old ASID because __flush_context() would have marked ASID
 166         *   of active_context as used and next context switch we will
 167         *   allocate new context.
 168         */
 169        old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
 170        if (old_active_cntx &&
 171            ((cntx & ~asid_mask) == atomic_long_read(&current_version)) &&
 172            atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
 173                                        old_active_cntx, cntx))
 174                goto switch_mm_fast;
 175
 176        raw_spin_lock_irqsave(&context_lock, flags);
 177
 178        /* Check that our ASID belongs to the current_version. */
 179        cntx = atomic_long_read(&mm->context.id);
 180        if ((cntx & ~asid_mask) != atomic_long_read(&current_version)) {
 181                cntx = __new_context(mm);
 182                atomic_long_set(&mm->context.id, cntx);
 183        }
 184
 185        if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
 186                need_flush_tlb = true;
 187
 188        atomic_long_set(&per_cpu(active_context, cpu), cntx);
 189
 190        raw_spin_unlock_irqrestore(&context_lock, flags);
 191
 192switch_mm_fast:
 193        csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
 194                  ((cntx & asid_mask) << SATP_ASID_SHIFT) |
 195                  SATP_MODE);
 196
 197        if (need_flush_tlb)
 198                local_flush_tlb_all();
 199}
 200
 201static void set_mm_noasid(struct mm_struct *mm)
 202{
 203        /* Switch the page table and blindly nuke entire local TLB */
 204        csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | SATP_MODE);
 205        local_flush_tlb_all();
 206}
 207
 208static inline void set_mm(struct mm_struct *mm, unsigned int cpu)
 209{
 210        if (static_branch_unlikely(&use_asid_allocator))
 211                set_mm_asid(mm, cpu);
 212        else
 213                set_mm_noasid(mm);
 214}
 215
 216static int __init asids_init(void)
 217{
 218        unsigned long old;
 219
 220        /* Figure-out number of ASID bits in HW */
 221        old = csr_read(CSR_SATP);
 222        asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
 223        csr_write(CSR_SATP, asid_bits);
 224        asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
 225        asid_bits = fls_long(asid_bits);
 226        csr_write(CSR_SATP, old);
 227
 228        /*
 229         * In the process of determining number of ASID bits (above)
 230         * we polluted the TLB of current HART so let's do TLB flushed
 231         * to remove unwanted TLB enteries.
 232         */
 233        local_flush_tlb_all();
 234
 235        /* Pre-compute ASID details */
 236        num_asids = 1 << asid_bits;
 237        asid_mask = num_asids - 1;
 238
 239        /*
 240         * Use ASID allocator only if number of HW ASIDs are
 241         * at-least twice more than CPUs
 242         */
 243        if (num_asids > (2 * num_possible_cpus())) {
 244                atomic_long_set(&current_version, num_asids);
 245
 246                context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
 247                if (!context_asid_map)
 248                        panic("Failed to allocate bitmap for %lu ASIDs\n",
 249                              num_asids);
 250
 251                __set_bit(0, context_asid_map);
 252
 253                static_branch_enable(&use_asid_allocator);
 254
 255                pr_info("ASID allocator using %lu bits (%lu entries)\n",
 256                        asid_bits, num_asids);
 257        } else {
 258                pr_info("ASID allocator disabled\n");
 259        }
 260
 261        return 0;
 262}
 263early_initcall(asids_init);
 264#else
 265static inline void set_mm(struct mm_struct *mm, unsigned int cpu)
 266{
 267        /* Nothing to do here when there is no MMU */
 268}
 269#endif
 270
 271/*
 272 * When necessary, performs a deferred icache flush for the given MM context,
 273 * on the local CPU.  RISC-V has no direct mechanism for instruction cache
 274 * shoot downs, so instead we send an IPI that informs the remote harts they
 275 * need to flush their local instruction caches.  To avoid pathologically slow
 276 * behavior in a common case (a bunch of single-hart processes on a many-hart
 277 * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
 278 * executing a MM context and instead schedule a deferred local instruction
 279 * cache flush to be performed before execution resumes on each hart.  This
 280 * actually performs that local instruction cache flush, which implicitly only
 281 * refers to the current hart.
 282 *
 283 * The "cpu" argument must be the current local CPU number.
 284 */
 285static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu)
 286{
 287#ifdef CONFIG_SMP
 288        cpumask_t *mask = &mm->context.icache_stale_mask;
 289
 290        if (cpumask_test_cpu(cpu, mask)) {
 291                cpumask_clear_cpu(cpu, mask);
 292                /*
 293                 * Ensure the remote hart's writes are visible to this hart.
 294                 * This pairs with a barrier in flush_icache_mm.
 295                 */
 296                smp_mb();
 297                local_flush_icache_all();
 298        }
 299
 300#endif
 301}
 302
 303void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 304        struct task_struct *task)
 305{
 306        unsigned int cpu;
 307
 308        if (unlikely(prev == next))
 309                return;
 310
 311        /*
 312         * Mark the current MM context as inactive, and the next as
 313         * active.  This is at least used by the icache flushing
 314         * routines in order to determine who should be flushed.
 315         */
 316        cpu = smp_processor_id();
 317
 318        cpumask_clear_cpu(cpu, mm_cpumask(prev));
 319        cpumask_set_cpu(cpu, mm_cpumask(next));
 320
 321        set_mm(next, cpu);
 322
 323        flush_icache_deferred(next, cpu);
 324}
 325