linux/arch/s390/kernel/perf_cpum_sf.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Performance event support for the System z CPU-measurement Sampling Facility
   4 *
   5 * Copyright IBM Corp. 2013, 2018
   6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
   7 */
   8#define KMSG_COMPONENT  "cpum_sf"
   9#define pr_fmt(fmt)     KMSG_COMPONENT ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/kernel_stat.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/pid.h>
  16#include <linux/notifier.h>
  17#include <linux/export.h>
  18#include <linux/slab.h>
  19#include <linux/mm.h>
  20#include <linux/moduleparam.h>
  21#include <asm/cpu_mf.h>
  22#include <asm/irq.h>
  23#include <asm/debug.h>
  24#include <asm/timex.h>
  25
  26/* Minimum number of sample-data-block-tables:
  27 * At least one table is required for the sampling buffer structure.
  28 * A single table contains up to 511 pointers to sample-data-blocks.
  29 */
  30#define CPUM_SF_MIN_SDBT        1
  31
  32/* Number of sample-data-blocks per sample-data-block-table (SDBT):
  33 * A table contains SDB pointers (8 bytes) and one table-link entry
  34 * that points to the origin of the next SDBT.
  35 */
  36#define CPUM_SF_SDB_PER_TABLE   ((PAGE_SIZE - 8) / 8)
  37
  38/* Maximum page offset for an SDBT table-link entry:
  39 * If this page offset is reached, a table-link entry to the next SDBT
  40 * must be added.
  41 */
  42#define CPUM_SF_SDBT_TL_OFFSET  (CPUM_SF_SDB_PER_TABLE * 8)
  43static inline int require_table_link(const void *sdbt)
  44{
  45        return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
  46}
  47
  48/* Minimum and maximum sampling buffer sizes:
  49 *
  50 * This number represents the maximum size of the sampling buffer taking
  51 * the number of sample-data-block-tables into account.  Note that these
  52 * numbers apply to the basic-sampling function only.
  53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
  54 * the diagnostic-sampling function is active.
  55 *
  56 * Sampling buffer size         Buffer characteristics
  57 * ---------------------------------------------------
  58 *       64KB               ==    16 pages (4KB per page)
  59 *                                 1 page  for SDB-tables
  60 *                                15 pages for SDBs
  61 *
  62 *  32MB                    ==  8192 pages (4KB per page)
  63 *                                16 pages for SDB-tables
  64 *                              8176 pages for SDBs
  65 */
  66static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
  67static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
  68static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
  69
  70struct sf_buffer {
  71        unsigned long    *sdbt;     /* Sample-data-block-table origin */
  72        /* buffer characteristics (required for buffer increments) */
  73        unsigned long  num_sdb;     /* Number of sample-data-blocks */
  74        unsigned long num_sdbt;     /* Number of sample-data-block-tables */
  75        unsigned long    *tail;     /* last sample-data-block-table */
  76};
  77
  78struct aux_buffer {
  79        struct sf_buffer sfb;
  80        unsigned long head;        /* index of SDB of buffer head */
  81        unsigned long alert_mark;  /* index of SDB of alert request position */
  82        unsigned long empty_mark;  /* mark of SDB not marked full */
  83        unsigned long *sdb_index;  /* SDB address for fast lookup */
  84        unsigned long *sdbt_index; /* SDBT address for fast lookup */
  85};
  86
  87struct cpu_hw_sf {
  88        /* CPU-measurement sampling information block */
  89        struct hws_qsi_info_block qsi;
  90        /* CPU-measurement sampling control block */
  91        struct hws_lsctl_request_block lsctl;
  92        struct sf_buffer sfb;       /* Sampling buffer */
  93        unsigned int flags;         /* Status flags */
  94        struct perf_event *event;   /* Scheduled perf event */
  95        struct perf_output_handle handle; /* AUX buffer output handle */
  96};
  97static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
  98
  99/* Debug feature */
 100static debug_info_t *sfdbg;
 101
 102/*
 103 * sf_disable() - Switch off sampling facility
 104 */
 105static int sf_disable(void)
 106{
 107        struct hws_lsctl_request_block sreq;
 108
 109        memset(&sreq, 0, sizeof(sreq));
 110        return lsctl(&sreq);
 111}
 112
 113/*
 114 * sf_buffer_available() - Check for an allocated sampling buffer
 115 */
 116static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
 117{
 118        return !!cpuhw->sfb.sdbt;
 119}
 120
 121/*
 122 * deallocate sampling facility buffer
 123 */
 124static void free_sampling_buffer(struct sf_buffer *sfb)
 125{
 126        unsigned long *sdbt, *curr;
 127
 128        if (!sfb->sdbt)
 129                return;
 130
 131        sdbt = sfb->sdbt;
 132        curr = sdbt;
 133
 134        /* Free the SDBT after all SDBs are processed... */
 135        while (1) {
 136                if (!*curr || !sdbt)
 137                        break;
 138
 139                /* Process table-link entries */
 140                if (is_link_entry(curr)) {
 141                        curr = get_next_sdbt(curr);
 142                        if (sdbt)
 143                                free_page((unsigned long) sdbt);
 144
 145                        /* If the origin is reached, sampling buffer is freed */
 146                        if (curr == sfb->sdbt)
 147                                break;
 148                        else
 149                                sdbt = curr;
 150                } else {
 151                        /* Process SDB pointer */
 152                        if (*curr) {
 153                                free_page(*curr);
 154                                curr++;
 155                        }
 156                }
 157        }
 158
 159        debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
 160                            (unsigned long)sfb->sdbt);
 161        memset(sfb, 0, sizeof(*sfb));
 162}
 163
 164static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
 165{
 166        unsigned long sdb, *trailer;
 167
 168        /* Allocate and initialize sample-data-block */
 169        sdb = get_zeroed_page(gfp_flags);
 170        if (!sdb)
 171                return -ENOMEM;
 172        trailer = trailer_entry_ptr(sdb);
 173        *trailer = SDB_TE_ALERT_REQ_MASK;
 174
 175        /* Link SDB into the sample-data-block-table */
 176        *sdbt = sdb;
 177
 178        return 0;
 179}
 180
 181/*
 182 * realloc_sampling_buffer() - extend sampler memory
 183 *
 184 * Allocates new sample-data-blocks and adds them to the specified sampling
 185 * buffer memory.
 186 *
 187 * Important: This modifies the sampling buffer and must be called when the
 188 *            sampling facility is disabled.
 189 *
 190 * Returns zero on success, non-zero otherwise.
 191 */
 192static int realloc_sampling_buffer(struct sf_buffer *sfb,
 193                                   unsigned long num_sdb, gfp_t gfp_flags)
 194{
 195        int i, rc;
 196        unsigned long *new, *tail, *tail_prev = NULL;
 197
 198        if (!sfb->sdbt || !sfb->tail)
 199                return -EINVAL;
 200
 201        if (!is_link_entry(sfb->tail))
 202                return -EINVAL;
 203
 204        /* Append to the existing sampling buffer, overwriting the table-link
 205         * register.
 206         * The tail variables always points to the "tail" (last and table-link)
 207         * entry in an SDB-table.
 208         */
 209        tail = sfb->tail;
 210
 211        /* Do a sanity check whether the table-link entry points to
 212         * the sampling buffer origin.
 213         */
 214        if (sfb->sdbt != get_next_sdbt(tail)) {
 215                debug_sprintf_event(sfdbg, 3, "%s: "
 216                                    "sampling buffer is not linked: origin %#lx"
 217                                    " tail %#lx\n", __func__,
 218                                    (unsigned long)sfb->sdbt,
 219                                    (unsigned long)tail);
 220                return -EINVAL;
 221        }
 222
 223        /* Allocate remaining SDBs */
 224        rc = 0;
 225        for (i = 0; i < num_sdb; i++) {
 226                /* Allocate a new SDB-table if it is full. */
 227                if (require_table_link(tail)) {
 228                        new = (unsigned long *) get_zeroed_page(gfp_flags);
 229                        if (!new) {
 230                                rc = -ENOMEM;
 231                                break;
 232                        }
 233                        sfb->num_sdbt++;
 234                        /* Link current page to tail of chain */
 235                        *tail = (unsigned long)(void *) new + 1;
 236                        tail_prev = tail;
 237                        tail = new;
 238                }
 239
 240                /* Allocate a new sample-data-block.
 241                 * If there is not enough memory, stop the realloc process
 242                 * and simply use what was allocated.  If this is a temporary
 243                 * issue, a new realloc call (if required) might succeed.
 244                 */
 245                rc = alloc_sample_data_block(tail, gfp_flags);
 246                if (rc) {
 247                        /* Undo last SDBT. An SDBT with no SDB at its first
 248                         * entry but with an SDBT entry instead can not be
 249                         * handled by the interrupt handler code.
 250                         * Avoid this situation.
 251                         */
 252                        if (tail_prev) {
 253                                sfb->num_sdbt--;
 254                                free_page((unsigned long) new);
 255                                tail = tail_prev;
 256                        }
 257                        break;
 258                }
 259                sfb->num_sdb++;
 260                tail++;
 261                tail_prev = new = NULL; /* Allocated at least one SBD */
 262        }
 263
 264        /* Link sampling buffer to its origin */
 265        *tail = (unsigned long) sfb->sdbt + 1;
 266        sfb->tail = tail;
 267
 268        debug_sprintf_event(sfdbg, 4, "%s: new buffer"
 269                            " settings: sdbt %lu sdb %lu\n", __func__,
 270                            sfb->num_sdbt, sfb->num_sdb);
 271        return rc;
 272}
 273
 274/*
 275 * allocate_sampling_buffer() - allocate sampler memory
 276 *
 277 * Allocates and initializes a sampling buffer structure using the
 278 * specified number of sample-data-blocks (SDB).  For each allocation,
 279 * a 4K page is used.  The number of sample-data-block-tables (SDBT)
 280 * are calculated from SDBs.
 281 * Also set the ALERT_REQ mask in each SDBs trailer.
 282 *
 283 * Returns zero on success, non-zero otherwise.
 284 */
 285static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
 286{
 287        int rc;
 288
 289        if (sfb->sdbt)
 290                return -EINVAL;
 291
 292        /* Allocate the sample-data-block-table origin */
 293        sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
 294        if (!sfb->sdbt)
 295                return -ENOMEM;
 296        sfb->num_sdb = 0;
 297        sfb->num_sdbt = 1;
 298
 299        /* Link the table origin to point to itself to prepare for
 300         * realloc_sampling_buffer() invocation.
 301         */
 302        sfb->tail = sfb->sdbt;
 303        *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
 304
 305        /* Allocate requested number of sample-data-blocks */
 306        rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
 307        if (rc) {
 308                free_sampling_buffer(sfb);
 309                debug_sprintf_event(sfdbg, 4, "%s: "
 310                        "realloc_sampling_buffer failed with rc %i\n",
 311                        __func__, rc);
 312        } else
 313                debug_sprintf_event(sfdbg, 4,
 314                        "%s: tear %#lx dear %#lx\n", __func__,
 315                        (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
 316        return rc;
 317}
 318
 319static void sfb_set_limits(unsigned long min, unsigned long max)
 320{
 321        struct hws_qsi_info_block si;
 322
 323        CPUM_SF_MIN_SDB = min;
 324        CPUM_SF_MAX_SDB = max;
 325
 326        memset(&si, 0, sizeof(si));
 327        if (!qsi(&si))
 328                CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
 329}
 330
 331static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
 332{
 333        return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
 334                                    : CPUM_SF_MAX_SDB;
 335}
 336
 337static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
 338                                        struct hw_perf_event *hwc)
 339{
 340        if (!sfb->sdbt)
 341                return SFB_ALLOC_REG(hwc);
 342        if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
 343                return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
 344        return 0;
 345}
 346
 347static int sfb_has_pending_allocs(struct sf_buffer *sfb,
 348                                   struct hw_perf_event *hwc)
 349{
 350        return sfb_pending_allocs(sfb, hwc) > 0;
 351}
 352
 353static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
 354{
 355        /* Limit the number of SDBs to not exceed the maximum */
 356        num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
 357        if (num)
 358                SFB_ALLOC_REG(hwc) += num;
 359}
 360
 361static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
 362{
 363        SFB_ALLOC_REG(hwc) = 0;
 364        sfb_account_allocs(num, hwc);
 365}
 366
 367static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
 368{
 369        if (cpuhw->sfb.sdbt)
 370                free_sampling_buffer(&cpuhw->sfb);
 371}
 372
 373static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
 374{
 375        unsigned long n_sdb, freq;
 376        size_t sample_size;
 377
 378        /* Calculate sampling buffers using 4K pages
 379         *
 380         *    1. The sampling size is 32 bytes for basic sampling. This size
 381         *       is the same for all machine types. Diagnostic
 382         *       sampling uses auxlilary data buffer setup which provides the
 383         *       memory for SDBs using linux common code auxiliary trace
 384         *       setup.
 385         *
 386         *    2. Function alloc_sampling_buffer() sets the Alert Request
 387         *       Control indicator to trigger a measurement-alert to harvest
 388         *       sample-data-blocks (SDB). This is done per SDB. This
 389         *       measurement alert interrupt fires quick enough to handle
 390         *       one SDB, on very high frequency and work loads there might
 391         *       be 2 to 3 SBDs available for sample processing.
 392         *       Currently there is no need for setup alert request on every
 393         *       n-th page. This is counterproductive as one IRQ triggers
 394         *       a very high number of samples to be processed at one IRQ.
 395         *
 396         *    3. Use the sampling frequency as input.
 397         *       Compute the number of SDBs and ensure a minimum
 398         *       of CPUM_SF_MIN_SDB.  Depending on frequency add some more
 399         *       SDBs to handle a higher sampling rate.
 400         *       Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
 401         *       (one SDB) for every 10000 HZ frequency increment.
 402         *
 403         *    4. Compute the number of sample-data-block-tables (SDBT) and
 404         *       ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
 405         *       to 511 SDBs).
 406         */
 407        sample_size = sizeof(struct hws_basic_entry);
 408        freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
 409        n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
 410
 411        /* If there is already a sampling buffer allocated, it is very likely
 412         * that the sampling facility is enabled too.  If the event to be
 413         * initialized requires a greater sampling buffer, the allocation must
 414         * be postponed.  Changing the sampling buffer requires the sampling
 415         * facility to be in the disabled state.  So, account the number of
 416         * required SDBs and let cpumsf_pmu_enable() resize the buffer just
 417         * before the event is started.
 418         */
 419        sfb_init_allocs(n_sdb, hwc);
 420        if (sf_buffer_available(cpuhw))
 421                return 0;
 422
 423        debug_sprintf_event(sfdbg, 3,
 424                            "%s: rate %lu f %lu sdb %lu/%lu"
 425                            " sample_size %lu cpuhw %p\n", __func__,
 426                            SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
 427                            sample_size, cpuhw);
 428
 429        return alloc_sampling_buffer(&cpuhw->sfb,
 430                                     sfb_pending_allocs(&cpuhw->sfb, hwc));
 431}
 432
 433static unsigned long min_percent(unsigned int percent, unsigned long base,
 434                                 unsigned long min)
 435{
 436        return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
 437}
 438
 439static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
 440{
 441        /* Use a percentage-based approach to extend the sampling facility
 442         * buffer.  Accept up to 5% sample data loss.
 443         * Vary the extents between 1% to 5% of the current number of
 444         * sample-data-blocks.
 445         */
 446        if (ratio <= 5)
 447                return 0;
 448        if (ratio <= 25)
 449                return min_percent(1, base, 1);
 450        if (ratio <= 50)
 451                return min_percent(1, base, 1);
 452        if (ratio <= 75)
 453                return min_percent(2, base, 2);
 454        if (ratio <= 100)
 455                return min_percent(3, base, 3);
 456        if (ratio <= 250)
 457                return min_percent(4, base, 4);
 458
 459        return min_percent(5, base, 8);
 460}
 461
 462static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
 463                                  struct hw_perf_event *hwc)
 464{
 465        unsigned long ratio, num;
 466
 467        if (!OVERFLOW_REG(hwc))
 468                return;
 469
 470        /* The sample_overflow contains the average number of sample data
 471         * that has been lost because sample-data-blocks were full.
 472         *
 473         * Calculate the total number of sample data entries that has been
 474         * discarded.  Then calculate the ratio of lost samples to total samples
 475         * per second in percent.
 476         */
 477        ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
 478                             sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
 479
 480        /* Compute number of sample-data-blocks */
 481        num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
 482        if (num)
 483                sfb_account_allocs(num, hwc);
 484
 485        debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
 486                            __func__, OVERFLOW_REG(hwc), ratio, num);
 487        OVERFLOW_REG(hwc) = 0;
 488}
 489
 490/* extend_sampling_buffer() - Extend sampling buffer
 491 * @sfb:        Sampling buffer structure (for local CPU)
 492 * @hwc:        Perf event hardware structure
 493 *
 494 * Use this function to extend the sampling buffer based on the overflow counter
 495 * and postponed allocation extents stored in the specified Perf event hardware.
 496 *
 497 * Important: This function disables the sampling facility in order to safely
 498 *            change the sampling buffer structure.  Do not call this function
 499 *            when the PMU is active.
 500 */
 501static void extend_sampling_buffer(struct sf_buffer *sfb,
 502                                   struct hw_perf_event *hwc)
 503{
 504        unsigned long num, num_old;
 505        int rc;
 506
 507        num = sfb_pending_allocs(sfb, hwc);
 508        if (!num)
 509                return;
 510        num_old = sfb->num_sdb;
 511
 512        /* Disable the sampling facility to reset any states and also
 513         * clear pending measurement alerts.
 514         */
 515        sf_disable();
 516
 517        /* Extend the sampling buffer.
 518         * This memory allocation typically happens in an atomic context when
 519         * called by perf.  Because this is a reallocation, it is fine if the
 520         * new SDB-request cannot be satisfied immediately.
 521         */
 522        rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
 523        if (rc)
 524                debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
 525                                    __func__, rc);
 526
 527        if (sfb_has_pending_allocs(sfb, hwc))
 528                debug_sprintf_event(sfdbg, 5, "%s: "
 529                                    "req %lu alloc %lu remaining %lu\n",
 530                                    __func__, num, sfb->num_sdb - num_old,
 531                                    sfb_pending_allocs(sfb, hwc));
 532}
 533
 534/* Number of perf events counting hardware events */
 535static atomic_t num_events;
 536/* Used to avoid races in calling reserve/release_cpumf_hardware */
 537static DEFINE_MUTEX(pmc_reserve_mutex);
 538
 539#define PMC_INIT      0
 540#define PMC_RELEASE   1
 541#define PMC_FAILURE   2
 542static void setup_pmc_cpu(void *flags)
 543{
 544        int err;
 545        struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
 546
 547        err = 0;
 548        switch (*((int *) flags)) {
 549        case PMC_INIT:
 550                memset(cpusf, 0, sizeof(*cpusf));
 551                err = qsi(&cpusf->qsi);
 552                if (err)
 553                        break;
 554                cpusf->flags |= PMU_F_RESERVED;
 555                err = sf_disable();
 556                if (err)
 557                        pr_err("Switching off the sampling facility failed "
 558                               "with rc %i\n", err);
 559                debug_sprintf_event(sfdbg, 5,
 560                                    "%s: initialized: cpuhw %p\n", __func__,
 561                                    cpusf);
 562                break;
 563        case PMC_RELEASE:
 564                cpusf->flags &= ~PMU_F_RESERVED;
 565                err = sf_disable();
 566                if (err) {
 567                        pr_err("Switching off the sampling facility failed "
 568                               "with rc %i\n", err);
 569                } else
 570                        deallocate_buffers(cpusf);
 571                debug_sprintf_event(sfdbg, 5,
 572                                    "%s: released: cpuhw %p\n", __func__,
 573                                    cpusf);
 574                break;
 575        }
 576        if (err)
 577                *((int *) flags) |= PMC_FAILURE;
 578}
 579
 580static void release_pmc_hardware(void)
 581{
 582        int flags = PMC_RELEASE;
 583
 584        irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 585        on_each_cpu(setup_pmc_cpu, &flags, 1);
 586}
 587
 588static int reserve_pmc_hardware(void)
 589{
 590        int flags = PMC_INIT;
 591
 592        on_each_cpu(setup_pmc_cpu, &flags, 1);
 593        if (flags & PMC_FAILURE) {
 594                release_pmc_hardware();
 595                return -ENODEV;
 596        }
 597        irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 598
 599        return 0;
 600}
 601
 602static void hw_perf_event_destroy(struct perf_event *event)
 603{
 604        /* Release PMC if this is the last perf event */
 605        if (!atomic_add_unless(&num_events, -1, 1)) {
 606                mutex_lock(&pmc_reserve_mutex);
 607                if (atomic_dec_return(&num_events) == 0)
 608                        release_pmc_hardware();
 609                mutex_unlock(&pmc_reserve_mutex);
 610        }
 611}
 612
 613static void hw_init_period(struct hw_perf_event *hwc, u64 period)
 614{
 615        hwc->sample_period = period;
 616        hwc->last_period = hwc->sample_period;
 617        local64_set(&hwc->period_left, hwc->sample_period);
 618}
 619
 620static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
 621                                   unsigned long rate)
 622{
 623        return clamp_t(unsigned long, rate,
 624                       si->min_sampl_rate, si->max_sampl_rate);
 625}
 626
 627static u32 cpumsf_pid_type(struct perf_event *event,
 628                           u32 pid, enum pid_type type)
 629{
 630        struct task_struct *tsk;
 631
 632        /* Idle process */
 633        if (!pid)
 634                goto out;
 635
 636        tsk = find_task_by_pid_ns(pid, &init_pid_ns);
 637        pid = -1;
 638        if (tsk) {
 639                /*
 640                 * Only top level events contain the pid namespace in which
 641                 * they are created.
 642                 */
 643                if (event->parent)
 644                        event = event->parent;
 645                pid = __task_pid_nr_ns(tsk, type, event->ns);
 646                /*
 647                 * See also 1d953111b648
 648                 * "perf/core: Don't report zero PIDs for exiting tasks".
 649                 */
 650                if (!pid && !pid_alive(tsk))
 651                        pid = -1;
 652        }
 653out:
 654        return pid;
 655}
 656
 657static void cpumsf_output_event_pid(struct perf_event *event,
 658                                    struct perf_sample_data *data,
 659                                    struct pt_regs *regs)
 660{
 661        u32 pid;
 662        struct perf_event_header header;
 663        struct perf_output_handle handle;
 664
 665        /*
 666         * Obtain the PID from the basic-sampling data entry and
 667         * correct the data->tid_entry.pid value.
 668         */
 669        pid = data->tid_entry.pid;
 670
 671        /* Protect callchain buffers, tasks */
 672        rcu_read_lock();
 673
 674        perf_prepare_sample(&header, data, event, regs);
 675        if (perf_output_begin(&handle, data, event, header.size))
 676                goto out;
 677
 678        /* Update the process ID (see also kernel/events/core.c) */
 679        data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
 680        data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
 681
 682        perf_output_sample(&handle, &header, data, event);
 683        perf_output_end(&handle);
 684out:
 685        rcu_read_unlock();
 686}
 687
 688static unsigned long getrate(bool freq, unsigned long sample,
 689                             struct hws_qsi_info_block *si)
 690{
 691        unsigned long rate;
 692
 693        if (freq) {
 694                rate = freq_to_sample_rate(si, sample);
 695                rate = hw_limit_rate(si, rate);
 696        } else {
 697                /* The min/max sampling rates specifies the valid range
 698                 * of sample periods.  If the specified sample period is
 699                 * out of range, limit the period to the range boundary.
 700                 */
 701                rate = hw_limit_rate(si, sample);
 702
 703                /* The perf core maintains a maximum sample rate that is
 704                 * configurable through the sysctl interface.  Ensure the
 705                 * sampling rate does not exceed this value.  This also helps
 706                 * to avoid throttling when pushing samples with
 707                 * perf_event_overflow().
 708                 */
 709                if (sample_rate_to_freq(si, rate) >
 710                    sysctl_perf_event_sample_rate) {
 711                        debug_sprintf_event(sfdbg, 1, "%s: "
 712                                            "Sampling rate exceeds maximum "
 713                                            "perf sample rate\n", __func__);
 714                        rate = 0;
 715                }
 716        }
 717        return rate;
 718}
 719
 720/* The sampling information (si) contains information about the
 721 * min/max sampling intervals and the CPU speed.  So calculate the
 722 * correct sampling interval and avoid the whole period adjust
 723 * feedback loop.
 724 *
 725 * Since the CPU Measurement sampling facility can not handle frequency
 726 * calculate the sampling interval when frequency is specified using
 727 * this formula:
 728 *      interval := cpu_speed * 1000000 / sample_freq
 729 *
 730 * Returns errno on bad input and zero on success with parameter interval
 731 * set to the correct sampling rate.
 732 *
 733 * Note: This function turns off freq bit to avoid calling function
 734 * perf_adjust_period(). This causes frequency adjustment in the common
 735 * code part which causes tremendous variations in the counter values.
 736 */
 737static int __hw_perf_event_init_rate(struct perf_event *event,
 738                                     struct hws_qsi_info_block *si)
 739{
 740        struct perf_event_attr *attr = &event->attr;
 741        struct hw_perf_event *hwc = &event->hw;
 742        unsigned long rate;
 743
 744        if (attr->freq) {
 745                if (!attr->sample_freq)
 746                        return -EINVAL;
 747                rate = getrate(attr->freq, attr->sample_freq, si);
 748                attr->freq = 0;         /* Don't call  perf_adjust_period() */
 749                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
 750        } else {
 751                rate = getrate(attr->freq, attr->sample_period, si);
 752                if (!rate)
 753                        return -EINVAL;
 754        }
 755        attr->sample_period = rate;
 756        SAMPL_RATE(hwc) = rate;
 757        hw_init_period(hwc, SAMPL_RATE(hwc));
 758        debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
 759                            __func__, event->cpu, event->attr.sample_period,
 760                            event->attr.freq, SAMPLE_FREQ_MODE(hwc));
 761        return 0;
 762}
 763
 764static int __hw_perf_event_init(struct perf_event *event)
 765{
 766        struct cpu_hw_sf *cpuhw;
 767        struct hws_qsi_info_block si;
 768        struct perf_event_attr *attr = &event->attr;
 769        struct hw_perf_event *hwc = &event->hw;
 770        int cpu, err;
 771
 772        /* Reserve CPU-measurement sampling facility */
 773        err = 0;
 774        if (!atomic_inc_not_zero(&num_events)) {
 775                mutex_lock(&pmc_reserve_mutex);
 776                if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
 777                        err = -EBUSY;
 778                else
 779                        atomic_inc(&num_events);
 780                mutex_unlock(&pmc_reserve_mutex);
 781        }
 782        event->destroy = hw_perf_event_destroy;
 783
 784        if (err)
 785                goto out;
 786
 787        /* Access per-CPU sampling information (query sampling info) */
 788        /*
 789         * The event->cpu value can be -1 to count on every CPU, for example,
 790         * when attaching to a task.  If this is specified, use the query
 791         * sampling info from the current CPU, otherwise use event->cpu to
 792         * retrieve the per-CPU information.
 793         * Later, cpuhw indicates whether to allocate sampling buffers for a
 794         * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
 795         */
 796        memset(&si, 0, sizeof(si));
 797        cpuhw = NULL;
 798        if (event->cpu == -1)
 799                qsi(&si);
 800        else {
 801                /* Event is pinned to a particular CPU, retrieve the per-CPU
 802                 * sampling structure for accessing the CPU-specific QSI.
 803                 */
 804                cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
 805                si = cpuhw->qsi;
 806        }
 807
 808        /* Check sampling facility authorization and, if not authorized,
 809         * fall back to other PMUs.  It is safe to check any CPU because
 810         * the authorization is identical for all configured CPUs.
 811         */
 812        if (!si.as) {
 813                err = -ENOENT;
 814                goto out;
 815        }
 816
 817        if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
 818                pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
 819                err = -EBUSY;
 820                goto out;
 821        }
 822
 823        /* Always enable basic sampling */
 824        SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
 825
 826        /* Check if diagnostic sampling is requested.  Deny if the required
 827         * sampling authorization is missing.
 828         */
 829        if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
 830                if (!si.ad) {
 831                        err = -EPERM;
 832                        goto out;
 833                }
 834                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
 835        }
 836
 837        /* Check and set other sampling flags */
 838        if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
 839                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
 840
 841        err =  __hw_perf_event_init_rate(event, &si);
 842        if (err)
 843                goto out;
 844
 845        /* Initialize sample data overflow accounting */
 846        hwc->extra_reg.reg = REG_OVERFLOW;
 847        OVERFLOW_REG(hwc) = 0;
 848
 849        /* Use AUX buffer. No need to allocate it by ourself */
 850        if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
 851                return 0;
 852
 853        /* Allocate the per-CPU sampling buffer using the CPU information
 854         * from the event.  If the event is not pinned to a particular
 855         * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
 856         * buffers for each online CPU.
 857         */
 858        if (cpuhw)
 859                /* Event is pinned to a particular CPU */
 860                err = allocate_buffers(cpuhw, hwc);
 861        else {
 862                /* Event is not pinned, allocate sampling buffer on
 863                 * each online CPU
 864                 */
 865                for_each_online_cpu(cpu) {
 866                        cpuhw = &per_cpu(cpu_hw_sf, cpu);
 867                        err = allocate_buffers(cpuhw, hwc);
 868                        if (err)
 869                                break;
 870                }
 871        }
 872
 873        /* If PID/TID sampling is active, replace the default overflow
 874         * handler to extract and resolve the PIDs from the basic-sampling
 875         * data entries.
 876         */
 877        if (event->attr.sample_type & PERF_SAMPLE_TID)
 878                if (is_default_overflow_handler(event))
 879                        event->overflow_handler = cpumsf_output_event_pid;
 880out:
 881        return err;
 882}
 883
 884static bool is_callchain_event(struct perf_event *event)
 885{
 886        u64 sample_type = event->attr.sample_type;
 887
 888        return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
 889                              PERF_SAMPLE_STACK_USER);
 890}
 891
 892static int cpumsf_pmu_event_init(struct perf_event *event)
 893{
 894        int err;
 895
 896        /* No support for taken branch sampling */
 897        /* No support for callchain, stacks and registers */
 898        if (has_branch_stack(event) || is_callchain_event(event))
 899                return -EOPNOTSUPP;
 900
 901        switch (event->attr.type) {
 902        case PERF_TYPE_RAW:
 903                if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
 904                    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
 905                        return -ENOENT;
 906                break;
 907        case PERF_TYPE_HARDWARE:
 908                /* Support sampling of CPU cycles in addition to the
 909                 * counter facility.  However, the counter facility
 910                 * is more precise and, hence, restrict this PMU to
 911                 * sampling events only.
 912                 */
 913                if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
 914                        return -ENOENT;
 915                if (!is_sampling_event(event))
 916                        return -ENOENT;
 917                break;
 918        default:
 919                return -ENOENT;
 920        }
 921
 922        /* Check online status of the CPU to which the event is pinned */
 923        if (event->cpu >= 0 && !cpu_online(event->cpu))
 924                return -ENODEV;
 925
 926        /* Force reset of idle/hv excludes regardless of what the
 927         * user requested.
 928         */
 929        if (event->attr.exclude_hv)
 930                event->attr.exclude_hv = 0;
 931        if (event->attr.exclude_idle)
 932                event->attr.exclude_idle = 0;
 933
 934        err = __hw_perf_event_init(event);
 935        if (unlikely(err))
 936                if (event->destroy)
 937                        event->destroy(event);
 938        return err;
 939}
 940
 941static void cpumsf_pmu_enable(struct pmu *pmu)
 942{
 943        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 944        struct hw_perf_event *hwc;
 945        int err;
 946
 947        if (cpuhw->flags & PMU_F_ENABLED)
 948                return;
 949
 950        if (cpuhw->flags & PMU_F_ERR_MASK)
 951                return;
 952
 953        /* Check whether to extent the sampling buffer.
 954         *
 955         * Two conditions trigger an increase of the sampling buffer for a
 956         * perf event:
 957         *    1. Postponed buffer allocations from the event initialization.
 958         *    2. Sampling overflows that contribute to pending allocations.
 959         *
 960         * Note that the extend_sampling_buffer() function disables the sampling
 961         * facility, but it can be fully re-enabled using sampling controls that
 962         * have been saved in cpumsf_pmu_disable().
 963         */
 964        if (cpuhw->event) {
 965                hwc = &cpuhw->event->hw;
 966                if (!(SAMPL_DIAG_MODE(hwc))) {
 967                        /*
 968                         * Account number of overflow-designated
 969                         * buffer extents
 970                         */
 971                        sfb_account_overflows(cpuhw, hwc);
 972                        extend_sampling_buffer(&cpuhw->sfb, hwc);
 973                }
 974                /* Rate may be adjusted with ioctl() */
 975                cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
 976        }
 977
 978        /* (Re)enable the PMU and sampling facility */
 979        cpuhw->flags |= PMU_F_ENABLED;
 980        barrier();
 981
 982        err = lsctl(&cpuhw->lsctl);
 983        if (err) {
 984                cpuhw->flags &= ~PMU_F_ENABLED;
 985                pr_err("Loading sampling controls failed: op %i err %i\n",
 986                        1, err);
 987                return;
 988        }
 989
 990        /* Load current program parameter */
 991        lpp(&S390_lowcore.lpp);
 992
 993        debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
 994                            "interval %#lx tear %#lx dear %#lx\n", __func__,
 995                            cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
 996                            cpuhw->lsctl.cd, cpuhw->lsctl.interval,
 997                            cpuhw->lsctl.tear, cpuhw->lsctl.dear);
 998}
 999
1000static void cpumsf_pmu_disable(struct pmu *pmu)
1001{
1002        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1003        struct hws_lsctl_request_block inactive;
1004        struct hws_qsi_info_block si;
1005        int err;
1006
1007        if (!(cpuhw->flags & PMU_F_ENABLED))
1008                return;
1009
1010        if (cpuhw->flags & PMU_F_ERR_MASK)
1011                return;
1012
1013        /* Switch off sampling activation control */
1014        inactive = cpuhw->lsctl;
1015        inactive.cs = 0;
1016        inactive.cd = 0;
1017
1018        err = lsctl(&inactive);
1019        if (err) {
1020                pr_err("Loading sampling controls failed: op %i err %i\n",
1021                        2, err);
1022                return;
1023        }
1024
1025        /* Save state of TEAR and DEAR register contents */
1026        err = qsi(&si);
1027        if (!err) {
1028                /* TEAR/DEAR values are valid only if the sampling facility is
1029                 * enabled.  Note that cpumsf_pmu_disable() might be called even
1030                 * for a disabled sampling facility because cpumsf_pmu_enable()
1031                 * controls the enable/disable state.
1032                 */
1033                if (si.es) {
1034                        cpuhw->lsctl.tear = si.tear;
1035                        cpuhw->lsctl.dear = si.dear;
1036                }
1037        } else
1038                debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1039                                    __func__, err);
1040
1041        cpuhw->flags &= ~PMU_F_ENABLED;
1042}
1043
1044/* perf_exclude_event() - Filter event
1045 * @event:      The perf event
1046 * @regs:       pt_regs structure
1047 * @sde_regs:   Sample-data-entry (sde) regs structure
1048 *
1049 * Filter perf events according to their exclude specification.
1050 *
1051 * Return non-zero if the event shall be excluded.
1052 */
1053static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1054                              struct perf_sf_sde_regs *sde_regs)
1055{
1056        if (event->attr.exclude_user && user_mode(regs))
1057                return 1;
1058        if (event->attr.exclude_kernel && !user_mode(regs))
1059                return 1;
1060        if (event->attr.exclude_guest && sde_regs->in_guest)
1061                return 1;
1062        if (event->attr.exclude_host && !sde_regs->in_guest)
1063                return 1;
1064        return 0;
1065}
1066
1067/* perf_push_sample() - Push samples to perf
1068 * @event:      The perf event
1069 * @sample:     Hardware sample data
1070 *
1071 * Use the hardware sample data to create perf event sample.  The sample
1072 * is the pushed to the event subsystem and the function checks for
1073 * possible event overflows.  If an event overflow occurs, the PMU is
1074 * stopped.
1075 *
1076 * Return non-zero if an event overflow occurred.
1077 */
1078static int perf_push_sample(struct perf_event *event,
1079                            struct hws_basic_entry *basic)
1080{
1081        int overflow;
1082        struct pt_regs regs;
1083        struct perf_sf_sde_regs *sde_regs;
1084        struct perf_sample_data data;
1085
1086        /* Setup perf sample */
1087        perf_sample_data_init(&data, 0, event->hw.last_period);
1088
1089        /* Setup pt_regs to look like an CPU-measurement external interrupt
1090         * using the Program Request Alert code.  The regs.int_parm_long
1091         * field which is unused contains additional sample-data-entry related
1092         * indicators.
1093         */
1094        memset(&regs, 0, sizeof(regs));
1095        regs.int_code = 0x1407;
1096        regs.int_parm = CPU_MF_INT_SF_PRA;
1097        sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1098
1099        psw_bits(regs.psw).ia   = basic->ia;
1100        psw_bits(regs.psw).dat  = basic->T;
1101        psw_bits(regs.psw).wait = basic->W;
1102        psw_bits(regs.psw).pstate = basic->P;
1103        psw_bits(regs.psw).as   = basic->AS;
1104
1105        /*
1106         * Use the hardware provided configuration level to decide if the
1107         * sample belongs to a guest or host. If that is not available,
1108         * fall back to the following heuristics:
1109         * A non-zero guest program parameter always indicates a guest
1110         * sample. Some early samples or samples from guests without
1111         * lpp usage would be misaccounted to the host. We use the asn
1112         * value as an addon heuristic to detect most of these guest samples.
1113         * If the value differs from 0xffff (the host value), we assume to
1114         * be a KVM guest.
1115         */
1116        switch (basic->CL) {
1117        case 1: /* logical partition */
1118                sde_regs->in_guest = 0;
1119                break;
1120        case 2: /* virtual machine */
1121                sde_regs->in_guest = 1;
1122                break;
1123        default: /* old machine, use heuristics */
1124                if (basic->gpp || basic->prim_asn != 0xffff)
1125                        sde_regs->in_guest = 1;
1126                break;
1127        }
1128
1129        /*
1130         * Store the PID value from the sample-data-entry to be
1131         * processed and resolved by cpumsf_output_event_pid().
1132         */
1133        data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1134
1135        overflow = 0;
1136        if (perf_exclude_event(event, &regs, sde_regs))
1137                goto out;
1138        if (perf_event_overflow(event, &data, &regs)) {
1139                overflow = 1;
1140                event->pmu->stop(event, 0);
1141        }
1142        perf_event_update_userpage(event);
1143out:
1144        return overflow;
1145}
1146
1147static void perf_event_count_update(struct perf_event *event, u64 count)
1148{
1149        local64_add(count, &event->count);
1150}
1151
1152/* hw_collect_samples() - Walk through a sample-data-block and collect samples
1153 * @event:      The perf event
1154 * @sdbt:       Sample-data-block table
1155 * @overflow:   Event overflow counter
1156 *
1157 * Walks through a sample-data-block and collects sampling data entries that are
1158 * then pushed to the perf event subsystem.  Depending on the sampling function,
1159 * there can be either basic-sampling or combined-sampling data entries.  A
1160 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1161 * data entry.  The sampling function is determined by the flags in the perf
1162 * event hardware structure.  The function always works with a combined-sampling
1163 * data entry but ignores the the diagnostic portion if it is not available.
1164 *
1165 * Note that the implementation focuses on basic-sampling data entries and, if
1166 * such an entry is not valid, the entire combined-sampling data entry is
1167 * ignored.
1168 *
1169 * The overflow variables counts the number of samples that has been discarded
1170 * due to a perf event overflow.
1171 */
1172static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1173                               unsigned long long *overflow)
1174{
1175        struct hws_trailer_entry *te;
1176        struct hws_basic_entry *sample;
1177
1178        te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1179        sample = (struct hws_basic_entry *) *sdbt;
1180        while ((unsigned long *) sample < (unsigned long *) te) {
1181                /* Check for an empty sample */
1182                if (!sample->def)
1183                        break;
1184
1185                /* Update perf event period */
1186                perf_event_count_update(event, SAMPL_RATE(&event->hw));
1187
1188                /* Check whether sample is valid */
1189                if (sample->def == 0x0001) {
1190                        /* If an event overflow occurred, the PMU is stopped to
1191                         * throttle event delivery.  Remaining sample data is
1192                         * discarded.
1193                         */
1194                        if (!*overflow) {
1195                                /* Check whether sample is consistent */
1196                                if (sample->I == 0 && sample->W == 0) {
1197                                        /* Deliver sample data to perf */
1198                                        *overflow = perf_push_sample(event,
1199                                                                     sample);
1200                                }
1201                        } else
1202                                /* Count discarded samples */
1203                                *overflow += 1;
1204                } else {
1205                        debug_sprintf_event(sfdbg, 4,
1206                                            "%s: Found unknown"
1207                                            " sampling data entry: te->f %i"
1208                                            " basic.def %#4x (%p)\n", __func__,
1209                                            te->f, sample->def, sample);
1210                        /* Sample slot is not yet written or other record.
1211                         *
1212                         * This condition can occur if the buffer was reused
1213                         * from a combined basic- and diagnostic-sampling.
1214                         * If only basic-sampling is then active, entries are
1215                         * written into the larger diagnostic entries.
1216                         * This is typically the case for sample-data-blocks
1217                         * that are not full.  Stop processing if the first
1218                         * invalid format was detected.
1219                         */
1220                        if (!te->f)
1221                                break;
1222                }
1223
1224                /* Reset sample slot and advance to next sample */
1225                sample->def = 0;
1226                sample++;
1227        }
1228}
1229
1230/* hw_perf_event_update() - Process sampling buffer
1231 * @event:      The perf event
1232 * @flush_all:  Flag to also flush partially filled sample-data-blocks
1233 *
1234 * Processes the sampling buffer and create perf event samples.
1235 * The sampling buffer position are retrieved and saved in the TEAR_REG
1236 * register of the specified perf event.
1237 *
1238 * Only full sample-data-blocks are processed.  Specify the flash_all flag
1239 * to also walk through partially filled sample-data-blocks.  It is ignored
1240 * if PERF_CPUM_SF_FULL_BLOCKS is set.  The PERF_CPUM_SF_FULL_BLOCKS flag
1241 * enforces the processing of full sample-data-blocks only (trailer entries
1242 * with the block-full-indicator bit set).
1243 */
1244static void hw_perf_event_update(struct perf_event *event, int flush_all)
1245{
1246        struct hw_perf_event *hwc = &event->hw;
1247        struct hws_trailer_entry *te;
1248        unsigned long *sdbt;
1249        unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1250        int done;
1251
1252        /*
1253         * AUX buffer is used when in diagnostic sampling mode.
1254         * No perf events/samples are created.
1255         */
1256        if (SAMPL_DIAG_MODE(&event->hw))
1257                return;
1258
1259        if (flush_all && SDB_FULL_BLOCKS(hwc))
1260                flush_all = 0;
1261
1262        sdbt = (unsigned long *) TEAR_REG(hwc);
1263        done = event_overflow = sampl_overflow = num_sdb = 0;
1264        while (!done) {
1265                /* Get the trailer entry of the sample-data-block */
1266                te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1267
1268                /* Leave loop if no more work to do (block full indicator) */
1269                if (!te->f) {
1270                        done = 1;
1271                        if (!flush_all)
1272                                break;
1273                }
1274
1275                /* Check the sample overflow count */
1276                if (te->overflow)
1277                        /* Account sample overflows and, if a particular limit
1278                         * is reached, extend the sampling buffer.
1279                         * For details, see sfb_account_overflows().
1280                         */
1281                        sampl_overflow += te->overflow;
1282
1283                /* Timestamps are valid for full sample-data-blocks only */
1284                debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx "
1285                                    "overflow %llu timestamp %#llx\n",
1286                                    __func__, (unsigned long)sdbt, te->overflow,
1287                                    (te->f) ? trailer_timestamp(te) : 0ULL);
1288
1289                /* Collect all samples from a single sample-data-block and
1290                 * flag if an (perf) event overflow happened.  If so, the PMU
1291                 * is stopped and remaining samples will be discarded.
1292                 */
1293                hw_collect_samples(event, sdbt, &event_overflow);
1294                num_sdb++;
1295
1296                /* Reset trailer (using compare-double-and-swap) */
1297                do {
1298                        te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1299                        te_flags |= SDB_TE_ALERT_REQ_MASK;
1300                } while (!cmpxchg_double(&te->flags, &te->overflow,
1301                                         te->flags, te->overflow,
1302                                         te_flags, 0ULL));
1303
1304                /* Advance to next sample-data-block */
1305                sdbt++;
1306                if (is_link_entry(sdbt))
1307                        sdbt = get_next_sdbt(sdbt);
1308
1309                /* Update event hardware registers */
1310                TEAR_REG(hwc) = (unsigned long) sdbt;
1311
1312                /* Stop processing sample-data if all samples of the current
1313                 * sample-data-block were flushed even if it was not full.
1314                 */
1315                if (flush_all && done)
1316                        break;
1317        }
1318
1319        /* Account sample overflows in the event hardware structure */
1320        if (sampl_overflow)
1321                OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1322                                                 sampl_overflow, 1 + num_sdb);
1323
1324        /* Perf_event_overflow() and perf_event_account_interrupt() limit
1325         * the interrupt rate to an upper limit. Roughly 1000 samples per
1326         * task tick.
1327         * Hitting this limit results in a large number
1328         * of throttled REF_REPORT_THROTTLE entries and the samples
1329         * are dropped.
1330         * Slightly increase the interval to avoid hitting this limit.
1331         */
1332        if (event_overflow) {
1333                SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1334                debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1335                                    __func__,
1336                                    DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1337        }
1338
1339        if (sampl_overflow || event_overflow)
1340                debug_sprintf_event(sfdbg, 4, "%s: "
1341                                    "overflows: sample %llu event %llu"
1342                                    " total %llu num_sdb %llu\n",
1343                                    __func__, sampl_overflow, event_overflow,
1344                                    OVERFLOW_REG(hwc), num_sdb);
1345}
1346
1347#define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1348#define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1349#define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1350#define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1351
1352/*
1353 * Get trailer entry by index of SDB.
1354 */
1355static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1356                                                 unsigned long index)
1357{
1358        unsigned long sdb;
1359
1360        index = AUX_SDB_INDEX(aux, index);
1361        sdb = aux->sdb_index[index];
1362        return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1363}
1364
1365/*
1366 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1367 * disabled. Collect the full SDBs in AUX buffer which have not reached
1368 * the point of alert indicator. And ignore the SDBs which are not
1369 * full.
1370 *
1371 * 1. Scan SDBs to see how much data is there and consume them.
1372 * 2. Remove alert indicator in the buffer.
1373 */
1374static void aux_output_end(struct perf_output_handle *handle)
1375{
1376        unsigned long i, range_scan, idx;
1377        struct aux_buffer *aux;
1378        struct hws_trailer_entry *te;
1379
1380        aux = perf_get_aux(handle);
1381        if (!aux)
1382                return;
1383
1384        range_scan = AUX_SDB_NUM_ALERT(aux);
1385        for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1386                te = aux_sdb_trailer(aux, idx);
1387                if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1388                        break;
1389        }
1390        /* i is num of SDBs which are full */
1391        perf_aux_output_end(handle, i << PAGE_SHIFT);
1392
1393        /* Remove alert indicators in the buffer */
1394        te = aux_sdb_trailer(aux, aux->alert_mark);
1395        te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1396
1397        debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1398                            __func__, i, range_scan, aux->head);
1399}
1400
1401/*
1402 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1403 * is first added to the CPU or rescheduled again to the CPU. It is called
1404 * with pmu disabled.
1405 *
1406 * 1. Reset the trailer of SDBs to get ready for new data.
1407 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1408 *    head(tear/dear).
1409 */
1410static int aux_output_begin(struct perf_output_handle *handle,
1411                            struct aux_buffer *aux,
1412                            struct cpu_hw_sf *cpuhw)
1413{
1414        unsigned long range;
1415        unsigned long i, range_scan, idx;
1416        unsigned long head, base, offset;
1417        struct hws_trailer_entry *te;
1418
1419        if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1420                return -EINVAL;
1421
1422        aux->head = handle->head >> PAGE_SHIFT;
1423        range = (handle->size + 1) >> PAGE_SHIFT;
1424        if (range <= 1)
1425                return -ENOMEM;
1426
1427        /*
1428         * SDBs between aux->head and aux->empty_mark are already ready
1429         * for new data. range_scan is num of SDBs not within them.
1430         */
1431        debug_sprintf_event(sfdbg, 6,
1432                            "%s: range %ld head %ld alert %ld empty %ld\n",
1433                            __func__, range, aux->head, aux->alert_mark,
1434                            aux->empty_mark);
1435        if (range > AUX_SDB_NUM_EMPTY(aux)) {
1436                range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1437                idx = aux->empty_mark + 1;
1438                for (i = 0; i < range_scan; i++, idx++) {
1439                        te = aux_sdb_trailer(aux, idx);
1440                        te->flags &= ~(SDB_TE_BUFFER_FULL_MASK |
1441                                       SDB_TE_ALERT_REQ_MASK);
1442                        te->overflow = 0;
1443                }
1444                /* Save the position of empty SDBs */
1445                aux->empty_mark = aux->head + range - 1;
1446        }
1447
1448        /* Set alert indicator */
1449        aux->alert_mark = aux->head + range/2 - 1;
1450        te = aux_sdb_trailer(aux, aux->alert_mark);
1451        te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1452
1453        /* Reset hardware buffer head */
1454        head = AUX_SDB_INDEX(aux, aux->head);
1455        base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1456        offset = head % CPUM_SF_SDB_PER_TABLE;
1457        cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1458        cpuhw->lsctl.dear = aux->sdb_index[head];
1459
1460        debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1461                            "index %ld tear %#lx dear %#lx\n", __func__,
1462                            aux->head, aux->alert_mark, aux->empty_mark,
1463                            head / CPUM_SF_SDB_PER_TABLE,
1464                            cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1465
1466        return 0;
1467}
1468
1469/*
1470 * Set alert indicator on SDB at index @alert_index while sampler is running.
1471 *
1472 * Return true if successfully.
1473 * Return false if full indicator is already set by hardware sampler.
1474 */
1475static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1476                          unsigned long long *overflow)
1477{
1478        unsigned long long orig_overflow, orig_flags, new_flags;
1479        struct hws_trailer_entry *te;
1480
1481        te = aux_sdb_trailer(aux, alert_index);
1482        do {
1483                orig_flags = te->flags;
1484                *overflow = orig_overflow = te->overflow;
1485                if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1486                        /*
1487                         * SDB is already set by hardware.
1488                         * Abort and try to set somewhere
1489                         * behind.
1490                         */
1491                        return false;
1492                }
1493                new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1494        } while (!cmpxchg_double(&te->flags, &te->overflow,
1495                                 orig_flags, orig_overflow,
1496                                 new_flags, 0ULL));
1497        return true;
1498}
1499
1500/*
1501 * aux_reset_buffer() - Scan and setup SDBs for new samples
1502 * @aux:        The AUX buffer to set
1503 * @range:      The range of SDBs to scan started from aux->head
1504 * @overflow:   Set to overflow count
1505 *
1506 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1507 * marked as empty, check if it is already set full by the hardware sampler.
1508 * If yes, that means new data is already there before we can set an alert
1509 * indicator. Caller should try to set alert indicator to some position behind.
1510 *
1511 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1512 * previously and have already been consumed by user space. Reset these SDBs
1513 * (clear full indicator and alert indicator) for new data.
1514 * If aux->alert_mark fall in this area, just set it. Overflow count is
1515 * recorded while scanning.
1516 *
1517 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1518 * and ready for new samples. So scanning on this area could be skipped.
1519 *
1520 * Return true if alert indicator is set successfully and false if not.
1521 */
1522static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1523                             unsigned long long *overflow)
1524{
1525        unsigned long long orig_overflow, orig_flags, new_flags;
1526        unsigned long i, range_scan, idx, idx_old;
1527        struct hws_trailer_entry *te;
1528
1529        debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1530                            "empty %ld\n", __func__, range, aux->head,
1531                            aux->alert_mark, aux->empty_mark);
1532        if (range <= AUX_SDB_NUM_EMPTY(aux))
1533                /*
1534                 * No need to scan. All SDBs in range are marked as empty.
1535                 * Just set alert indicator. Should check race with hardware
1536                 * sampler.
1537                 */
1538                return aux_set_alert(aux, aux->alert_mark, overflow);
1539
1540        if (aux->alert_mark <= aux->empty_mark)
1541                /*
1542                 * Set alert indicator on empty SDB. Should check race
1543                 * with hardware sampler.
1544                 */
1545                if (!aux_set_alert(aux, aux->alert_mark, overflow))
1546                        return false;
1547
1548        /*
1549         * Scan the SDBs to clear full and alert indicator used previously.
1550         * Start scanning from one SDB behind empty_mark. If the new alert
1551         * indicator fall into this range, set it.
1552         */
1553        range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1554        idx_old = idx = aux->empty_mark + 1;
1555        for (i = 0; i < range_scan; i++, idx++) {
1556                te = aux_sdb_trailer(aux, idx);
1557                do {
1558                        orig_flags = te->flags;
1559                        orig_overflow = te->overflow;
1560                        new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1561                        if (idx == aux->alert_mark)
1562                                new_flags |= SDB_TE_ALERT_REQ_MASK;
1563                        else
1564                                new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1565                } while (!cmpxchg_double(&te->flags, &te->overflow,
1566                                         orig_flags, orig_overflow,
1567                                         new_flags, 0ULL));
1568                *overflow += orig_overflow;
1569        }
1570
1571        /* Update empty_mark to new position */
1572        aux->empty_mark = aux->head + range - 1;
1573
1574        debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1575                            "empty %ld\n", __func__, range_scan, idx_old,
1576                            idx - 1, aux->empty_mark);
1577        return true;
1578}
1579
1580/*
1581 * Measurement alert handler for diagnostic mode sampling.
1582 */
1583static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1584{
1585        struct aux_buffer *aux;
1586        int done = 0;
1587        unsigned long range = 0, size;
1588        unsigned long long overflow = 0;
1589        struct perf_output_handle *handle = &cpuhw->handle;
1590        unsigned long num_sdb;
1591
1592        aux = perf_get_aux(handle);
1593        if (WARN_ON_ONCE(!aux))
1594                return;
1595
1596        /* Inform user space new data arrived */
1597        size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1598        debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1599                            size >> PAGE_SHIFT);
1600        perf_aux_output_end(handle, size);
1601
1602        num_sdb = aux->sfb.num_sdb;
1603        while (!done) {
1604                /* Get an output handle */
1605                aux = perf_aux_output_begin(handle, cpuhw->event);
1606                if (handle->size == 0) {
1607                        pr_err("The AUX buffer with %lu pages for the "
1608                               "diagnostic-sampling mode is full\n",
1609                                num_sdb);
1610                        debug_sprintf_event(sfdbg, 1,
1611                                            "%s: AUX buffer used up\n",
1612                                            __func__);
1613                        break;
1614                }
1615                if (WARN_ON_ONCE(!aux))
1616                        return;
1617
1618                /* Update head and alert_mark to new position */
1619                aux->head = handle->head >> PAGE_SHIFT;
1620                range = (handle->size + 1) >> PAGE_SHIFT;
1621                if (range == 1)
1622                        aux->alert_mark = aux->head;
1623                else
1624                        aux->alert_mark = aux->head + range/2 - 1;
1625
1626                if (aux_reset_buffer(aux, range, &overflow)) {
1627                        if (!overflow) {
1628                                done = 1;
1629                                break;
1630                        }
1631                        size = range << PAGE_SHIFT;
1632                        perf_aux_output_end(&cpuhw->handle, size);
1633                        pr_err("Sample data caused the AUX buffer with %lu "
1634                               "pages to overflow\n", aux->sfb.num_sdb);
1635                        debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1636                                            "overflow %lld\n", __func__,
1637                                            aux->head, range, overflow);
1638                } else {
1639                        size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1640                        perf_aux_output_end(&cpuhw->handle, size);
1641                        debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1642                                            "already full, try another\n",
1643                                            __func__,
1644                                            aux->head, aux->alert_mark);
1645                }
1646        }
1647
1648        if (done)
1649                debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1650                                    "empty %ld\n", __func__, aux->head,
1651                                    aux->alert_mark, aux->empty_mark);
1652}
1653
1654/*
1655 * Callback when freeing AUX buffers.
1656 */
1657static void aux_buffer_free(void *data)
1658{
1659        struct aux_buffer *aux = data;
1660        unsigned long i, num_sdbt;
1661
1662        if (!aux)
1663                return;
1664
1665        /* Free SDBT. SDB is freed by the caller */
1666        num_sdbt = aux->sfb.num_sdbt;
1667        for (i = 0; i < num_sdbt; i++)
1668                free_page(aux->sdbt_index[i]);
1669
1670        kfree(aux->sdbt_index);
1671        kfree(aux->sdb_index);
1672        kfree(aux);
1673
1674        debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1675}
1676
1677static void aux_sdb_init(unsigned long sdb)
1678{
1679        struct hws_trailer_entry *te;
1680
1681        te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1682
1683        /* Save clock base */
1684        te->clock_base = 1;
1685        te->progusage2 = tod_clock_base.tod;
1686}
1687
1688/*
1689 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1690 * @event:      Event the buffer is setup for, event->cpu == -1 means current
1691 * @pages:      Array of pointers to buffer pages passed from perf core
1692 * @nr_pages:   Total pages
1693 * @snapshot:   Flag for snapshot mode
1694 *
1695 * This is the callback when setup an event using AUX buffer. Perf tool can
1696 * trigger this by an additional mmap() call on the event. Unlike the buffer
1697 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1698 * the task among online cpus when it is a per-thread event.
1699 *
1700 * Return the private AUX buffer structure if success or NULL if fails.
1701 */
1702static void *aux_buffer_setup(struct perf_event *event, void **pages,
1703                              int nr_pages, bool snapshot)
1704{
1705        struct sf_buffer *sfb;
1706        struct aux_buffer *aux;
1707        unsigned long *new, *tail;
1708        int i, n_sdbt;
1709
1710        if (!nr_pages || !pages)
1711                return NULL;
1712
1713        if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1714                pr_err("AUX buffer size (%i pages) is larger than the "
1715                       "maximum sampling buffer limit\n",
1716                       nr_pages);
1717                return NULL;
1718        } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1719                pr_err("AUX buffer size (%i pages) is less than the "
1720                       "minimum sampling buffer limit\n",
1721                       nr_pages);
1722                return NULL;
1723        }
1724
1725        /* Allocate aux_buffer struct for the event */
1726        aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1727        if (!aux)
1728                goto no_aux;
1729        sfb = &aux->sfb;
1730
1731        /* Allocate sdbt_index for fast reference */
1732        n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1733        aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1734        if (!aux->sdbt_index)
1735                goto no_sdbt_index;
1736
1737        /* Allocate sdb_index for fast reference */
1738        aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1739        if (!aux->sdb_index)
1740                goto no_sdb_index;
1741
1742        /* Allocate the first SDBT */
1743        sfb->num_sdbt = 0;
1744        sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1745        if (!sfb->sdbt)
1746                goto no_sdbt;
1747        aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1748        tail = sfb->tail = sfb->sdbt;
1749
1750        /*
1751         * Link the provided pages of AUX buffer to SDBT.
1752         * Allocate SDBT if needed.
1753         */
1754        for (i = 0; i < nr_pages; i++, tail++) {
1755                if (require_table_link(tail)) {
1756                        new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1757                        if (!new)
1758                                goto no_sdbt;
1759                        aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1760                        /* Link current page to tail of chain */
1761                        *tail = (unsigned long)(void *) new + 1;
1762                        tail = new;
1763                }
1764                /* Tail is the entry in a SDBT */
1765                *tail = (unsigned long)pages[i];
1766                aux->sdb_index[i] = (unsigned long)pages[i];
1767                aux_sdb_init((unsigned long)pages[i]);
1768        }
1769        sfb->num_sdb = nr_pages;
1770
1771        /* Link the last entry in the SDBT to the first SDBT */
1772        *tail = (unsigned long) sfb->sdbt + 1;
1773        sfb->tail = tail;
1774
1775        /*
1776         * Initial all SDBs are zeroed. Mark it as empty.
1777         * So there is no need to clear the full indicator
1778         * when this event is first added.
1779         */
1780        aux->empty_mark = sfb->num_sdb - 1;
1781
1782        debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1783                            sfb->num_sdbt, sfb->num_sdb);
1784
1785        return aux;
1786
1787no_sdbt:
1788        /* SDBs (AUX buffer pages) are freed by caller */
1789        for (i = 0; i < sfb->num_sdbt; i++)
1790                free_page(aux->sdbt_index[i]);
1791        kfree(aux->sdb_index);
1792no_sdb_index:
1793        kfree(aux->sdbt_index);
1794no_sdbt_index:
1795        kfree(aux);
1796no_aux:
1797        return NULL;
1798}
1799
1800static void cpumsf_pmu_read(struct perf_event *event)
1801{
1802        /* Nothing to do ... updates are interrupt-driven */
1803}
1804
1805/* Check if the new sampling period/freqeuncy is appropriate.
1806 *
1807 * Return non-zero on error and zero on passed checks.
1808 */
1809static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1810{
1811        struct hws_qsi_info_block si;
1812        unsigned long rate;
1813        bool do_freq;
1814
1815        memset(&si, 0, sizeof(si));
1816        if (event->cpu == -1) {
1817                if (qsi(&si))
1818                        return -ENODEV;
1819        } else {
1820                /* Event is pinned to a particular CPU, retrieve the per-CPU
1821                 * sampling structure for accessing the CPU-specific QSI.
1822                 */
1823                struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1824
1825                si = cpuhw->qsi;
1826        }
1827
1828        do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1829        rate = getrate(do_freq, value, &si);
1830        if (!rate)
1831                return -EINVAL;
1832
1833        event->attr.sample_period = rate;
1834        SAMPL_RATE(&event->hw) = rate;
1835        hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1836        debug_sprintf_event(sfdbg, 4, "%s:"
1837                            " cpu %d value %#llx period %#llx freq %d\n",
1838                            __func__, event->cpu, value,
1839                            event->attr.sample_period, do_freq);
1840        return 0;
1841}
1842
1843/* Activate sampling control.
1844 * Next call of pmu_enable() starts sampling.
1845 */
1846static void cpumsf_pmu_start(struct perf_event *event, int flags)
1847{
1848        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1849
1850        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1851                return;
1852
1853        if (flags & PERF_EF_RELOAD)
1854                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1855
1856        perf_pmu_disable(event->pmu);
1857        event->hw.state = 0;
1858        cpuhw->lsctl.cs = 1;
1859        if (SAMPL_DIAG_MODE(&event->hw))
1860                cpuhw->lsctl.cd = 1;
1861        perf_pmu_enable(event->pmu);
1862}
1863
1864/* Deactivate sampling control.
1865 * Next call of pmu_enable() stops sampling.
1866 */
1867static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1868{
1869        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1870
1871        if (event->hw.state & PERF_HES_STOPPED)
1872                return;
1873
1874        perf_pmu_disable(event->pmu);
1875        cpuhw->lsctl.cs = 0;
1876        cpuhw->lsctl.cd = 0;
1877        event->hw.state |= PERF_HES_STOPPED;
1878
1879        if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1880                hw_perf_event_update(event, 1);
1881                event->hw.state |= PERF_HES_UPTODATE;
1882        }
1883        perf_pmu_enable(event->pmu);
1884}
1885
1886static int cpumsf_pmu_add(struct perf_event *event, int flags)
1887{
1888        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1889        struct aux_buffer *aux;
1890        int err;
1891
1892        if (cpuhw->flags & PMU_F_IN_USE)
1893                return -EAGAIN;
1894
1895        if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1896                return -EINVAL;
1897
1898        err = 0;
1899        perf_pmu_disable(event->pmu);
1900
1901        event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1902
1903        /* Set up sampling controls.  Always program the sampling register
1904         * using the SDB-table start.  Reset TEAR_REG event hardware register
1905         * that is used by hw_perf_event_update() to store the sampling buffer
1906         * position after samples have been flushed.
1907         */
1908        cpuhw->lsctl.s = 0;
1909        cpuhw->lsctl.h = 1;
1910        cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1911        if (!SAMPL_DIAG_MODE(&event->hw)) {
1912                cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1913                cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1914                TEAR_REG(&event->hw) = (unsigned long) cpuhw->sfb.sdbt;
1915        }
1916
1917        /* Ensure sampling functions are in the disabled state.  If disabled,
1918         * switch on sampling enable control. */
1919        if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1920                err = -EAGAIN;
1921                goto out;
1922        }
1923        if (SAMPL_DIAG_MODE(&event->hw)) {
1924                aux = perf_aux_output_begin(&cpuhw->handle, event);
1925                if (!aux) {
1926                        err = -EINVAL;
1927                        goto out;
1928                }
1929                err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1930                if (err)
1931                        goto out;
1932                cpuhw->lsctl.ed = 1;
1933        }
1934        cpuhw->lsctl.es = 1;
1935
1936        /* Set in_use flag and store event */
1937        cpuhw->event = event;
1938        cpuhw->flags |= PMU_F_IN_USE;
1939
1940        if (flags & PERF_EF_START)
1941                cpumsf_pmu_start(event, PERF_EF_RELOAD);
1942out:
1943        perf_event_update_userpage(event);
1944        perf_pmu_enable(event->pmu);
1945        return err;
1946}
1947
1948static void cpumsf_pmu_del(struct perf_event *event, int flags)
1949{
1950        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1951
1952        perf_pmu_disable(event->pmu);
1953        cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1954
1955        cpuhw->lsctl.es = 0;
1956        cpuhw->lsctl.ed = 0;
1957        cpuhw->flags &= ~PMU_F_IN_USE;
1958        cpuhw->event = NULL;
1959
1960        if (SAMPL_DIAG_MODE(&event->hw))
1961                aux_output_end(&cpuhw->handle);
1962        perf_event_update_userpage(event);
1963        perf_pmu_enable(event->pmu);
1964}
1965
1966CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1967CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1968
1969/* Attribute list for CPU_SF.
1970 *
1971 * The availablitiy depends on the CPU_MF sampling facility authorization
1972 * for basic + diagnositic samples. This is determined at initialization
1973 * time by the sampling facility device driver.
1974 * If the authorization for basic samples is turned off, it should be
1975 * also turned off for diagnostic sampling.
1976 *
1977 * During initialization of the device driver, check the authorization
1978 * level for diagnostic sampling and installs the attribute
1979 * file for diagnostic sampling if necessary.
1980 *
1981 * For now install a placeholder to reference all possible attributes:
1982 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1983 * Add another entry for the final NULL pointer.
1984 */
1985enum {
1986        SF_CYCLES_BASIC_ATTR_IDX = 0,
1987        SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1988        SF_CYCLES_ATTR_MAX
1989};
1990
1991static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1992        [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1993};
1994
1995PMU_FORMAT_ATTR(event, "config:0-63");
1996
1997static struct attribute *cpumsf_pmu_format_attr[] = {
1998        &format_attr_event.attr,
1999        NULL,
2000};
2001
2002static struct attribute_group cpumsf_pmu_events_group = {
2003        .name = "events",
2004        .attrs = cpumsf_pmu_events_attr,
2005};
2006
2007static struct attribute_group cpumsf_pmu_format_group = {
2008        .name = "format",
2009        .attrs = cpumsf_pmu_format_attr,
2010};
2011
2012static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2013        &cpumsf_pmu_events_group,
2014        &cpumsf_pmu_format_group,
2015        NULL,
2016};
2017
2018static struct pmu cpumf_sampling = {
2019        .pmu_enable   = cpumsf_pmu_enable,
2020        .pmu_disable  = cpumsf_pmu_disable,
2021
2022        .event_init   = cpumsf_pmu_event_init,
2023        .add          = cpumsf_pmu_add,
2024        .del          = cpumsf_pmu_del,
2025
2026        .start        = cpumsf_pmu_start,
2027        .stop         = cpumsf_pmu_stop,
2028        .read         = cpumsf_pmu_read,
2029
2030        .attr_groups  = cpumsf_pmu_attr_groups,
2031
2032        .setup_aux    = aux_buffer_setup,
2033        .free_aux     = aux_buffer_free,
2034
2035        .check_period = cpumsf_pmu_check_period,
2036};
2037
2038static void cpumf_measurement_alert(struct ext_code ext_code,
2039                                    unsigned int alert, unsigned long unused)
2040{
2041        struct cpu_hw_sf *cpuhw;
2042
2043        if (!(alert & CPU_MF_INT_SF_MASK))
2044                return;
2045        inc_irq_stat(IRQEXT_CMS);
2046        cpuhw = this_cpu_ptr(&cpu_hw_sf);
2047
2048        /* Measurement alerts are shared and might happen when the PMU
2049         * is not reserved.  Ignore these alerts in this case. */
2050        if (!(cpuhw->flags & PMU_F_RESERVED))
2051                return;
2052
2053        /* The processing below must take care of multiple alert events that
2054         * might be indicated concurrently. */
2055
2056        /* Program alert request */
2057        if (alert & CPU_MF_INT_SF_PRA) {
2058                if (cpuhw->flags & PMU_F_IN_USE)
2059                        if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2060                                hw_collect_aux(cpuhw);
2061                        else
2062                                hw_perf_event_update(cpuhw->event, 0);
2063                else
2064                        WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2065        }
2066
2067        /* Report measurement alerts only for non-PRA codes */
2068        if (alert != CPU_MF_INT_SF_PRA)
2069                debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2070                                    alert);
2071
2072        /* Sampling authorization change request */
2073        if (alert & CPU_MF_INT_SF_SACA)
2074                qsi(&cpuhw->qsi);
2075
2076        /* Loss of sample data due to high-priority machine activities */
2077        if (alert & CPU_MF_INT_SF_LSDA) {
2078                pr_err("Sample data was lost\n");
2079                cpuhw->flags |= PMU_F_ERR_LSDA;
2080                sf_disable();
2081        }
2082
2083        /* Invalid sampling buffer entry */
2084        if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2085                pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2086                       alert);
2087                cpuhw->flags |= PMU_F_ERR_IBE;
2088                sf_disable();
2089        }
2090}
2091
2092static int cpusf_pmu_setup(unsigned int cpu, int flags)
2093{
2094        /* Ignore the notification if no events are scheduled on the PMU.
2095         * This might be racy...
2096         */
2097        if (!atomic_read(&num_events))
2098                return 0;
2099
2100        local_irq_disable();
2101        setup_pmc_cpu(&flags);
2102        local_irq_enable();
2103        return 0;
2104}
2105
2106static int s390_pmu_sf_online_cpu(unsigned int cpu)
2107{
2108        return cpusf_pmu_setup(cpu, PMC_INIT);
2109}
2110
2111static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2112{
2113        return cpusf_pmu_setup(cpu, PMC_RELEASE);
2114}
2115
2116static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2117{
2118        if (!cpum_sf_avail())
2119                return -ENODEV;
2120        return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2121}
2122
2123static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2124{
2125        int rc;
2126        unsigned long min, max;
2127
2128        if (!cpum_sf_avail())
2129                return -ENODEV;
2130        if (!val || !strlen(val))
2131                return -EINVAL;
2132
2133        /* Valid parameter values: "min,max" or "max" */
2134        min = CPUM_SF_MIN_SDB;
2135        max = CPUM_SF_MAX_SDB;
2136        if (strchr(val, ','))
2137                rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2138        else
2139                rc = kstrtoul(val, 10, &max);
2140
2141        if (min < 2 || min >= max || max > get_num_physpages())
2142                rc = -EINVAL;
2143        if (rc)
2144                return rc;
2145
2146        sfb_set_limits(min, max);
2147        pr_info("The sampling buffer limits have changed to: "
2148                "min %lu max %lu (diag %lu)\n",
2149                CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2150        return 0;
2151}
2152
2153#define param_check_sfb_size(name, p) __param_check(name, p, void)
2154static const struct kernel_param_ops param_ops_sfb_size = {
2155        .set = param_set_sfb_size,
2156        .get = param_get_sfb_size,
2157};
2158
2159#define RS_INIT_FAILURE_QSI       0x0001
2160#define RS_INIT_FAILURE_BSDES     0x0002
2161#define RS_INIT_FAILURE_ALRT      0x0003
2162#define RS_INIT_FAILURE_PERF      0x0004
2163static void __init pr_cpumsf_err(unsigned int reason)
2164{
2165        pr_err("Sampling facility support for perf is not available: "
2166               "reason %#x\n", reason);
2167}
2168
2169static int __init init_cpum_sampling_pmu(void)
2170{
2171        struct hws_qsi_info_block si;
2172        int err;
2173
2174        if (!cpum_sf_avail())
2175                return -ENODEV;
2176
2177        memset(&si, 0, sizeof(si));
2178        if (qsi(&si)) {
2179                pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2180                return -ENODEV;
2181        }
2182
2183        if (!si.as && !si.ad)
2184                return -ENODEV;
2185
2186        if (si.bsdes != sizeof(struct hws_basic_entry)) {
2187                pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2188                return -EINVAL;
2189        }
2190
2191        if (si.ad) {
2192                sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2193                /* Sampling of diagnostic data authorized,
2194                 * install event into attribute list of PMU device.
2195                 */
2196                cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2197                        CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2198        }
2199
2200        sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2201        if (!sfdbg) {
2202                pr_err("Registering for s390dbf failed\n");
2203                return -ENOMEM;
2204        }
2205        debug_register_view(sfdbg, &debug_sprintf_view);
2206
2207        err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2208                                    cpumf_measurement_alert);
2209        if (err) {
2210                pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2211                debug_unregister(sfdbg);
2212                goto out;
2213        }
2214
2215        err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2216        if (err) {
2217                pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2218                unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2219                                        cpumf_measurement_alert);
2220                debug_unregister(sfdbg);
2221                goto out;
2222        }
2223
2224        cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2225                          s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2226out:
2227        return err;
2228}
2229
2230arch_initcall(init_cpum_sampling_pmu);
2231core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2232