linux/arch/sh/kernel/perf_event.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Performance event support framework for SuperH hardware counters.
   4 *
   5 *  Copyright (C) 2009  Paul Mundt
   6 *
   7 * Heavily based on the x86 and PowerPC implementations.
   8 *
   9 * x86:
  10 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  11 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  12 *  Copyright (C) 2009 Jaswinder Singh Rajput
  13 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  14 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
  15 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  16 *
  17 * ppc:
  18 *  Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  19 */
  20#include <linux/kernel.h>
  21#include <linux/init.h>
  22#include <linux/io.h>
  23#include <linux/irq.h>
  24#include <linux/perf_event.h>
  25#include <linux/export.h>
  26#include <asm/processor.h>
  27
  28struct cpu_hw_events {
  29        struct perf_event       *events[MAX_HWEVENTS];
  30        unsigned long           used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  31        unsigned long           active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
  32};
  33
  34DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  35
  36static struct sh_pmu *sh_pmu __read_mostly;
  37
  38/* Number of perf_events counting hardware events */
  39static atomic_t num_events;
  40/* Used to avoid races in calling reserve/release_pmc_hardware */
  41static DEFINE_MUTEX(pmc_reserve_mutex);
  42
  43/*
  44 * Stub these out for now, do something more profound later.
  45 */
  46int reserve_pmc_hardware(void)
  47{
  48        return 0;
  49}
  50
  51void release_pmc_hardware(void)
  52{
  53}
  54
  55static inline int sh_pmu_initialized(void)
  56{
  57        return !!sh_pmu;
  58}
  59
  60/*
  61 * Release the PMU if this is the last perf_event.
  62 */
  63static void hw_perf_event_destroy(struct perf_event *event)
  64{
  65        if (!atomic_add_unless(&num_events, -1, 1)) {
  66                mutex_lock(&pmc_reserve_mutex);
  67                if (atomic_dec_return(&num_events) == 0)
  68                        release_pmc_hardware();
  69                mutex_unlock(&pmc_reserve_mutex);
  70        }
  71}
  72
  73static int hw_perf_cache_event(int config, int *evp)
  74{
  75        unsigned long type, op, result;
  76        int ev;
  77
  78        if (!sh_pmu->cache_events)
  79                return -EINVAL;
  80
  81        /* unpack config */
  82        type = config & 0xff;
  83        op = (config >> 8) & 0xff;
  84        result = (config >> 16) & 0xff;
  85
  86        if (type >= PERF_COUNT_HW_CACHE_MAX ||
  87            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
  88            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  89                return -EINVAL;
  90
  91        ev = (*sh_pmu->cache_events)[type][op][result];
  92        if (ev == 0)
  93                return -EOPNOTSUPP;
  94        if (ev == -1)
  95                return -EINVAL;
  96        *evp = ev;
  97        return 0;
  98}
  99
 100static int __hw_perf_event_init(struct perf_event *event)
 101{
 102        struct perf_event_attr *attr = &event->attr;
 103        struct hw_perf_event *hwc = &event->hw;
 104        int config = -1;
 105        int err;
 106
 107        if (!sh_pmu_initialized())
 108                return -ENODEV;
 109
 110        /*
 111         * See if we need to reserve the counter.
 112         *
 113         * If no events are currently in use, then we have to take a
 114         * mutex to ensure that we don't race with another task doing
 115         * reserve_pmc_hardware or release_pmc_hardware.
 116         */
 117        err = 0;
 118        if (!atomic_inc_not_zero(&num_events)) {
 119                mutex_lock(&pmc_reserve_mutex);
 120                if (atomic_read(&num_events) == 0 &&
 121                    reserve_pmc_hardware())
 122                        err = -EBUSY;
 123                else
 124                        atomic_inc(&num_events);
 125                mutex_unlock(&pmc_reserve_mutex);
 126        }
 127
 128        if (err)
 129                return err;
 130
 131        event->destroy = hw_perf_event_destroy;
 132
 133        switch (attr->type) {
 134        case PERF_TYPE_RAW:
 135                config = attr->config & sh_pmu->raw_event_mask;
 136                break;
 137        case PERF_TYPE_HW_CACHE:
 138                err = hw_perf_cache_event(attr->config, &config);
 139                if (err)
 140                        return err;
 141                break;
 142        case PERF_TYPE_HARDWARE:
 143                if (attr->config >= sh_pmu->max_events)
 144                        return -EINVAL;
 145
 146                config = sh_pmu->event_map(attr->config);
 147                break;
 148        }
 149
 150        if (config == -1)
 151                return -EINVAL;
 152
 153        hwc->config |= config;
 154
 155        return 0;
 156}
 157
 158static void sh_perf_event_update(struct perf_event *event,
 159                                   struct hw_perf_event *hwc, int idx)
 160{
 161        u64 prev_raw_count, new_raw_count;
 162        s64 delta;
 163        int shift = 0;
 164
 165        /*
 166         * Depending on the counter configuration, they may or may not
 167         * be chained, in which case the previous counter value can be
 168         * updated underneath us if the lower-half overflows.
 169         *
 170         * Our tactic to handle this is to first atomically read and
 171         * exchange a new raw count - then add that new-prev delta
 172         * count to the generic counter atomically.
 173         *
 174         * As there is no interrupt associated with the overflow events,
 175         * this is the simplest approach for maintaining consistency.
 176         */
 177again:
 178        prev_raw_count = local64_read(&hwc->prev_count);
 179        new_raw_count = sh_pmu->read(idx);
 180
 181        if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 182                             new_raw_count) != prev_raw_count)
 183                goto again;
 184
 185        /*
 186         * Now we have the new raw value and have updated the prev
 187         * timestamp already. We can now calculate the elapsed delta
 188         * (counter-)time and add that to the generic counter.
 189         *
 190         * Careful, not all hw sign-extends above the physical width
 191         * of the count.
 192         */
 193        delta = (new_raw_count << shift) - (prev_raw_count << shift);
 194        delta >>= shift;
 195
 196        local64_add(delta, &event->count);
 197}
 198
 199static void sh_pmu_stop(struct perf_event *event, int flags)
 200{
 201        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 202        struct hw_perf_event *hwc = &event->hw;
 203        int idx = hwc->idx;
 204
 205        if (!(event->hw.state & PERF_HES_STOPPED)) {
 206                sh_pmu->disable(hwc, idx);
 207                cpuc->events[idx] = NULL;
 208                event->hw.state |= PERF_HES_STOPPED;
 209        }
 210
 211        if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
 212                sh_perf_event_update(event, &event->hw, idx);
 213                event->hw.state |= PERF_HES_UPTODATE;
 214        }
 215}
 216
 217static void sh_pmu_start(struct perf_event *event, int flags)
 218{
 219        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 220        struct hw_perf_event *hwc = &event->hw;
 221        int idx = hwc->idx;
 222
 223        if (WARN_ON_ONCE(idx == -1))
 224                return;
 225
 226        if (flags & PERF_EF_RELOAD)
 227                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 228
 229        cpuc->events[idx] = event;
 230        event->hw.state = 0;
 231        sh_pmu->enable(hwc, idx);
 232}
 233
 234static void sh_pmu_del(struct perf_event *event, int flags)
 235{
 236        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 237
 238        sh_pmu_stop(event, PERF_EF_UPDATE);
 239        __clear_bit(event->hw.idx, cpuc->used_mask);
 240
 241        perf_event_update_userpage(event);
 242}
 243
 244static int sh_pmu_add(struct perf_event *event, int flags)
 245{
 246        struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 247        struct hw_perf_event *hwc = &event->hw;
 248        int idx = hwc->idx;
 249        int ret = -EAGAIN;
 250
 251        perf_pmu_disable(event->pmu);
 252
 253        if (__test_and_set_bit(idx, cpuc->used_mask)) {
 254                idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
 255                if (idx == sh_pmu->num_events)
 256                        goto out;
 257
 258                __set_bit(idx, cpuc->used_mask);
 259                hwc->idx = idx;
 260        }
 261
 262        sh_pmu->disable(hwc, idx);
 263
 264        event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 265        if (flags & PERF_EF_START)
 266                sh_pmu_start(event, PERF_EF_RELOAD);
 267
 268        perf_event_update_userpage(event);
 269        ret = 0;
 270out:
 271        perf_pmu_enable(event->pmu);
 272        return ret;
 273}
 274
 275static void sh_pmu_read(struct perf_event *event)
 276{
 277        sh_perf_event_update(event, &event->hw, event->hw.idx);
 278}
 279
 280static int sh_pmu_event_init(struct perf_event *event)
 281{
 282        int err;
 283
 284        /* does not support taken branch sampling */
 285        if (has_branch_stack(event))
 286                return -EOPNOTSUPP;
 287
 288        switch (event->attr.type) {
 289        case PERF_TYPE_RAW:
 290        case PERF_TYPE_HW_CACHE:
 291        case PERF_TYPE_HARDWARE:
 292                err = __hw_perf_event_init(event);
 293                break;
 294
 295        default:
 296                return -ENOENT;
 297        }
 298
 299        if (unlikely(err)) {
 300                if (event->destroy)
 301                        event->destroy(event);
 302        }
 303
 304        return err;
 305}
 306
 307static void sh_pmu_enable(struct pmu *pmu)
 308{
 309        if (!sh_pmu_initialized())
 310                return;
 311
 312        sh_pmu->enable_all();
 313}
 314
 315static void sh_pmu_disable(struct pmu *pmu)
 316{
 317        if (!sh_pmu_initialized())
 318                return;
 319
 320        sh_pmu->disable_all();
 321}
 322
 323static struct pmu pmu = {
 324        .pmu_enable     = sh_pmu_enable,
 325        .pmu_disable    = sh_pmu_disable,
 326        .event_init     = sh_pmu_event_init,
 327        .add            = sh_pmu_add,
 328        .del            = sh_pmu_del,
 329        .start          = sh_pmu_start,
 330        .stop           = sh_pmu_stop,
 331        .read           = sh_pmu_read,
 332};
 333
 334static int sh_pmu_prepare_cpu(unsigned int cpu)
 335{
 336        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
 337
 338        memset(cpuhw, 0, sizeof(struct cpu_hw_events));
 339        return 0;
 340}
 341
 342int register_sh_pmu(struct sh_pmu *_pmu)
 343{
 344        if (sh_pmu)
 345                return -EBUSY;
 346        sh_pmu = _pmu;
 347
 348        pr_info("Performance Events: %s support registered\n", _pmu->name);
 349
 350        /*
 351         * All of the on-chip counters are "limited", in that they have
 352         * no interrupts, and are therefore unable to do sampling without
 353         * further work and timer assistance.
 354         */
 355        pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
 356
 357        WARN_ON(_pmu->num_events > MAX_HWEVENTS);
 358
 359        perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
 360        cpuhp_setup_state(CPUHP_PERF_SUPERH, "PERF_SUPERH", sh_pmu_prepare_cpu,
 361                          NULL);
 362        return 0;
 363}
 364