linux/arch/sparc/kernel/kprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* arch/sparc64/kernel/kprobes.c
   3 *
   4 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
   5 */
   6
   7#include <linux/kernel.h>
   8#include <linux/kprobes.h>
   9#include <linux/extable.h>
  10#include <linux/kdebug.h>
  11#include <linux/slab.h>
  12#include <linux/context_tracking.h>
  13#include <asm/signal.h>
  14#include <asm/cacheflush.h>
  15#include <linux/uaccess.h>
  16
  17/* We do not have hardware single-stepping on sparc64.
  18 * So we implement software single-stepping with breakpoint
  19 * traps.  The top-level scheme is similar to that used
  20 * in the x86 kprobes implementation.
  21 *
  22 * In the kprobe->ainsn.insn[] array we store the original
  23 * instruction at index zero and a break instruction at
  24 * index one.
  25 *
  26 * When we hit a kprobe we:
  27 * - Run the pre-handler
  28 * - Remember "regs->tnpc" and interrupt level stored in
  29 *   "regs->tstate" so we can restore them later
  30 * - Disable PIL interrupts
  31 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
  32 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
  33 * - Mark that we are actively in a kprobe
  34 *
  35 * At this point we wait for the second breakpoint at
  36 * kprobe->ainsn.insn[1] to hit.  When it does we:
  37 * - Run the post-handler
  38 * - Set regs->tpc to "remembered" regs->tnpc stored above,
  39 *   restore the PIL interrupt level in "regs->tstate" as well
  40 * - Make any adjustments necessary to regs->tnpc in order
  41 *   to handle relative branches correctly.  See below.
  42 * - Mark that we are no longer actively in a kprobe.
  43 */
  44
  45DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  46DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  47
  48struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  49
  50int __kprobes arch_prepare_kprobe(struct kprobe *p)
  51{
  52        if ((unsigned long) p->addr & 0x3UL)
  53                return -EILSEQ;
  54
  55        p->ainsn.insn[0] = *p->addr;
  56        flushi(&p->ainsn.insn[0]);
  57
  58        p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
  59        flushi(&p->ainsn.insn[1]);
  60
  61        p->opcode = *p->addr;
  62        return 0;
  63}
  64
  65void __kprobes arch_arm_kprobe(struct kprobe *p)
  66{
  67        *p->addr = BREAKPOINT_INSTRUCTION;
  68        flushi(p->addr);
  69}
  70
  71void __kprobes arch_disarm_kprobe(struct kprobe *p)
  72{
  73        *p->addr = p->opcode;
  74        flushi(p->addr);
  75}
  76
  77static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  78{
  79        kcb->prev_kprobe.kp = kprobe_running();
  80        kcb->prev_kprobe.status = kcb->kprobe_status;
  81        kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
  82        kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
  83}
  84
  85static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  86{
  87        __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
  88        kcb->kprobe_status = kcb->prev_kprobe.status;
  89        kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
  90        kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
  91}
  92
  93static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  94                                struct kprobe_ctlblk *kcb)
  95{
  96        __this_cpu_write(current_kprobe, p);
  97        kcb->kprobe_orig_tnpc = regs->tnpc;
  98        kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
  99}
 100
 101static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
 102                        struct kprobe_ctlblk *kcb)
 103{
 104        regs->tstate |= TSTATE_PIL;
 105
 106        /*single step inline, if it a breakpoint instruction*/
 107        if (p->opcode == BREAKPOINT_INSTRUCTION) {
 108                regs->tpc = (unsigned long) p->addr;
 109                regs->tnpc = kcb->kprobe_orig_tnpc;
 110        } else {
 111                regs->tpc = (unsigned long) &p->ainsn.insn[0];
 112                regs->tnpc = (unsigned long) &p->ainsn.insn[1];
 113        }
 114}
 115
 116static int __kprobes kprobe_handler(struct pt_regs *regs)
 117{
 118        struct kprobe *p;
 119        void *addr = (void *) regs->tpc;
 120        int ret = 0;
 121        struct kprobe_ctlblk *kcb;
 122
 123        /*
 124         * We don't want to be preempted for the entire
 125         * duration of kprobe processing
 126         */
 127        preempt_disable();
 128        kcb = get_kprobe_ctlblk();
 129
 130        if (kprobe_running()) {
 131                p = get_kprobe(addr);
 132                if (p) {
 133                        if (kcb->kprobe_status == KPROBE_HIT_SS) {
 134                                regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 135                                        kcb->kprobe_orig_tstate_pil);
 136                                goto no_kprobe;
 137                        }
 138                        /* We have reentered the kprobe_handler(), since
 139                         * another probe was hit while within the handler.
 140                         * We here save the original kprobes variables and
 141                         * just single step on the instruction of the new probe
 142                         * without calling any user handlers.
 143                         */
 144                        save_previous_kprobe(kcb);
 145                        set_current_kprobe(p, regs, kcb);
 146                        kprobes_inc_nmissed_count(p);
 147                        kcb->kprobe_status = KPROBE_REENTER;
 148                        prepare_singlestep(p, regs, kcb);
 149                        return 1;
 150                } else if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 151                        /* The breakpoint instruction was removed by
 152                         * another cpu right after we hit, no further
 153                         * handling of this interrupt is appropriate
 154                         */
 155                        ret = 1;
 156                }
 157                goto no_kprobe;
 158        }
 159
 160        p = get_kprobe(addr);
 161        if (!p) {
 162                if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
 163                        /*
 164                         * The breakpoint instruction was removed right
 165                         * after we hit it.  Another cpu has removed
 166                         * either a probepoint or a debugger breakpoint
 167                         * at this address.  In either case, no further
 168                         * handling of this interrupt is appropriate.
 169                         */
 170                        ret = 1;
 171                }
 172                /* Not one of ours: let kernel handle it */
 173                goto no_kprobe;
 174        }
 175
 176        set_current_kprobe(p, regs, kcb);
 177        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 178        if (p->pre_handler && p->pre_handler(p, regs)) {
 179                reset_current_kprobe();
 180                preempt_enable_no_resched();
 181                return 1;
 182        }
 183
 184        prepare_singlestep(p, regs, kcb);
 185        kcb->kprobe_status = KPROBE_HIT_SS;
 186        return 1;
 187
 188no_kprobe:
 189        preempt_enable_no_resched();
 190        return ret;
 191}
 192
 193/* If INSN is a relative control transfer instruction,
 194 * return the corrected branch destination value.
 195 *
 196 * regs->tpc and regs->tnpc still hold the values of the
 197 * program counters at the time of trap due to the execution
 198 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
 199 * 
 200 */
 201static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
 202                                               struct pt_regs *regs)
 203{
 204        unsigned long real_pc = (unsigned long) p->addr;
 205
 206        /* Branch not taken, no mods necessary.  */
 207        if (regs->tnpc == regs->tpc + 0x4UL)
 208                return real_pc + 0x8UL;
 209
 210        /* The three cases are call, branch w/prediction,
 211         * and traditional branch.
 212         */
 213        if ((insn & 0xc0000000) == 0x40000000 ||
 214            (insn & 0xc1c00000) == 0x00400000 ||
 215            (insn & 0xc1c00000) == 0x00800000) {
 216                unsigned long ainsn_addr;
 217
 218                ainsn_addr = (unsigned long) &p->ainsn.insn[0];
 219
 220                /* The instruction did all the work for us
 221                 * already, just apply the offset to the correct
 222                 * instruction location.
 223                 */
 224                return (real_pc + (regs->tnpc - ainsn_addr));
 225        }
 226
 227        /* It is jmpl or some other absolute PC modification instruction,
 228         * leave NPC as-is.
 229         */
 230        return regs->tnpc;
 231}
 232
 233/* If INSN is an instruction which writes it's PC location
 234 * into a destination register, fix that up.
 235 */
 236static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
 237                                  unsigned long real_pc)
 238{
 239        unsigned long *slot = NULL;
 240
 241        /* Simplest case is 'call', which always uses %o7 */
 242        if ((insn & 0xc0000000) == 0x40000000) {
 243                slot = &regs->u_regs[UREG_I7];
 244        }
 245
 246        /* 'jmpl' encodes the register inside of the opcode */
 247        if ((insn & 0xc1f80000) == 0x81c00000) {
 248                unsigned long rd = ((insn >> 25) & 0x1f);
 249
 250                if (rd <= 15) {
 251                        slot = &regs->u_regs[rd];
 252                } else {
 253                        /* Hard case, it goes onto the stack. */
 254                        flushw_all();
 255
 256                        rd -= 16;
 257                        slot = (unsigned long *)
 258                                (regs->u_regs[UREG_FP] + STACK_BIAS);
 259                        slot += rd;
 260                }
 261        }
 262        if (slot != NULL)
 263                *slot = real_pc;
 264}
 265
 266/*
 267 * Called after single-stepping.  p->addr is the address of the
 268 * instruction which has been replaced by the breakpoint
 269 * instruction.  To avoid the SMP problems that can occur when we
 270 * temporarily put back the original opcode to single-step, we
 271 * single-stepped a copy of the instruction.  The address of this
 272 * copy is &p->ainsn.insn[0].
 273 *
 274 * This function prepares to return from the post-single-step
 275 * breakpoint trap.
 276 */
 277static void __kprobes resume_execution(struct kprobe *p,
 278                struct pt_regs *regs, struct kprobe_ctlblk *kcb)
 279{
 280        u32 insn = p->ainsn.insn[0];
 281
 282        regs->tnpc = relbranch_fixup(insn, p, regs);
 283
 284        /* This assignment must occur after relbranch_fixup() */
 285        regs->tpc = kcb->kprobe_orig_tnpc;
 286
 287        retpc_fixup(regs, insn, (unsigned long) p->addr);
 288
 289        regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 290                        kcb->kprobe_orig_tstate_pil);
 291}
 292
 293static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 294{
 295        struct kprobe *cur = kprobe_running();
 296        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 297
 298        if (!cur)
 299                return 0;
 300
 301        if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 302                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 303                cur->post_handler(cur, regs, 0);
 304        }
 305
 306        resume_execution(cur, regs, kcb);
 307
 308        /*Restore back the original saved kprobes variables and continue. */
 309        if (kcb->kprobe_status == KPROBE_REENTER) {
 310                restore_previous_kprobe(kcb);
 311                goto out;
 312        }
 313        reset_current_kprobe();
 314out:
 315        preempt_enable_no_resched();
 316
 317        return 1;
 318}
 319
 320int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 321{
 322        struct kprobe *cur = kprobe_running();
 323        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 324        const struct exception_table_entry *entry;
 325
 326        switch(kcb->kprobe_status) {
 327        case KPROBE_HIT_SS:
 328        case KPROBE_REENTER:
 329                /*
 330                 * We are here because the instruction being single
 331                 * stepped caused a page fault. We reset the current
 332                 * kprobe and the tpc points back to the probe address
 333                 * and allow the page fault handler to continue as a
 334                 * normal page fault.
 335                 */
 336                regs->tpc = (unsigned long)cur->addr;
 337                regs->tnpc = kcb->kprobe_orig_tnpc;
 338                regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
 339                                kcb->kprobe_orig_tstate_pil);
 340                if (kcb->kprobe_status == KPROBE_REENTER)
 341                        restore_previous_kprobe(kcb);
 342                else
 343                        reset_current_kprobe();
 344                preempt_enable_no_resched();
 345                break;
 346        case KPROBE_HIT_ACTIVE:
 347        case KPROBE_HIT_SSDONE:
 348                /*
 349                 * In case the user-specified fault handler returned
 350                 * zero, try to fix up.
 351                 */
 352
 353                entry = search_exception_tables(regs->tpc);
 354                if (entry) {
 355                        regs->tpc = entry->fixup;
 356                        regs->tnpc = regs->tpc + 4;
 357                        return 1;
 358                }
 359
 360                /*
 361                 * fixup_exception() could not handle it,
 362                 * Let do_page_fault() fix it.
 363                 */
 364                break;
 365        default:
 366                break;
 367        }
 368
 369        return 0;
 370}
 371
 372/*
 373 * Wrapper routine to for handling exceptions.
 374 */
 375int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 376                                       unsigned long val, void *data)
 377{
 378        struct die_args *args = (struct die_args *)data;
 379        int ret = NOTIFY_DONE;
 380
 381        if (args->regs && user_mode(args->regs))
 382                return ret;
 383
 384        switch (val) {
 385        case DIE_DEBUG:
 386                if (kprobe_handler(args->regs))
 387                        ret = NOTIFY_STOP;
 388                break;
 389        case DIE_DEBUG_2:
 390                if (post_kprobe_handler(args->regs))
 391                        ret = NOTIFY_STOP;
 392                break;
 393        default:
 394                break;
 395        }
 396        return ret;
 397}
 398
 399asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
 400                                      struct pt_regs *regs)
 401{
 402        enum ctx_state prev_state = exception_enter();
 403
 404        BUG_ON(trap_level != 0x170 && trap_level != 0x171);
 405
 406        if (user_mode(regs)) {
 407                local_irq_enable();
 408                bad_trap(regs, trap_level);
 409                goto out;
 410        }
 411
 412        /* trap_level == 0x170 --> ta 0x70
 413         * trap_level == 0x171 --> ta 0x71
 414         */
 415        if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
 416                       (trap_level == 0x170) ? "debug" : "debug_2",
 417                       regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
 418                bad_trap(regs, trap_level);
 419out:
 420        exception_exit(prev_state);
 421}
 422
 423/* The value stored in the return address register is actually 2
 424 * instructions before where the callee will return to.
 425 * Sequences usually look something like this
 426 *
 427 *              call    some_function   <--- return register points here
 428 *               nop                    <--- call delay slot
 429 *              whatever                <--- where callee returns to
 430 *
 431 * To keep trampoline_probe_handler logic simpler, we normalize the
 432 * value kept in ri->ret_addr so we don't need to keep adjusting it
 433 * back and forth.
 434 */
 435void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 436                                      struct pt_regs *regs)
 437{
 438        ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
 439        ri->fp = NULL;
 440
 441        /* Replace the return addr with trampoline addr */
 442        regs->u_regs[UREG_RETPC] =
 443                ((unsigned long)kretprobe_trampoline) - 8;
 444}
 445
 446/*
 447 * Called when the probe at kretprobe trampoline is hit
 448 */
 449static int __kprobes trampoline_probe_handler(struct kprobe *p,
 450                                              struct pt_regs *regs)
 451{
 452        unsigned long orig_ret_address = 0;
 453
 454        orig_ret_address = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
 455        regs->tpc = orig_ret_address;
 456        regs->tnpc = orig_ret_address + 4;
 457
 458        /*
 459         * By returning a non-zero value, we are telling
 460         * kprobe_handler() that we don't want the post_handler
 461         * to run (and have re-enabled preemption)
 462         */
 463        return 1;
 464}
 465
 466static void __used kretprobe_trampoline_holder(void)
 467{
 468        asm volatile(".global kretprobe_trampoline\n"
 469                     "kretprobe_trampoline:\n"
 470                     "\tnop\n"
 471                     "\tnop\n");
 472}
 473static struct kprobe trampoline_p = {
 474        .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
 475        .pre_handler = trampoline_probe_handler
 476};
 477
 478int __init arch_init_kprobes(void)
 479{
 480        return register_kprobe(&trampoline_p);
 481}
 482
 483int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 484{
 485        if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
 486                return 1;
 487
 488        return 0;
 489}
 490