linux/arch/sparc/kernel/smp_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* smp.c: Sparc64 SMP support.
   3 *
   4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/kernel.h>
   9#include <linux/sched/mm.h>
  10#include <linux/sched/hotplug.h>
  11#include <linux/mm.h>
  12#include <linux/pagemap.h>
  13#include <linux/threads.h>
  14#include <linux/smp.h>
  15#include <linux/interrupt.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/delay.h>
  18#include <linux/init.h>
  19#include <linux/spinlock.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/cache.h>
  23#include <linux/jiffies.h>
  24#include <linux/profile.h>
  25#include <linux/memblock.h>
  26#include <linux/vmalloc.h>
  27#include <linux/ftrace.h>
  28#include <linux/cpu.h>
  29#include <linux/slab.h>
  30#include <linux/kgdb.h>
  31
  32#include <asm/head.h>
  33#include <asm/ptrace.h>
  34#include <linux/atomic.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mmu_context.h>
  37#include <asm/cpudata.h>
  38#include <asm/hvtramp.h>
  39#include <asm/io.h>
  40#include <asm/timer.h>
  41#include <asm/setup.h>
  42
  43#include <asm/irq.h>
  44#include <asm/irq_regs.h>
  45#include <asm/page.h>
  46#include <asm/oplib.h>
  47#include <linux/uaccess.h>
  48#include <asm/starfire.h>
  49#include <asm/tlb.h>
  50#include <asm/pgalloc.h>
  51#include <asm/sections.h>
  52#include <asm/prom.h>
  53#include <asm/mdesc.h>
  54#include <asm/ldc.h>
  55#include <asm/hypervisor.h>
  56#include <asm/pcr.h>
  57
  58#include "cpumap.h"
  59#include "kernel.h"
  60
  61DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  62cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  63        { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  64
  65cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
  66        [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  67
  68cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
  69        [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
  70
  71EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  72EXPORT_SYMBOL(cpu_core_map);
  73EXPORT_SYMBOL(cpu_core_sib_map);
  74EXPORT_SYMBOL(cpu_core_sib_cache_map);
  75
  76static cpumask_t smp_commenced_mask;
  77
  78static DEFINE_PER_CPU(bool, poke);
  79static bool cpu_poke;
  80
  81void smp_info(struct seq_file *m)
  82{
  83        int i;
  84        
  85        seq_printf(m, "State:\n");
  86        for_each_online_cpu(i)
  87                seq_printf(m, "CPU%d:\t\tonline\n", i);
  88}
  89
  90void smp_bogo(struct seq_file *m)
  91{
  92        int i;
  93        
  94        for_each_online_cpu(i)
  95                seq_printf(m,
  96                           "Cpu%dClkTck\t: %016lx\n",
  97                           i, cpu_data(i).clock_tick);
  98}
  99
 100extern void setup_sparc64_timer(void);
 101
 102static volatile unsigned long callin_flag = 0;
 103
 104void smp_callin(void)
 105{
 106        int cpuid = hard_smp_processor_id();
 107
 108        __local_per_cpu_offset = __per_cpu_offset(cpuid);
 109
 110        if (tlb_type == hypervisor)
 111                sun4v_ktsb_register();
 112
 113        __flush_tlb_all();
 114
 115        setup_sparc64_timer();
 116
 117        if (cheetah_pcache_forced_on)
 118                cheetah_enable_pcache();
 119
 120        callin_flag = 1;
 121        __asm__ __volatile__("membar #Sync\n\t"
 122                             "flush  %%g6" : : : "memory");
 123
 124        /* Clear this or we will die instantly when we
 125         * schedule back to this idler...
 126         */
 127        current_thread_info()->new_child = 0;
 128
 129        /* Attach to the address space of init_task. */
 130        mmgrab(&init_mm);
 131        current->active_mm = &init_mm;
 132
 133        /* inform the notifiers about the new cpu */
 134        notify_cpu_starting(cpuid);
 135
 136        while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
 137                rmb();
 138
 139        set_cpu_online(cpuid, true);
 140
 141        local_irq_enable();
 142
 143        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 144}
 145
 146void cpu_panic(void)
 147{
 148        printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
 149        panic("SMP bolixed\n");
 150}
 151
 152/* This tick register synchronization scheme is taken entirely from
 153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
 154 *
 155 * The only change I've made is to rework it so that the master
 156 * initiates the synchonization instead of the slave. -DaveM
 157 */
 158
 159#define MASTER  0
 160#define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
 161
 162#define NUM_ROUNDS      64      /* magic value */
 163#define NUM_ITERS       5       /* likewise */
 164
 165static DEFINE_RAW_SPINLOCK(itc_sync_lock);
 166static unsigned long go[SLAVE + 1];
 167
 168#define DEBUG_TICK_SYNC 0
 169
 170static inline long get_delta (long *rt, long *master)
 171{
 172        unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
 173        unsigned long tcenter, t0, t1, tm;
 174        unsigned long i;
 175
 176        for (i = 0; i < NUM_ITERS; i++) {
 177                t0 = tick_ops->get_tick();
 178                go[MASTER] = 1;
 179                membar_safe("#StoreLoad");
 180                while (!(tm = go[SLAVE]))
 181                        rmb();
 182                go[SLAVE] = 0;
 183                wmb();
 184                t1 = tick_ops->get_tick();
 185
 186                if (t1 - t0 < best_t1 - best_t0)
 187                        best_t0 = t0, best_t1 = t1, best_tm = tm;
 188        }
 189
 190        *rt = best_t1 - best_t0;
 191        *master = best_tm - best_t0;
 192
 193        /* average best_t0 and best_t1 without overflow: */
 194        tcenter = (best_t0/2 + best_t1/2);
 195        if (best_t0 % 2 + best_t1 % 2 == 2)
 196                tcenter++;
 197        return tcenter - best_tm;
 198}
 199
 200void smp_synchronize_tick_client(void)
 201{
 202        long i, delta, adj, adjust_latency = 0, done = 0;
 203        unsigned long flags, rt, master_time_stamp;
 204#if DEBUG_TICK_SYNC
 205        struct {
 206                long rt;        /* roundtrip time */
 207                long master;    /* master's timestamp */
 208                long diff;      /* difference between midpoint and master's timestamp */
 209                long lat;       /* estimate of itc adjustment latency */
 210        } t[NUM_ROUNDS];
 211#endif
 212
 213        go[MASTER] = 1;
 214
 215        while (go[MASTER])
 216                rmb();
 217
 218        local_irq_save(flags);
 219        {
 220                for (i = 0; i < NUM_ROUNDS; i++) {
 221                        delta = get_delta(&rt, &master_time_stamp);
 222                        if (delta == 0)
 223                                done = 1;       /* let's lock on to this... */
 224
 225                        if (!done) {
 226                                if (i > 0) {
 227                                        adjust_latency += -delta;
 228                                        adj = -delta + adjust_latency/4;
 229                                } else
 230                                        adj = -delta;
 231
 232                                tick_ops->add_tick(adj);
 233                        }
 234#if DEBUG_TICK_SYNC
 235                        t[i].rt = rt;
 236                        t[i].master = master_time_stamp;
 237                        t[i].diff = delta;
 238                        t[i].lat = adjust_latency/4;
 239#endif
 240                }
 241        }
 242        local_irq_restore(flags);
 243
 244#if DEBUG_TICK_SYNC
 245        for (i = 0; i < NUM_ROUNDS; i++)
 246                printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
 247                       t[i].rt, t[i].master, t[i].diff, t[i].lat);
 248#endif
 249
 250        printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
 251               "(last diff %ld cycles, maxerr %lu cycles)\n",
 252               smp_processor_id(), delta, rt);
 253}
 254
 255static void smp_start_sync_tick_client(int cpu);
 256
 257static void smp_synchronize_one_tick(int cpu)
 258{
 259        unsigned long flags, i;
 260
 261        go[MASTER] = 0;
 262
 263        smp_start_sync_tick_client(cpu);
 264
 265        /* wait for client to be ready */
 266        while (!go[MASTER])
 267                rmb();
 268
 269        /* now let the client proceed into his loop */
 270        go[MASTER] = 0;
 271        membar_safe("#StoreLoad");
 272
 273        raw_spin_lock_irqsave(&itc_sync_lock, flags);
 274        {
 275                for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
 276                        while (!go[MASTER])
 277                                rmb();
 278                        go[MASTER] = 0;
 279                        wmb();
 280                        go[SLAVE] = tick_ops->get_tick();
 281                        membar_safe("#StoreLoad");
 282                }
 283        }
 284        raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
 285}
 286
 287#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 288static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
 289                                void **descrp)
 290{
 291        extern unsigned long sparc64_ttable_tl0;
 292        extern unsigned long kern_locked_tte_data;
 293        struct hvtramp_descr *hdesc;
 294        unsigned long trampoline_ra;
 295        struct trap_per_cpu *tb;
 296        u64 tte_vaddr, tte_data;
 297        unsigned long hv_err;
 298        int i;
 299
 300        hdesc = kzalloc(sizeof(*hdesc) +
 301                        (sizeof(struct hvtramp_mapping) *
 302                         num_kernel_image_mappings - 1),
 303                        GFP_KERNEL);
 304        if (!hdesc) {
 305                printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
 306                       "hvtramp_descr.\n");
 307                return;
 308        }
 309        *descrp = hdesc;
 310
 311        hdesc->cpu = cpu;
 312        hdesc->num_mappings = num_kernel_image_mappings;
 313
 314        tb = &trap_block[cpu];
 315
 316        hdesc->fault_info_va = (unsigned long) &tb->fault_info;
 317        hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
 318
 319        hdesc->thread_reg = thread_reg;
 320
 321        tte_vaddr = (unsigned long) KERNBASE;
 322        tte_data = kern_locked_tte_data;
 323
 324        for (i = 0; i < hdesc->num_mappings; i++) {
 325                hdesc->maps[i].vaddr = tte_vaddr;
 326                hdesc->maps[i].tte   = tte_data;
 327                tte_vaddr += 0x400000;
 328                tte_data  += 0x400000;
 329        }
 330
 331        trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
 332
 333        hv_err = sun4v_cpu_start(cpu, trampoline_ra,
 334                                 kimage_addr_to_ra(&sparc64_ttable_tl0),
 335                                 __pa(hdesc));
 336        if (hv_err)
 337                printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
 338                       "gives error %lu\n", hv_err);
 339}
 340#endif
 341
 342extern unsigned long sparc64_cpu_startup;
 343
 344/* The OBP cpu startup callback truncates the 3rd arg cookie to
 345 * 32-bits (I think) so to be safe we have it read the pointer
 346 * contained here so we work on >4GB machines. -DaveM
 347 */
 348static struct thread_info *cpu_new_thread = NULL;
 349
 350static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
 351{
 352        unsigned long entry =
 353                (unsigned long)(&sparc64_cpu_startup);
 354        unsigned long cookie =
 355                (unsigned long)(&cpu_new_thread);
 356        void *descr = NULL;
 357        int timeout, ret;
 358
 359        callin_flag = 0;
 360        cpu_new_thread = task_thread_info(idle);
 361
 362        if (tlb_type == hypervisor) {
 363#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
 364                if (ldom_domaining_enabled)
 365                        ldom_startcpu_cpuid(cpu,
 366                                            (unsigned long) cpu_new_thread,
 367                                            &descr);
 368                else
 369#endif
 370                        prom_startcpu_cpuid(cpu, entry, cookie);
 371        } else {
 372                struct device_node *dp = of_find_node_by_cpuid(cpu);
 373
 374                prom_startcpu(dp->phandle, entry, cookie);
 375        }
 376
 377        for (timeout = 0; timeout < 50000; timeout++) {
 378                if (callin_flag)
 379                        break;
 380                udelay(100);
 381        }
 382
 383        if (callin_flag) {
 384                ret = 0;
 385        } else {
 386                printk("Processor %d is stuck.\n", cpu);
 387                ret = -ENODEV;
 388        }
 389        cpu_new_thread = NULL;
 390
 391        kfree(descr);
 392
 393        return ret;
 394}
 395
 396static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
 397{
 398        u64 result, target;
 399        int stuck, tmp;
 400
 401        if (this_is_starfire) {
 402                /* map to real upaid */
 403                cpu = (((cpu & 0x3c) << 1) |
 404                        ((cpu & 0x40) >> 4) |
 405                        (cpu & 0x3));
 406        }
 407
 408        target = (cpu << 14) | 0x70;
 409again:
 410        /* Ok, this is the real Spitfire Errata #54.
 411         * One must read back from a UDB internal register
 412         * after writes to the UDB interrupt dispatch, but
 413         * before the membar Sync for that write.
 414         * So we use the high UDB control register (ASI 0x7f,
 415         * ADDR 0x20) for the dummy read. -DaveM
 416         */
 417        tmp = 0x40;
 418        __asm__ __volatile__(
 419        "wrpr   %1, %2, %%pstate\n\t"
 420        "stxa   %4, [%0] %3\n\t"
 421        "stxa   %5, [%0+%8] %3\n\t"
 422        "add    %0, %8, %0\n\t"
 423        "stxa   %6, [%0+%8] %3\n\t"
 424        "membar #Sync\n\t"
 425        "stxa   %%g0, [%7] %3\n\t"
 426        "membar #Sync\n\t"
 427        "mov    0x20, %%g1\n\t"
 428        "ldxa   [%%g1] 0x7f, %%g0\n\t"
 429        "membar #Sync"
 430        : "=r" (tmp)
 431        : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
 432          "r" (data0), "r" (data1), "r" (data2), "r" (target),
 433          "r" (0x10), "0" (tmp)
 434        : "g1");
 435
 436        /* NOTE: PSTATE_IE is still clear. */
 437        stuck = 100000;
 438        do {
 439                __asm__ __volatile__("ldxa [%%g0] %1, %0"
 440                        : "=r" (result)
 441                        : "i" (ASI_INTR_DISPATCH_STAT));
 442                if (result == 0) {
 443                        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 444                                             : : "r" (pstate));
 445                        return;
 446                }
 447                stuck -= 1;
 448                if (stuck == 0)
 449                        break;
 450        } while (result & 0x1);
 451        __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 452                             : : "r" (pstate));
 453        if (stuck == 0) {
 454                printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 455                       smp_processor_id(), result);
 456        } else {
 457                udelay(2);
 458                goto again;
 459        }
 460}
 461
 462static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 463{
 464        u64 *mondo, data0, data1, data2;
 465        u16 *cpu_list;
 466        u64 pstate;
 467        int i;
 468
 469        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 470        cpu_list = __va(tb->cpu_list_pa);
 471        mondo = __va(tb->cpu_mondo_block_pa);
 472        data0 = mondo[0];
 473        data1 = mondo[1];
 474        data2 = mondo[2];
 475        for (i = 0; i < cnt; i++)
 476                spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
 477}
 478
 479/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
 480 * packet, but we have no use for that.  However we do take advantage of
 481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
 482 */
 483static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 484{
 485        int nack_busy_id, is_jbus, need_more;
 486        u64 *mondo, pstate, ver, busy_mask;
 487        u16 *cpu_list;
 488
 489        cpu_list = __va(tb->cpu_list_pa);
 490        mondo = __va(tb->cpu_mondo_block_pa);
 491
 492        /* Unfortunately, someone at Sun had the brilliant idea to make the
 493         * busy/nack fields hard-coded by ITID number for this Ultra-III
 494         * derivative processor.
 495         */
 496        __asm__ ("rdpr %%ver, %0" : "=r" (ver));
 497        is_jbus = ((ver >> 32) == __JALAPENO_ID ||
 498                   (ver >> 32) == __SERRANO_ID);
 499
 500        __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
 501
 502retry:
 503        need_more = 0;
 504        __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
 505                             : : "r" (pstate), "i" (PSTATE_IE));
 506
 507        /* Setup the dispatch data registers. */
 508        __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
 509                             "stxa      %1, [%4] %6\n\t"
 510                             "stxa      %2, [%5] %6\n\t"
 511                             "membar    #Sync\n\t"
 512                             : /* no outputs */
 513                             : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
 514                               "r" (0x40), "r" (0x50), "r" (0x60),
 515                               "i" (ASI_INTR_W));
 516
 517        nack_busy_id = 0;
 518        busy_mask = 0;
 519        {
 520                int i;
 521
 522                for (i = 0; i < cnt; i++) {
 523                        u64 target, nr;
 524
 525                        nr = cpu_list[i];
 526                        if (nr == 0xffff)
 527                                continue;
 528
 529                        target = (nr << 14) | 0x70;
 530                        if (is_jbus) {
 531                                busy_mask |= (0x1UL << (nr * 2));
 532                        } else {
 533                                target |= (nack_busy_id << 24);
 534                                busy_mask |= (0x1UL <<
 535                                              (nack_busy_id * 2));
 536                        }
 537                        __asm__ __volatile__(
 538                                "stxa   %%g0, [%0] %1\n\t"
 539                                "membar #Sync\n\t"
 540                                : /* no outputs */
 541                                : "r" (target), "i" (ASI_INTR_W));
 542                        nack_busy_id++;
 543                        if (nack_busy_id == 32) {
 544                                need_more = 1;
 545                                break;
 546                        }
 547                }
 548        }
 549
 550        /* Now, poll for completion. */
 551        {
 552                u64 dispatch_stat, nack_mask;
 553                long stuck;
 554
 555                stuck = 100000 * nack_busy_id;
 556                nack_mask = busy_mask << 1;
 557                do {
 558                        __asm__ __volatile__("ldxa      [%%g0] %1, %0"
 559                                             : "=r" (dispatch_stat)
 560                                             : "i" (ASI_INTR_DISPATCH_STAT));
 561                        if (!(dispatch_stat & (busy_mask | nack_mask))) {
 562                                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 563                                                     : : "r" (pstate));
 564                                if (unlikely(need_more)) {
 565                                        int i, this_cnt = 0;
 566                                        for (i = 0; i < cnt; i++) {
 567                                                if (cpu_list[i] == 0xffff)
 568                                                        continue;
 569                                                cpu_list[i] = 0xffff;
 570                                                this_cnt++;
 571                                                if (this_cnt == 32)
 572                                                        break;
 573                                        }
 574                                        goto retry;
 575                                }
 576                                return;
 577                        }
 578                        if (!--stuck)
 579                                break;
 580                } while (dispatch_stat & busy_mask);
 581
 582                __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
 583                                     : : "r" (pstate));
 584
 585                if (dispatch_stat & busy_mask) {
 586                        /* Busy bits will not clear, continue instead
 587                         * of freezing up on this cpu.
 588                         */
 589                        printk("CPU[%d]: mondo stuckage result[%016llx]\n",
 590                               smp_processor_id(), dispatch_stat);
 591                } else {
 592                        int i, this_busy_nack = 0;
 593
 594                        /* Delay some random time with interrupts enabled
 595                         * to prevent deadlock.
 596                         */
 597                        udelay(2 * nack_busy_id);
 598
 599                        /* Clear out the mask bits for cpus which did not
 600                         * NACK us.
 601                         */
 602                        for (i = 0; i < cnt; i++) {
 603                                u64 check_mask, nr;
 604
 605                                nr = cpu_list[i];
 606                                if (nr == 0xffff)
 607                                        continue;
 608
 609                                if (is_jbus)
 610                                        check_mask = (0x2UL << (2*nr));
 611                                else
 612                                        check_mask = (0x2UL <<
 613                                                      this_busy_nack);
 614                                if ((dispatch_stat & check_mask) == 0)
 615                                        cpu_list[i] = 0xffff;
 616                                this_busy_nack += 2;
 617                                if (this_busy_nack == 64)
 618                                        break;
 619                        }
 620
 621                        goto retry;
 622                }
 623        }
 624}
 625
 626#define CPU_MONDO_COUNTER(cpuid)        (cpu_mondo_counter[cpuid])
 627#define MONDO_USEC_WAIT_MIN             2
 628#define MONDO_USEC_WAIT_MAX             100
 629#define MONDO_RETRY_LIMIT               500000
 630
 631/* Multi-cpu list version.
 632 *
 633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
 634 * Sometimes not all cpus receive the mondo, requiring us to re-send
 635 * the mondo until all cpus have received, or cpus are truly stuck
 636 * unable to receive mondo, and we timeout.
 637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
 638 * perform guest service, such as PCIe error handling. Consider the
 639 * service time, 1 second overall wait is reasonable for 1 cpu.
 640 * Here two in-between mondo check wait time are defined: 2 usec for
 641 * single cpu quick turn around and up to 100usec for large cpu count.
 642 * Deliver mondo to large number of cpus could take longer, we adjusts
 643 * the retry count as long as target cpus are making forward progress.
 644 */
 645static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
 646{
 647        int this_cpu, tot_cpus, prev_sent, i, rem;
 648        int usec_wait, retries, tot_retries;
 649        u16 first_cpu = 0xffff;
 650        unsigned long xc_rcvd = 0;
 651        unsigned long status;
 652        int ecpuerror_id = 0;
 653        int enocpu_id = 0;
 654        u16 *cpu_list;
 655        u16 cpu;
 656
 657        this_cpu = smp_processor_id();
 658        cpu_list = __va(tb->cpu_list_pa);
 659        usec_wait = cnt * MONDO_USEC_WAIT_MIN;
 660        if (usec_wait > MONDO_USEC_WAIT_MAX)
 661                usec_wait = MONDO_USEC_WAIT_MAX;
 662        retries = tot_retries = 0;
 663        tot_cpus = cnt;
 664        prev_sent = 0;
 665
 666        do {
 667                int n_sent, mondo_delivered, target_cpu_busy;
 668
 669                status = sun4v_cpu_mondo_send(cnt,
 670                                              tb->cpu_list_pa,
 671                                              tb->cpu_mondo_block_pa);
 672
 673                /* HV_EOK means all cpus received the xcall, we're done.  */
 674                if (likely(status == HV_EOK))
 675                        goto xcall_done;
 676
 677                /* If not these non-fatal errors, panic */
 678                if (unlikely((status != HV_EWOULDBLOCK) &&
 679                        (status != HV_ECPUERROR) &&
 680                        (status != HV_ENOCPU)))
 681                        goto fatal_errors;
 682
 683                /* First, see if we made any forward progress.
 684                 *
 685                 * Go through the cpu_list, count the target cpus that have
 686                 * received our mondo (n_sent), and those that did not (rem).
 687                 * Re-pack cpu_list with the cpus remain to be retried in the
 688                 * front - this simplifies tracking the truly stalled cpus.
 689                 *
 690                 * The hypervisor indicates successful sends by setting
 691                 * cpu list entries to the value 0xffff.
 692                 *
 693                 * EWOULDBLOCK means some target cpus did not receive the
 694                 * mondo and retry usually helps.
 695                 *
 696                 * ECPUERROR means at least one target cpu is in error state,
 697                 * it's usually safe to skip the faulty cpu and retry.
 698                 *
 699                 * ENOCPU means one of the target cpu doesn't belong to the
 700                 * domain, perhaps offlined which is unexpected, but not
 701                 * fatal and it's okay to skip the offlined cpu.
 702                 */
 703                rem = 0;
 704                n_sent = 0;
 705                for (i = 0; i < cnt; i++) {
 706                        cpu = cpu_list[i];
 707                        if (likely(cpu == 0xffff)) {
 708                                n_sent++;
 709                        } else if ((status == HV_ECPUERROR) &&
 710                                (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
 711                                ecpuerror_id = cpu + 1;
 712                        } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
 713                                enocpu_id = cpu + 1;
 714                        } else {
 715                                cpu_list[rem++] = cpu;
 716                        }
 717                }
 718
 719                /* No cpu remained, we're done. */
 720                if (rem == 0)
 721                        break;
 722
 723                /* Otherwise, update the cpu count for retry. */
 724                cnt = rem;
 725
 726                /* Record the overall number of mondos received by the
 727                 * first of the remaining cpus.
 728                 */
 729                if (first_cpu != cpu_list[0]) {
 730                        first_cpu = cpu_list[0];
 731                        xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 732                }
 733
 734                /* Was any mondo delivered successfully? */
 735                mondo_delivered = (n_sent > prev_sent);
 736                prev_sent = n_sent;
 737
 738                /* or, was any target cpu busy processing other mondos? */
 739                target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
 740                xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
 741
 742                /* Retry count is for no progress. If we're making progress,
 743                 * reset the retry count.
 744                 */
 745                if (likely(mondo_delivered || target_cpu_busy)) {
 746                        tot_retries += retries;
 747                        retries = 0;
 748                } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
 749                        goto fatal_mondo_timeout;
 750                }
 751
 752                /* Delay a little bit to let other cpus catch up on
 753                 * their cpu mondo queue work.
 754                 */
 755                if (!mondo_delivered)
 756                        udelay(usec_wait);
 757
 758                retries++;
 759        } while (1);
 760
 761xcall_done:
 762        if (unlikely(ecpuerror_id > 0)) {
 763                pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
 764                       this_cpu, ecpuerror_id - 1);
 765        } else if (unlikely(enocpu_id > 0)) {
 766                pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
 767                       this_cpu, enocpu_id - 1);
 768        }
 769        return;
 770
 771fatal_errors:
 772        /* fatal errors include bad alignment, etc */
 773        pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
 774               this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
 775        panic("Unexpected SUN4V mondo error %lu\n", status);
 776
 777fatal_mondo_timeout:
 778        /* some cpus being non-responsive to the cpu mondo */
 779        pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
 780               this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
 781        panic("SUN4V mondo timeout panic\n");
 782}
 783
 784static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
 785
 786static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
 787{
 788        struct trap_per_cpu *tb;
 789        int this_cpu, i, cnt;
 790        unsigned long flags;
 791        u16 *cpu_list;
 792        u64 *mondo;
 793
 794        /* We have to do this whole thing with interrupts fully disabled.
 795         * Otherwise if we send an xcall from interrupt context it will
 796         * corrupt both our mondo block and cpu list state.
 797         *
 798         * One consequence of this is that we cannot use timeout mechanisms
 799         * that depend upon interrupts being delivered locally.  So, for
 800         * example, we cannot sample jiffies and expect it to advance.
 801         *
 802         * Fortunately, udelay() uses %stick/%tick so we can use that.
 803         */
 804        local_irq_save(flags);
 805
 806        this_cpu = smp_processor_id();
 807        tb = &trap_block[this_cpu];
 808
 809        mondo = __va(tb->cpu_mondo_block_pa);
 810        mondo[0] = data0;
 811        mondo[1] = data1;
 812        mondo[2] = data2;
 813        wmb();
 814
 815        cpu_list = __va(tb->cpu_list_pa);
 816
 817        /* Setup the initial cpu list.  */
 818        cnt = 0;
 819        for_each_cpu(i, mask) {
 820                if (i == this_cpu || !cpu_online(i))
 821                        continue;
 822                cpu_list[cnt++] = i;
 823        }
 824
 825        if (cnt)
 826                xcall_deliver_impl(tb, cnt);
 827
 828        local_irq_restore(flags);
 829}
 830
 831/* Send cross call to all processors mentioned in MASK_P
 832 * except self.  Really, there are only two cases currently,
 833 * "cpu_online_mask" and "mm_cpumask(mm)".
 834 */
 835static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
 836{
 837        u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
 838
 839        xcall_deliver(data0, data1, data2, mask);
 840}
 841
 842/* Send cross call to all processors except self. */
 843static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
 844{
 845        smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
 846}
 847
 848extern unsigned long xcall_sync_tick;
 849
 850static void smp_start_sync_tick_client(int cpu)
 851{
 852        xcall_deliver((u64) &xcall_sync_tick, 0, 0,
 853                      cpumask_of(cpu));
 854}
 855
 856extern unsigned long xcall_call_function;
 857
 858void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 859{
 860        xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
 861}
 862
 863extern unsigned long xcall_call_function_single;
 864
 865void arch_send_call_function_single_ipi(int cpu)
 866{
 867        xcall_deliver((u64) &xcall_call_function_single, 0, 0,
 868                      cpumask_of(cpu));
 869}
 870
 871void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
 872{
 873        clear_softint(1 << irq);
 874        irq_enter();
 875        generic_smp_call_function_interrupt();
 876        irq_exit();
 877}
 878
 879void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
 880{
 881        clear_softint(1 << irq);
 882        irq_enter();
 883        generic_smp_call_function_single_interrupt();
 884        irq_exit();
 885}
 886
 887static void tsb_sync(void *info)
 888{
 889        struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
 890        struct mm_struct *mm = info;
 891
 892        /* It is not valid to test "current->active_mm == mm" here.
 893         *
 894         * The value of "current" is not changed atomically with
 895         * switch_mm().  But that's OK, we just need to check the
 896         * current cpu's trap block PGD physical address.
 897         */
 898        if (tp->pgd_paddr == __pa(mm->pgd))
 899                tsb_context_switch(mm);
 900}
 901
 902void smp_tsb_sync(struct mm_struct *mm)
 903{
 904        smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
 905}
 906
 907extern unsigned long xcall_flush_tlb_mm;
 908extern unsigned long xcall_flush_tlb_page;
 909extern unsigned long xcall_flush_tlb_kernel_range;
 910extern unsigned long xcall_fetch_glob_regs;
 911extern unsigned long xcall_fetch_glob_pmu;
 912extern unsigned long xcall_fetch_glob_pmu_n4;
 913extern unsigned long xcall_receive_signal;
 914extern unsigned long xcall_new_mmu_context_version;
 915#ifdef CONFIG_KGDB
 916extern unsigned long xcall_kgdb_capture;
 917#endif
 918
 919#ifdef DCACHE_ALIASING_POSSIBLE
 920extern unsigned long xcall_flush_dcache_page_cheetah;
 921#endif
 922extern unsigned long xcall_flush_dcache_page_spitfire;
 923
 924static inline void __local_flush_dcache_page(struct page *page)
 925{
 926#ifdef DCACHE_ALIASING_POSSIBLE
 927        __flush_dcache_page(page_address(page),
 928                            ((tlb_type == spitfire) &&
 929                             page_mapping_file(page) != NULL));
 930#else
 931        if (page_mapping_file(page) != NULL &&
 932            tlb_type == spitfire)
 933                __flush_icache_page(__pa(page_address(page)));
 934#endif
 935}
 936
 937void smp_flush_dcache_page_impl(struct page *page, int cpu)
 938{
 939        int this_cpu;
 940
 941        if (tlb_type == hypervisor)
 942                return;
 943
 944#ifdef CONFIG_DEBUG_DCFLUSH
 945        atomic_inc(&dcpage_flushes);
 946#endif
 947
 948        this_cpu = get_cpu();
 949
 950        if (cpu == this_cpu) {
 951                __local_flush_dcache_page(page);
 952        } else if (cpu_online(cpu)) {
 953                void *pg_addr = page_address(page);
 954                u64 data0 = 0;
 955
 956                if (tlb_type == spitfire) {
 957                        data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 958                        if (page_mapping_file(page) != NULL)
 959                                data0 |= ((u64)1 << 32);
 960                } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 961#ifdef DCACHE_ALIASING_POSSIBLE
 962                        data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 963#endif
 964                }
 965                if (data0) {
 966                        xcall_deliver(data0, __pa(pg_addr),
 967                                      (u64) pg_addr, cpumask_of(cpu));
 968#ifdef CONFIG_DEBUG_DCFLUSH
 969                        atomic_inc(&dcpage_flushes_xcall);
 970#endif
 971                }
 972        }
 973
 974        put_cpu();
 975}
 976
 977void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
 978{
 979        void *pg_addr;
 980        u64 data0;
 981
 982        if (tlb_type == hypervisor)
 983                return;
 984
 985        preempt_disable();
 986
 987#ifdef CONFIG_DEBUG_DCFLUSH
 988        atomic_inc(&dcpage_flushes);
 989#endif
 990        data0 = 0;
 991        pg_addr = page_address(page);
 992        if (tlb_type == spitfire) {
 993                data0 = ((u64)&xcall_flush_dcache_page_spitfire);
 994                if (page_mapping_file(page) != NULL)
 995                        data0 |= ((u64)1 << 32);
 996        } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 997#ifdef DCACHE_ALIASING_POSSIBLE
 998                data0 = ((u64)&xcall_flush_dcache_page_cheetah);
 999#endif
1000        }
1001        if (data0) {
1002                xcall_deliver(data0, __pa(pg_addr),
1003                              (u64) pg_addr, cpu_online_mask);
1004#ifdef CONFIG_DEBUG_DCFLUSH
1005                atomic_inc(&dcpage_flushes_xcall);
1006#endif
1007        }
1008        __local_flush_dcache_page(page);
1009
1010        preempt_enable();
1011}
1012
1013#ifdef CONFIG_KGDB
1014void kgdb_roundup_cpus(void)
1015{
1016        smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1017}
1018#endif
1019
1020void smp_fetch_global_regs(void)
1021{
1022        smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1023}
1024
1025void smp_fetch_global_pmu(void)
1026{
1027        if (tlb_type == hypervisor &&
1028            sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1029                smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1030        else
1031                smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1032}
1033
1034/* We know that the window frames of the user have been flushed
1035 * to the stack before we get here because all callers of us
1036 * are flush_tlb_*() routines, and these run after flush_cache_*()
1037 * which performs the flushw.
1038 *
1039 * mm->cpu_vm_mask is a bit mask of which cpus an address
1040 * space has (potentially) executed on, this is the heuristic
1041 * we use to limit cross calls.
1042 */
1043
1044/* This currently is only used by the hugetlb arch pre-fault
1045 * hook on UltraSPARC-III+ and later when changing the pagesize
1046 * bits of the context register for an address space.
1047 */
1048void smp_flush_tlb_mm(struct mm_struct *mm)
1049{
1050        u32 ctx = CTX_HWBITS(mm->context);
1051
1052        get_cpu();
1053
1054        smp_cross_call_masked(&xcall_flush_tlb_mm,
1055                              ctx, 0, 0,
1056                              mm_cpumask(mm));
1057
1058        __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1059
1060        put_cpu();
1061}
1062
1063struct tlb_pending_info {
1064        unsigned long ctx;
1065        unsigned long nr;
1066        unsigned long *vaddrs;
1067};
1068
1069static void tlb_pending_func(void *info)
1070{
1071        struct tlb_pending_info *t = info;
1072
1073        __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1074}
1075
1076void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1077{
1078        u32 ctx = CTX_HWBITS(mm->context);
1079        struct tlb_pending_info info;
1080
1081        get_cpu();
1082
1083        info.ctx = ctx;
1084        info.nr = nr;
1085        info.vaddrs = vaddrs;
1086
1087        smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1088                               &info, 1);
1089
1090        __flush_tlb_pending(ctx, nr, vaddrs);
1091
1092        put_cpu();
1093}
1094
1095void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1096{
1097        unsigned long context = CTX_HWBITS(mm->context);
1098
1099        get_cpu();
1100
1101        smp_cross_call_masked(&xcall_flush_tlb_page,
1102                              context, vaddr, 0,
1103                              mm_cpumask(mm));
1104
1105        __flush_tlb_page(context, vaddr);
1106
1107        put_cpu();
1108}
1109
1110void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1111{
1112        start &= PAGE_MASK;
1113        end    = PAGE_ALIGN(end);
1114        if (start != end) {
1115                smp_cross_call(&xcall_flush_tlb_kernel_range,
1116                               0, start, end);
1117
1118                __flush_tlb_kernel_range(start, end);
1119        }
1120}
1121
1122/* CPU capture. */
1123/* #define CAPTURE_DEBUG */
1124extern unsigned long xcall_capture;
1125
1126static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1127static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1128static unsigned long penguins_are_doing_time;
1129
1130void smp_capture(void)
1131{
1132        int result = atomic_add_return(1, &smp_capture_depth);
1133
1134        if (result == 1) {
1135                int ncpus = num_online_cpus();
1136
1137#ifdef CAPTURE_DEBUG
1138                printk("CPU[%d]: Sending penguins to jail...",
1139                       smp_processor_id());
1140#endif
1141                penguins_are_doing_time = 1;
1142                atomic_inc(&smp_capture_registry);
1143                smp_cross_call(&xcall_capture, 0, 0, 0);
1144                while (atomic_read(&smp_capture_registry) != ncpus)
1145                        rmb();
1146#ifdef CAPTURE_DEBUG
1147                printk("done\n");
1148#endif
1149        }
1150}
1151
1152void smp_release(void)
1153{
1154        if (atomic_dec_and_test(&smp_capture_depth)) {
1155#ifdef CAPTURE_DEBUG
1156                printk("CPU[%d]: Giving pardon to "
1157                       "imprisoned penguins\n",
1158                       smp_processor_id());
1159#endif
1160                penguins_are_doing_time = 0;
1161                membar_safe("#StoreLoad");
1162                atomic_dec(&smp_capture_registry);
1163        }
1164}
1165
1166/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1167 * set, so they can service tlb flush xcalls...
1168 */
1169extern void prom_world(int);
1170
1171void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1172{
1173        clear_softint(1 << irq);
1174
1175        preempt_disable();
1176
1177        __asm__ __volatile__("flushw");
1178        prom_world(1);
1179        atomic_inc(&smp_capture_registry);
1180        membar_safe("#StoreLoad");
1181        while (penguins_are_doing_time)
1182                rmb();
1183        atomic_dec(&smp_capture_registry);
1184        prom_world(0);
1185
1186        preempt_enable();
1187}
1188
1189/* /proc/profile writes can call this, don't __init it please. */
1190int setup_profiling_timer(unsigned int multiplier)
1191{
1192        return -EINVAL;
1193}
1194
1195void __init smp_prepare_cpus(unsigned int max_cpus)
1196{
1197}
1198
1199void smp_prepare_boot_cpu(void)
1200{
1201}
1202
1203void __init smp_setup_processor_id(void)
1204{
1205        if (tlb_type == spitfire)
1206                xcall_deliver_impl = spitfire_xcall_deliver;
1207        else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1208                xcall_deliver_impl = cheetah_xcall_deliver;
1209        else
1210                xcall_deliver_impl = hypervisor_xcall_deliver;
1211}
1212
1213void __init smp_fill_in_cpu_possible_map(void)
1214{
1215        int possible_cpus = num_possible_cpus();
1216        int i;
1217
1218        if (possible_cpus > nr_cpu_ids)
1219                possible_cpus = nr_cpu_ids;
1220
1221        for (i = 0; i < possible_cpus; i++)
1222                set_cpu_possible(i, true);
1223        for (; i < NR_CPUS; i++)
1224                set_cpu_possible(i, false);
1225}
1226
1227void smp_fill_in_sib_core_maps(void)
1228{
1229        unsigned int i;
1230
1231        for_each_present_cpu(i) {
1232                unsigned int j;
1233
1234                cpumask_clear(&cpu_core_map[i]);
1235                if (cpu_data(i).core_id == 0) {
1236                        cpumask_set_cpu(i, &cpu_core_map[i]);
1237                        continue;
1238                }
1239
1240                for_each_present_cpu(j) {
1241                        if (cpu_data(i).core_id ==
1242                            cpu_data(j).core_id)
1243                                cpumask_set_cpu(j, &cpu_core_map[i]);
1244                }
1245        }
1246
1247        for_each_present_cpu(i)  {
1248                unsigned int j;
1249
1250                for_each_present_cpu(j)  {
1251                        if (cpu_data(i).max_cache_id ==
1252                            cpu_data(j).max_cache_id)
1253                                cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1254
1255                        if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1256                                cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1257                }
1258        }
1259
1260        for_each_present_cpu(i) {
1261                unsigned int j;
1262
1263                cpumask_clear(&per_cpu(cpu_sibling_map, i));
1264                if (cpu_data(i).proc_id == -1) {
1265                        cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1266                        continue;
1267                }
1268
1269                for_each_present_cpu(j) {
1270                        if (cpu_data(i).proc_id ==
1271                            cpu_data(j).proc_id)
1272                                cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1273                }
1274        }
1275}
1276
1277int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1278{
1279        int ret = smp_boot_one_cpu(cpu, tidle);
1280
1281        if (!ret) {
1282                cpumask_set_cpu(cpu, &smp_commenced_mask);
1283                while (!cpu_online(cpu))
1284                        mb();
1285                if (!cpu_online(cpu)) {
1286                        ret = -ENODEV;
1287                } else {
1288                        /* On SUN4V, writes to %tick and %stick are
1289                         * not allowed.
1290                         */
1291                        if (tlb_type != hypervisor)
1292                                smp_synchronize_one_tick(cpu);
1293                }
1294        }
1295        return ret;
1296}
1297
1298#ifdef CONFIG_HOTPLUG_CPU
1299void cpu_play_dead(void)
1300{
1301        int cpu = smp_processor_id();
1302        unsigned long pstate;
1303
1304        idle_task_exit();
1305
1306        if (tlb_type == hypervisor) {
1307                struct trap_per_cpu *tb = &trap_block[cpu];
1308
1309                sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1310                                tb->cpu_mondo_pa, 0);
1311                sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1312                                tb->dev_mondo_pa, 0);
1313                sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1314                                tb->resum_mondo_pa, 0);
1315                sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1316                                tb->nonresum_mondo_pa, 0);
1317        }
1318
1319        cpumask_clear_cpu(cpu, &smp_commenced_mask);
1320        membar_safe("#Sync");
1321
1322        local_irq_disable();
1323
1324        __asm__ __volatile__(
1325                "rdpr   %%pstate, %0\n\t"
1326                "wrpr   %0, %1, %%pstate"
1327                : "=r" (pstate)
1328                : "i" (PSTATE_IE));
1329
1330        while (1)
1331                barrier();
1332}
1333
1334int __cpu_disable(void)
1335{
1336        int cpu = smp_processor_id();
1337        cpuinfo_sparc *c;
1338        int i;
1339
1340        for_each_cpu(i, &cpu_core_map[cpu])
1341                cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1342        cpumask_clear(&cpu_core_map[cpu]);
1343
1344        for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1345                cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1346        cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1347
1348        c = &cpu_data(cpu);
1349
1350        c->core_id = 0;
1351        c->proc_id = -1;
1352
1353        smp_wmb();
1354
1355        /* Make sure no interrupts point to this cpu.  */
1356        fixup_irqs();
1357
1358        local_irq_enable();
1359        mdelay(1);
1360        local_irq_disable();
1361
1362        set_cpu_online(cpu, false);
1363
1364        cpu_map_rebuild();
1365
1366        return 0;
1367}
1368
1369void __cpu_die(unsigned int cpu)
1370{
1371        int i;
1372
1373        for (i = 0; i < 100; i++) {
1374                smp_rmb();
1375                if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1376                        break;
1377                msleep(100);
1378        }
1379        if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1380                printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1381        } else {
1382#if defined(CONFIG_SUN_LDOMS)
1383                unsigned long hv_err;
1384                int limit = 100;
1385
1386                do {
1387                        hv_err = sun4v_cpu_stop(cpu);
1388                        if (hv_err == HV_EOK) {
1389                                set_cpu_present(cpu, false);
1390                                break;
1391                        }
1392                } while (--limit > 0);
1393                if (limit <= 0) {
1394                        printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1395                               hv_err);
1396                }
1397#endif
1398        }
1399}
1400#endif
1401
1402void __init smp_cpus_done(unsigned int max_cpus)
1403{
1404}
1405
1406static void send_cpu_ipi(int cpu)
1407{
1408        xcall_deliver((u64) &xcall_receive_signal,
1409                        0, 0, cpumask_of(cpu));
1410}
1411
1412void scheduler_poke(void)
1413{
1414        if (!cpu_poke)
1415                return;
1416
1417        if (!__this_cpu_read(poke))
1418                return;
1419
1420        __this_cpu_write(poke, false);
1421        set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1422}
1423
1424static unsigned long send_cpu_poke(int cpu)
1425{
1426        unsigned long hv_err;
1427
1428        per_cpu(poke, cpu) = true;
1429        hv_err = sun4v_cpu_poke(cpu);
1430        if (hv_err != HV_EOK) {
1431                per_cpu(poke, cpu) = false;
1432                pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1433                                    __func__, hv_err);
1434        }
1435
1436        return hv_err;
1437}
1438
1439void smp_send_reschedule(int cpu)
1440{
1441        if (cpu == smp_processor_id()) {
1442                WARN_ON_ONCE(preemptible());
1443                set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1444                return;
1445        }
1446
1447        /* Use cpu poke to resume idle cpu if supported. */
1448        if (cpu_poke && idle_cpu(cpu)) {
1449                unsigned long ret;
1450
1451                ret = send_cpu_poke(cpu);
1452                if (ret == HV_EOK)
1453                        return;
1454        }
1455
1456        /* Use IPI in following cases:
1457         * - cpu poke not supported
1458         * - cpu not idle
1459         * - send_cpu_poke() returns with error
1460         */
1461        send_cpu_ipi(cpu);
1462}
1463
1464void smp_init_cpu_poke(void)
1465{
1466        unsigned long major;
1467        unsigned long minor;
1468        int ret;
1469
1470        if (tlb_type != hypervisor)
1471                return;
1472
1473        ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1474        if (ret) {
1475                pr_debug("HV_GRP_CORE is not registered\n");
1476                return;
1477        }
1478
1479        if (major == 1 && minor >= 6) {
1480                /* CPU POKE is registered. */
1481                cpu_poke = true;
1482                return;
1483        }
1484
1485        pr_debug("CPU_POKE not supported\n");
1486}
1487
1488void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1489{
1490        clear_softint(1 << irq);
1491        scheduler_ipi();
1492}
1493
1494static void stop_this_cpu(void *dummy)
1495{
1496        set_cpu_online(smp_processor_id(), false);
1497        prom_stopself();
1498}
1499
1500void smp_send_stop(void)
1501{
1502        int cpu;
1503
1504        if (tlb_type == hypervisor) {
1505                int this_cpu = smp_processor_id();
1506#ifdef CONFIG_SERIAL_SUNHV
1507                sunhv_migrate_hvcons_irq(this_cpu);
1508#endif
1509                for_each_online_cpu(cpu) {
1510                        if (cpu == this_cpu)
1511                                continue;
1512
1513                        set_cpu_online(cpu, false);
1514#ifdef CONFIG_SUN_LDOMS
1515                        if (ldom_domaining_enabled) {
1516                                unsigned long hv_err;
1517                                hv_err = sun4v_cpu_stop(cpu);
1518                                if (hv_err)
1519                                        printk(KERN_ERR "sun4v_cpu_stop() "
1520                                               "failed err=%lu\n", hv_err);
1521                        } else
1522#endif
1523                                prom_stopcpu_cpuid(cpu);
1524                }
1525        } else
1526                smp_call_function(stop_this_cpu, NULL, 0);
1527}
1528
1529/**
1530 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1531 * @cpu: cpu to allocate for
1532 * @size: size allocation in bytes
1533 * @align: alignment
1534 *
1535 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1536 * does the right thing for NUMA regardless of the current
1537 * configuration.
1538 *
1539 * RETURNS:
1540 * Pointer to the allocated area on success, NULL on failure.
1541 */
1542static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1543                                        size_t align)
1544{
1545        const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1546#ifdef CONFIG_NUMA
1547        int node = cpu_to_node(cpu);
1548        void *ptr;
1549
1550        if (!node_online(node) || !NODE_DATA(node)) {
1551                ptr = memblock_alloc_from(size, align, goal);
1552                pr_info("cpu %d has no node %d or node-local memory\n",
1553                        cpu, node);
1554                pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1555                         cpu, size, __pa(ptr));
1556        } else {
1557                ptr = memblock_alloc_try_nid(size, align, goal,
1558                                             MEMBLOCK_ALLOC_ACCESSIBLE, node);
1559                pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1560                         "%016lx\n", cpu, size, node, __pa(ptr));
1561        }
1562        return ptr;
1563#else
1564        return memblock_alloc_from(size, align, goal);
1565#endif
1566}
1567
1568static void __init pcpu_free_bootmem(void *ptr, size_t size)
1569{
1570        memblock_free(__pa(ptr), size);
1571}
1572
1573static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1574{
1575        if (cpu_to_node(from) == cpu_to_node(to))
1576                return LOCAL_DISTANCE;
1577        else
1578                return REMOTE_DISTANCE;
1579}
1580
1581static void __init pcpu_populate_pte(unsigned long addr)
1582{
1583        pgd_t *pgd = pgd_offset_k(addr);
1584        p4d_t *p4d;
1585        pud_t *pud;
1586        pmd_t *pmd;
1587
1588        if (pgd_none(*pgd)) {
1589                pud_t *new;
1590
1591                new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1592                if (!new)
1593                        goto err_alloc;
1594                pgd_populate(&init_mm, pgd, new);
1595        }
1596
1597        p4d = p4d_offset(pgd, addr);
1598        if (p4d_none(*p4d)) {
1599                pud_t *new;
1600
1601                new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1602                if (!new)
1603                        goto err_alloc;
1604                p4d_populate(&init_mm, p4d, new);
1605        }
1606
1607        pud = pud_offset(p4d, addr);
1608        if (pud_none(*pud)) {
1609                pmd_t *new;
1610
1611                new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1612                if (!new)
1613                        goto err_alloc;
1614                pud_populate(&init_mm, pud, new);
1615        }
1616
1617        pmd = pmd_offset(pud, addr);
1618        if (!pmd_present(*pmd)) {
1619                pte_t *new;
1620
1621                new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1622                if (!new)
1623                        goto err_alloc;
1624                pmd_populate_kernel(&init_mm, pmd, new);
1625        }
1626
1627        return;
1628
1629err_alloc:
1630        panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1631              __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1632}
1633
1634void __init setup_per_cpu_areas(void)
1635{
1636        unsigned long delta;
1637        unsigned int cpu;
1638        int rc = -EINVAL;
1639
1640        if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1641                rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1642                                            PERCPU_DYNAMIC_RESERVE, 4 << 20,
1643                                            pcpu_cpu_distance,
1644                                            pcpu_alloc_bootmem,
1645                                            pcpu_free_bootmem);
1646                if (rc)
1647                        pr_warn("PERCPU: %s allocator failed (%d), "
1648                                "falling back to page size\n",
1649                                pcpu_fc_names[pcpu_chosen_fc], rc);
1650        }
1651        if (rc < 0)
1652                rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1653                                           pcpu_alloc_bootmem,
1654                                           pcpu_free_bootmem,
1655                                           pcpu_populate_pte);
1656        if (rc < 0)
1657                panic("cannot initialize percpu area (err=%d)", rc);
1658
1659        delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1660        for_each_possible_cpu(cpu)
1661                __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1662
1663        /* Setup %g5 for the boot cpu.  */
1664        __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1665
1666        of_fill_in_cpu_data();
1667        if (tlb_type == hypervisor)
1668                mdesc_fill_in_cpu_data(cpu_all_mask);
1669}
1670