linux/arch/sparc/mm/fault_64.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * arch/sparc64/mm/fault.c: Page fault handlers for the 64-bit Sparc.
   4 *
   5 * Copyright (C) 1996, 2008 David S. Miller (davem@davemloft.net)
   6 * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz)
   7 */
   8
   9#include <asm/head.h>
  10
  11#include <linux/string.h>
  12#include <linux/types.h>
  13#include <linux/sched.h>
  14#include <linux/sched/debug.h>
  15#include <linux/ptrace.h>
  16#include <linux/mman.h>
  17#include <linux/signal.h>
  18#include <linux/mm.h>
  19#include <linux/extable.h>
  20#include <linux/init.h>
  21#include <linux/perf_event.h>
  22#include <linux/interrupt.h>
  23#include <linux/kprobes.h>
  24#include <linux/kdebug.h>
  25#include <linux/percpu.h>
  26#include <linux/context_tracking.h>
  27#include <linux/uaccess.h>
  28
  29#include <asm/page.h>
  30#include <asm/openprom.h>
  31#include <asm/oplib.h>
  32#include <asm/asi.h>
  33#include <asm/lsu.h>
  34#include <asm/sections.h>
  35#include <asm/mmu_context.h>
  36#include <asm/setup.h>
  37
  38int show_unhandled_signals = 1;
  39
  40static void __kprobes unhandled_fault(unsigned long address,
  41                                      struct task_struct *tsk,
  42                                      struct pt_regs *regs)
  43{
  44        if ((unsigned long) address < PAGE_SIZE) {
  45                printk(KERN_ALERT "Unable to handle kernel NULL "
  46                       "pointer dereference\n");
  47        } else {
  48                printk(KERN_ALERT "Unable to handle kernel paging request "
  49                       "at virtual address %016lx\n", (unsigned long)address);
  50        }
  51        printk(KERN_ALERT "tsk->{mm,active_mm}->context = %016lx\n",
  52               (tsk->mm ?
  53                CTX_HWBITS(tsk->mm->context) :
  54                CTX_HWBITS(tsk->active_mm->context)));
  55        printk(KERN_ALERT "tsk->{mm,active_mm}->pgd = %016lx\n",
  56               (tsk->mm ? (unsigned long) tsk->mm->pgd :
  57                          (unsigned long) tsk->active_mm->pgd));
  58        die_if_kernel("Oops", regs);
  59}
  60
  61static void __kprobes bad_kernel_pc(struct pt_regs *regs, unsigned long vaddr)
  62{
  63        printk(KERN_CRIT "OOPS: Bogus kernel PC [%016lx] in fault handler\n",
  64               regs->tpc);
  65        printk(KERN_CRIT "OOPS: RPC [%016lx]\n", regs->u_regs[15]);
  66        printk("OOPS: RPC <%pS>\n", (void *) regs->u_regs[15]);
  67        printk(KERN_CRIT "OOPS: Fault was to vaddr[%lx]\n", vaddr);
  68        dump_stack();
  69        unhandled_fault(regs->tpc, current, regs);
  70}
  71
  72/*
  73 * We now make sure that mmap_lock is held in all paths that call
  74 * this. Additionally, to prevent kswapd from ripping ptes from
  75 * under us, raise interrupts around the time that we look at the
  76 * pte, kswapd will have to wait to get his smp ipi response from
  77 * us. vmtruncate likewise. This saves us having to get pte lock.
  78 */
  79static unsigned int get_user_insn(unsigned long tpc)
  80{
  81        pgd_t *pgdp = pgd_offset(current->mm, tpc);
  82        p4d_t *p4dp;
  83        pud_t *pudp;
  84        pmd_t *pmdp;
  85        pte_t *ptep, pte;
  86        unsigned long pa;
  87        u32 insn = 0;
  88
  89        if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
  90                goto out;
  91        p4dp = p4d_offset(pgdp, tpc);
  92        if (p4d_none(*p4dp) || unlikely(p4d_bad(*p4dp)))
  93                goto out;
  94        pudp = pud_offset(p4dp, tpc);
  95        if (pud_none(*pudp) || unlikely(pud_bad(*pudp)))
  96                goto out;
  97
  98        /* This disables preemption for us as well. */
  99        local_irq_disable();
 100
 101        pmdp = pmd_offset(pudp, tpc);
 102        if (pmd_none(*pmdp) || unlikely(pmd_bad(*pmdp)))
 103                goto out_irq_enable;
 104
 105#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 106        if (is_hugetlb_pmd(*pmdp)) {
 107                pa  = pmd_pfn(*pmdp) << PAGE_SHIFT;
 108                pa += tpc & ~HPAGE_MASK;
 109
 110                /* Use phys bypass so we don't pollute dtlb/dcache. */
 111                __asm__ __volatile__("lduwa [%1] %2, %0"
 112                                     : "=r" (insn)
 113                                     : "r" (pa), "i" (ASI_PHYS_USE_EC));
 114        } else
 115#endif
 116        {
 117                ptep = pte_offset_map(pmdp, tpc);
 118                pte = *ptep;
 119                if (pte_present(pte)) {
 120                        pa  = (pte_pfn(pte) << PAGE_SHIFT);
 121                        pa += (tpc & ~PAGE_MASK);
 122
 123                        /* Use phys bypass so we don't pollute dtlb/dcache. */
 124                        __asm__ __volatile__("lduwa [%1] %2, %0"
 125                                             : "=r" (insn)
 126                                             : "r" (pa), "i" (ASI_PHYS_USE_EC));
 127                }
 128                pte_unmap(ptep);
 129        }
 130out_irq_enable:
 131        local_irq_enable();
 132out:
 133        return insn;
 134}
 135
 136static inline void
 137show_signal_msg(struct pt_regs *regs, int sig, int code,
 138                unsigned long address, struct task_struct *tsk)
 139{
 140        if (!unhandled_signal(tsk, sig))
 141                return;
 142
 143        if (!printk_ratelimit())
 144                return;
 145
 146        printk("%s%s[%d]: segfault at %lx ip %px (rpc %px) sp %px error %x",
 147               task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 148               tsk->comm, task_pid_nr(tsk), address,
 149               (void *)regs->tpc, (void *)regs->u_regs[UREG_I7],
 150               (void *)regs->u_regs[UREG_FP], code);
 151
 152        print_vma_addr(KERN_CONT " in ", regs->tpc);
 153
 154        printk(KERN_CONT "\n");
 155}
 156
 157static void do_fault_siginfo(int code, int sig, struct pt_regs *regs,
 158                             unsigned long fault_addr, unsigned int insn,
 159                             int fault_code)
 160{
 161        unsigned long addr;
 162
 163        if (fault_code & FAULT_CODE_ITLB) {
 164                addr = regs->tpc;
 165        } else {
 166                /* If we were able to probe the faulting instruction, use it
 167                 * to compute a precise fault address.  Otherwise use the fault
 168                 * time provided address which may only have page granularity.
 169                 */
 170                if (insn)
 171                        addr = compute_effective_address(regs, insn, 0);
 172                else
 173                        addr = fault_addr;
 174        }
 175
 176        if (unlikely(show_unhandled_signals))
 177                show_signal_msg(regs, sig, code, addr, current);
 178
 179        force_sig_fault(sig, code, (void __user *) addr);
 180}
 181
 182static unsigned int get_fault_insn(struct pt_regs *regs, unsigned int insn)
 183{
 184        if (!insn) {
 185                if (!regs->tpc || (regs->tpc & 0x3))
 186                        return 0;
 187                if (regs->tstate & TSTATE_PRIV) {
 188                        insn = *(unsigned int *) regs->tpc;
 189                } else {
 190                        insn = get_user_insn(regs->tpc);
 191                }
 192        }
 193        return insn;
 194}
 195
 196static void __kprobes do_kernel_fault(struct pt_regs *regs, int si_code,
 197                                      int fault_code, unsigned int insn,
 198                                      unsigned long address)
 199{
 200        unsigned char asi = ASI_P;
 201 
 202        if ((!insn) && (regs->tstate & TSTATE_PRIV))
 203                goto cannot_handle;
 204
 205        /* If user insn could be read (thus insn is zero), that
 206         * is fine.  We will just gun down the process with a signal
 207         * in that case.
 208         */
 209
 210        if (!(fault_code & (FAULT_CODE_WRITE|FAULT_CODE_ITLB)) &&
 211            (insn & 0xc0800000) == 0xc0800000) {
 212                if (insn & 0x2000)
 213                        asi = (regs->tstate >> 24);
 214                else
 215                        asi = (insn >> 5);
 216                if ((asi & 0xf2) == 0x82) {
 217                        if (insn & 0x1000000) {
 218                                handle_ldf_stq(insn, regs);
 219                        } else {
 220                                /* This was a non-faulting load. Just clear the
 221                                 * destination register(s) and continue with the next
 222                                 * instruction. -jj
 223                                 */
 224                                handle_ld_nf(insn, regs);
 225                        }
 226                        return;
 227                }
 228        }
 229                
 230        /* Is this in ex_table? */
 231        if (regs->tstate & TSTATE_PRIV) {
 232                const struct exception_table_entry *entry;
 233
 234                entry = search_exception_tables(regs->tpc);
 235                if (entry) {
 236                        regs->tpc = entry->fixup;
 237                        regs->tnpc = regs->tpc + 4;
 238                        return;
 239                }
 240        } else {
 241                /* The si_code was set to make clear whether
 242                 * this was a SEGV_MAPERR or SEGV_ACCERR fault.
 243                 */
 244                do_fault_siginfo(si_code, SIGSEGV, regs, address, insn, fault_code);
 245                return;
 246        }
 247
 248cannot_handle:
 249        unhandled_fault (address, current, regs);
 250}
 251
 252static void noinline __kprobes bogus_32bit_fault_tpc(struct pt_regs *regs)
 253{
 254        static int times;
 255
 256        if (times++ < 10)
 257                printk(KERN_ERR "FAULT[%s:%d]: 32-bit process reports "
 258                       "64-bit TPC [%lx]\n",
 259                       current->comm, current->pid,
 260                       regs->tpc);
 261        show_regs(regs);
 262}
 263
 264asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs)
 265{
 266        enum ctx_state prev_state = exception_enter();
 267        struct mm_struct *mm = current->mm;
 268        struct vm_area_struct *vma;
 269        unsigned int insn = 0;
 270        int si_code, fault_code;
 271        vm_fault_t fault;
 272        unsigned long address, mm_rss;
 273        unsigned int flags = FAULT_FLAG_DEFAULT;
 274
 275        fault_code = get_thread_fault_code();
 276
 277        if (kprobe_page_fault(regs, 0))
 278                goto exit_exception;
 279
 280        si_code = SEGV_MAPERR;
 281        address = current_thread_info()->fault_address;
 282
 283        if ((fault_code & FAULT_CODE_ITLB) &&
 284            (fault_code & FAULT_CODE_DTLB))
 285                BUG();
 286
 287        if (test_thread_flag(TIF_32BIT)) {
 288                if (!(regs->tstate & TSTATE_PRIV)) {
 289                        if (unlikely((regs->tpc >> 32) != 0)) {
 290                                bogus_32bit_fault_tpc(regs);
 291                                goto intr_or_no_mm;
 292                        }
 293                }
 294                if (unlikely((address >> 32) != 0))
 295                        goto intr_or_no_mm;
 296        }
 297
 298        if (regs->tstate & TSTATE_PRIV) {
 299                unsigned long tpc = regs->tpc;
 300
 301                /* Sanity check the PC. */
 302                if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||
 303                    (tpc >= MODULES_VADDR && tpc < MODULES_END)) {
 304                        /* Valid, no problems... */
 305                } else {
 306                        bad_kernel_pc(regs, address);
 307                        goto exit_exception;
 308                }
 309        } else
 310                flags |= FAULT_FLAG_USER;
 311
 312        /*
 313         * If we're in an interrupt or have no user
 314         * context, we must not take the fault..
 315         */
 316        if (faulthandler_disabled() || !mm)
 317                goto intr_or_no_mm;
 318
 319        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
 320
 321        if (!mmap_read_trylock(mm)) {
 322                if ((regs->tstate & TSTATE_PRIV) &&
 323                    !search_exception_tables(regs->tpc)) {
 324                        insn = get_fault_insn(regs, insn);
 325                        goto handle_kernel_fault;
 326                }
 327
 328retry:
 329                mmap_read_lock(mm);
 330        }
 331
 332        if (fault_code & FAULT_CODE_BAD_RA)
 333                goto do_sigbus;
 334
 335        vma = find_vma(mm, address);
 336        if (!vma)
 337                goto bad_area;
 338
 339        /* Pure DTLB misses do not tell us whether the fault causing
 340         * load/store/atomic was a write or not, it only says that there
 341         * was no match.  So in such a case we (carefully) read the
 342         * instruction to try and figure this out.  It's an optimization
 343         * so it's ok if we can't do this.
 344         *
 345         * Special hack, window spill/fill knows the exact fault type.
 346         */
 347        if (((fault_code &
 348              (FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&
 349            (vma->vm_flags & VM_WRITE) != 0) {
 350                insn = get_fault_insn(regs, 0);
 351                if (!insn)
 352                        goto continue_fault;
 353                /* All loads, stores and atomics have bits 30 and 31 both set
 354                 * in the instruction.  Bit 21 is set in all stores, but we
 355                 * have to avoid prefetches which also have bit 21 set.
 356                 */
 357                if ((insn & 0xc0200000) == 0xc0200000 &&
 358                    (insn & 0x01780000) != 0x01680000) {
 359                        /* Don't bother updating thread struct value,
 360                         * because update_mmu_cache only cares which tlb
 361                         * the access came from.
 362                         */
 363                        fault_code |= FAULT_CODE_WRITE;
 364                }
 365        }
 366continue_fault:
 367
 368        if (vma->vm_start <= address)
 369                goto good_area;
 370        if (!(vma->vm_flags & VM_GROWSDOWN))
 371                goto bad_area;
 372        if (!(fault_code & FAULT_CODE_WRITE)) {
 373                /* Non-faulting loads shouldn't expand stack. */
 374                insn = get_fault_insn(regs, insn);
 375                if ((insn & 0xc0800000) == 0xc0800000) {
 376                        unsigned char asi;
 377
 378                        if (insn & 0x2000)
 379                                asi = (regs->tstate >> 24);
 380                        else
 381                                asi = (insn >> 5);
 382                        if ((asi & 0xf2) == 0x82)
 383                                goto bad_area;
 384                }
 385        }
 386        if (expand_stack(vma, address))
 387                goto bad_area;
 388        /*
 389         * Ok, we have a good vm_area for this memory access, so
 390         * we can handle it..
 391         */
 392good_area:
 393        si_code = SEGV_ACCERR;
 394
 395        /* If we took a ITLB miss on a non-executable page, catch
 396         * that here.
 397         */
 398        if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {
 399                WARN(address != regs->tpc,
 400                     "address (%lx) != regs->tpc (%lx)\n", address, regs->tpc);
 401                WARN_ON(regs->tstate & TSTATE_PRIV);
 402                goto bad_area;
 403        }
 404
 405        if (fault_code & FAULT_CODE_WRITE) {
 406                if (!(vma->vm_flags & VM_WRITE))
 407                        goto bad_area;
 408
 409                /* Spitfire has an icache which does not snoop
 410                 * processor stores.  Later processors do...
 411                 */
 412                if (tlb_type == spitfire &&
 413                    (vma->vm_flags & VM_EXEC) != 0 &&
 414                    vma->vm_file != NULL)
 415                        set_thread_fault_code(fault_code |
 416                                              FAULT_CODE_BLKCOMMIT);
 417
 418                flags |= FAULT_FLAG_WRITE;
 419        } else {
 420                /* Allow reads even for write-only mappings */
 421                if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
 422                        goto bad_area;
 423        }
 424
 425        fault = handle_mm_fault(vma, address, flags, regs);
 426
 427        if (fault_signal_pending(fault, regs))
 428                goto exit_exception;
 429
 430        if (unlikely(fault & VM_FAULT_ERROR)) {
 431                if (fault & VM_FAULT_OOM)
 432                        goto out_of_memory;
 433                else if (fault & VM_FAULT_SIGSEGV)
 434                        goto bad_area;
 435                else if (fault & VM_FAULT_SIGBUS)
 436                        goto do_sigbus;
 437                BUG();
 438        }
 439
 440        if (flags & FAULT_FLAG_ALLOW_RETRY) {
 441                if (fault & VM_FAULT_RETRY) {
 442                        flags |= FAULT_FLAG_TRIED;
 443
 444                        /* No need to mmap_read_unlock(mm) as we would
 445                         * have already released it in __lock_page_or_retry
 446                         * in mm/filemap.c.
 447                         */
 448
 449                        goto retry;
 450                }
 451        }
 452        mmap_read_unlock(mm);
 453
 454        mm_rss = get_mm_rss(mm);
 455#if defined(CONFIG_TRANSPARENT_HUGEPAGE)
 456        mm_rss -= (mm->context.thp_pte_count * (HPAGE_SIZE / PAGE_SIZE));
 457#endif
 458        if (unlikely(mm_rss >
 459                     mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
 460                tsb_grow(mm, MM_TSB_BASE, mm_rss);
 461#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 462        mm_rss = mm->context.hugetlb_pte_count + mm->context.thp_pte_count;
 463        mm_rss *= REAL_HPAGE_PER_HPAGE;
 464        if (unlikely(mm_rss >
 465                     mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit)) {
 466                if (mm->context.tsb_block[MM_TSB_HUGE].tsb)
 467                        tsb_grow(mm, MM_TSB_HUGE, mm_rss);
 468                else
 469                        hugetlb_setup(regs);
 470
 471        }
 472#endif
 473exit_exception:
 474        exception_exit(prev_state);
 475        return;
 476
 477        /*
 478         * Something tried to access memory that isn't in our memory map..
 479         * Fix it, but check if it's kernel or user first..
 480         */
 481bad_area:
 482        insn = get_fault_insn(regs, insn);
 483        mmap_read_unlock(mm);
 484
 485handle_kernel_fault:
 486        do_kernel_fault(regs, si_code, fault_code, insn, address);
 487        goto exit_exception;
 488
 489/*
 490 * We ran out of memory, or some other thing happened to us that made
 491 * us unable to handle the page fault gracefully.
 492 */
 493out_of_memory:
 494        insn = get_fault_insn(regs, insn);
 495        mmap_read_unlock(mm);
 496        if (!(regs->tstate & TSTATE_PRIV)) {
 497                pagefault_out_of_memory();
 498                goto exit_exception;
 499        }
 500        goto handle_kernel_fault;
 501
 502intr_or_no_mm:
 503        insn = get_fault_insn(regs, 0);
 504        goto handle_kernel_fault;
 505
 506do_sigbus:
 507        insn = get_fault_insn(regs, insn);
 508        mmap_read_unlock(mm);
 509
 510        /*
 511         * Send a sigbus, regardless of whether we were in kernel
 512         * or user mode.
 513         */
 514        do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, address, insn, fault_code);
 515
 516        /* Kernel mode? Handle exceptions or die */
 517        if (regs->tstate & TSTATE_PRIV)
 518                goto handle_kernel_fault;
 519}
 520