linux/arch/sparc/mm/srmmu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END       }
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112        pte_t pte;
 113
 114        pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115        set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN  0xe0001008      /* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000      /* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130        __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131                              "andn %%g3, %2, %%g3\n\t"
 132                              "sta %%g3, [%0] %1\n\t" : :
 133                              "r" (MSI_MBUS_ARBEN),
 134                              "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139        unsigned long ptp = __nocache_pa(ptep) >> 4;
 140        set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150        int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151        unsigned long addr;
 152
 153        if (size < minsz) {
 154                printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155                       size);
 156                size = minsz;
 157        }
 158        if (size & (minsz - 1)) {
 159                printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160                       size);
 161                size += minsz - 1;
 162        }
 163        BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165        offset = bit_map_string_get(&srmmu_nocache_map,
 166                                    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167                                    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168        if (offset == -1) {
 169                printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170                       size, (int) srmmu_nocache_size,
 171                       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172                return NULL;
 173        }
 174
 175        addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176        return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181        void *tmp;
 182
 183        tmp = __srmmu_get_nocache(size, align);
 184
 185        if (tmp)
 186                memset(tmp, 0, size);
 187
 188        return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193        unsigned long vaddr;
 194        int offset;
 195
 196        vaddr = (unsigned long)addr;
 197        if (vaddr < SRMMU_NOCACHE_VADDR) {
 198                printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199                    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200                BUG();
 201        }
 202        if (vaddr + size > srmmu_nocache_end) {
 203                printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204                    vaddr, srmmu_nocache_end);
 205                BUG();
 206        }
 207        if (!is_power_of_2(size)) {
 208                printk("Size 0x%x is not a power of 2\n", size);
 209                BUG();
 210        }
 211        if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212                printk("Size 0x%x is too small\n", size);
 213                BUG();
 214        }
 215        if (vaddr & (size - 1)) {
 216                printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217                BUG();
 218        }
 219
 220        offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221        size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223        bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227                                                 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232        unsigned long total = 0;
 233        int i;
 234
 235        for (i = 0; sp_banks[i].num_bytes; i++)
 236                total += sp_banks[i].num_bytes;
 237
 238        return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247        unsigned long sysmemavail = probe_memory() / 1024;
 248        int srmmu_nocache_npages;
 249
 250        srmmu_nocache_npages =
 251                sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254        // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255        if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256                srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258        /* anything above 1280 blows up */
 259        if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260                srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262        srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263        srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268        void *srmmu_nocache_bitmap;
 269        unsigned int bitmap_bits;
 270        pgd_t *pgd;
 271        p4d_t *p4d;
 272        pud_t *pud;
 273        pmd_t *pmd;
 274        pte_t *pte;
 275        unsigned long paddr, vaddr;
 276        unsigned long pteval;
 277
 278        bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280        srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281                                            SRMMU_NOCACHE_ALIGN_MAX);
 282        if (!srmmu_nocache_pool)
 283                panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284                      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285        memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287        srmmu_nocache_bitmap =
 288                memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289                               SMP_CACHE_BYTES);
 290        if (!srmmu_nocache_bitmap)
 291                panic("%s: Failed to allocate %zu bytes\n", __func__,
 292                      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293        bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295        srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296        memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297        init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299        srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301        paddr = __pa((unsigned long)srmmu_nocache_pool);
 302        vaddr = SRMMU_NOCACHE_VADDR;
 303
 304        while (vaddr < srmmu_nocache_end) {
 305                pgd = pgd_offset_k(vaddr);
 306                p4d = p4d_offset(pgd, vaddr);
 307                pud = pud_offset(p4d, vaddr);
 308                pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309                pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311                pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313                if (srmmu_cache_pagetables)
 314                        pteval |= SRMMU_CACHE;
 315
 316                set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318                vaddr += PAGE_SIZE;
 319                paddr += PAGE_SIZE;
 320        }
 321
 322        flush_cache_all();
 323        flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328        pgd_t *pgd = NULL;
 329
 330        pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331        if (pgd) {
 332                pgd_t *init = pgd_offset_k(0);
 333                memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334                memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335                                                (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336        }
 337
 338        return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351        pte_t *ptep;
 352        struct page *page;
 353
 354        if (!(ptep = pte_alloc_one_kernel(mm)))
 355                return NULL;
 356        page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357        spin_lock(&mm->page_table_lock);
 358        if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359                page_ref_dec(page);
 360                ptep = NULL;
 361        }
 362        spin_unlock(&mm->page_table_lock);
 363
 364        return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369        struct page *page;
 370
 371        page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372        spin_lock(&mm->page_table_lock);
 373        if (page_ref_dec_return(page) == 1)
 374                pgtable_pte_page_dtor(page);
 375        spin_unlock(&mm->page_table_lock);
 376
 377        srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT      -1
 382
 383struct ctx_list {
 384        struct ctx_list *next;
 385        struct ctx_list *prev;
 386        unsigned int ctx_number;
 387        struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399        entry->next->prev = entry->prev;
 400        entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405        entry->next = head;
 406        (entry->prev = head->prev)->next = entry;
 407        head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415        struct ctx_list *ctxp;
 416
 417        ctxp = ctx_free.next;
 418        if (ctxp != &ctx_free) {
 419                remove_from_ctx_list(ctxp);
 420                add_to_used_ctxlist(ctxp);
 421                mm->context = ctxp->ctx_number;
 422                ctxp->ctx_mm = mm;
 423                return;
 424        }
 425        ctxp = ctx_used.next;
 426        if (ctxp->ctx_mm == old_mm)
 427                ctxp = ctxp->next;
 428        if (ctxp == &ctx_used)
 429                panic("out of mmu contexts");
 430        flush_cache_mm(ctxp->ctx_mm);
 431        flush_tlb_mm(ctxp->ctx_mm);
 432        remove_from_ctx_list(ctxp);
 433        add_to_used_ctxlist(ctxp);
 434        ctxp->ctx_mm->context = NO_CONTEXT;
 435        ctxp->ctx_mm = mm;
 436        mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441        struct ctx_list *ctx_old;
 442
 443        ctx_old = ctx_list_pool + context;
 444        remove_from_ctx_list(ctx_old);
 445        add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450        int ctx;
 451        unsigned long size;
 452
 453        size = numctx * sizeof(struct ctx_list);
 454        ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455        if (!ctx_list_pool)
 456                panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458        for (ctx = 0; ctx < numctx; ctx++) {
 459                struct ctx_list *clist;
 460
 461                clist = (ctx_list_pool + ctx);
 462                clist->ctx_number = ctx;
 463                clist->ctx_mm = NULL;
 464        }
 465        ctx_free.next = ctx_free.prev = &ctx_free;
 466        ctx_used.next = ctx_used.prev = &ctx_used;
 467        for (ctx = 0; ctx < numctx; ctx++)
 468                add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472               struct task_struct *tsk)
 473{
 474        unsigned long flags;
 475
 476        if (mm->context == NO_CONTEXT) {
 477                spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478                alloc_context(old_mm, mm);
 479                spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480                srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481        }
 482
 483        if (sparc_cpu_model == sparc_leon)
 484                leon_switch_mm();
 485
 486        if (is_hypersparc)
 487                hyper_flush_whole_icache();
 488
 489        srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494                                   unsigned long virt_addr, int bus_type)
 495{
 496        pgd_t *pgdp;
 497        p4d_t *p4dp;
 498        pud_t *pudp;
 499        pmd_t *pmdp;
 500        pte_t *ptep;
 501        unsigned long tmp;
 502
 503        physaddr &= PAGE_MASK;
 504        pgdp = pgd_offset_k(virt_addr);
 505        p4dp = p4d_offset(pgdp, virt_addr);
 506        pudp = pud_offset(p4dp, virt_addr);
 507        pmdp = pmd_offset(pudp, virt_addr);
 508        ptep = pte_offset_kernel(pmdp, virt_addr);
 509        tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511        /* I need to test whether this is consistent over all
 512         * sun4m's.  The bus_type represents the upper 4 bits of
 513         * 36-bit physical address on the I/O space lines...
 514         */
 515        tmp |= (bus_type << 28);
 516        tmp |= SRMMU_PRIV;
 517        __flush_page_to_ram(virt_addr);
 518        set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522                      unsigned long xva, unsigned int len)
 523{
 524        while (len != 0) {
 525                len -= PAGE_SIZE;
 526                srmmu_mapioaddr(xpa, xva, bus);
 527                xva += PAGE_SIZE;
 528                xpa += PAGE_SIZE;
 529        }
 530        flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535        pgd_t *pgdp;
 536        p4d_t *p4dp;
 537        pud_t *pudp;
 538        pmd_t *pmdp;
 539        pte_t *ptep;
 540
 541
 542        pgdp = pgd_offset_k(virt_addr);
 543        p4dp = p4d_offset(pgdp, virt_addr);
 544        pudp = pud_offset(p4dp, virt_addr);
 545        pmdp = pmd_offset(pudp, virt_addr);
 546        ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548        /* No need to flush uncacheable page. */
 549        __pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554        while (len != 0) {
 555                len -= PAGE_SIZE;
 556                srmmu_unmapioaddr(virt_addr);
 557                virt_addr += PAGE_SIZE;
 558        }
 559        flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580                                    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588                                  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594        int cctx, ctx1;
 595
 596        page &= PAGE_MASK;
 597        if ((ctx1 = vma->vm_mm->context) != -1) {
 598                cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600                if (cctx != ctx1) {
 601                        printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602                        srmmu_set_context(ctx1);
 603                        swift_flush_page(page);
 604                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605                                        "r" (page), "i" (ASI_M_FLUSH_PROBE));
 606                        srmmu_set_context(cctx);
 607                } else {
 608                         /* Rm. prot. bits from virt. c. */
 609                        /* swift_flush_cache_all(); */
 610                        /* swift_flush_cache_page(vma, page); */
 611                        swift_flush_page(page);
 612
 613                        __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614                                "r" (page), "i" (ASI_M_FLUSH_PROBE));
 615                        /* same as above: srmmu_flush_tlb_page() */
 616                }
 617        }
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632                                     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642                                   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644                                  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648                                   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650                                  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675        prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676        prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680                                                        unsigned long end)
 681{
 682        pgd_t *pgdp;
 683        p4d_t *p4dp;
 684        pud_t *pudp;
 685        pmd_t *pmdp;
 686        pte_t *ptep;
 687
 688        while (start < end) {
 689                pgdp = pgd_offset_k(start);
 690                p4dp = p4d_offset(pgdp, start);
 691                pudp = pud_offset(p4dp, start);
 692                if (pud_none(*__nocache_fix(pudp))) {
 693                        pmdp = __srmmu_get_nocache(
 694                            SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695                        if (pmdp == NULL)
 696                                early_pgtable_allocfail("pmd");
 697                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698                        pud_set(__nocache_fix(pudp), pmdp);
 699                }
 700                pmdp = pmd_offset(__nocache_fix(pudp), start);
 701                if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 702                        ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703                        if (ptep == NULL)
 704                                early_pgtable_allocfail("pte");
 705                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706                        pmd_set(__nocache_fix(pmdp), ptep);
 707                }
 708                if (start > (0xffffffffUL - PMD_SIZE))
 709                        break;
 710                start = (start + PMD_SIZE) & PMD_MASK;
 711        }
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715                                                  unsigned long end)
 716{
 717        pgd_t *pgdp;
 718        p4d_t *p4dp;
 719        pud_t *pudp;
 720        pmd_t *pmdp;
 721        pte_t *ptep;
 722
 723        while (start < end) {
 724                pgdp = pgd_offset_k(start);
 725                p4dp = p4d_offset(pgdp, start);
 726                pudp = pud_offset(p4dp, start);
 727                if (pud_none(*pudp)) {
 728                        pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729                        if (pmdp == NULL)
 730                                early_pgtable_allocfail("pmd");
 731                        memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732                        pud_set((pud_t *)pgdp, pmdp);
 733                }
 734                pmdp = pmd_offset(pudp, start);
 735                if (srmmu_pmd_none(*pmdp)) {
 736                        ptep = __srmmu_get_nocache(PTE_SIZE,
 737                                                             PTE_SIZE);
 738                        if (ptep == NULL)
 739                                early_pgtable_allocfail("pte");
 740                        memset(ptep, 0, PTE_SIZE);
 741                        pmd_set(pmdp, ptep);
 742                }
 743                if (start > (0xffffffffUL - PMD_SIZE))
 744                        break;
 745                start = (start + PMD_SIZE) & PMD_MASK;
 746        }
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752        unsigned long retval;
 753
 754        if (sparc_cpu_model != sparc_leon) {
 755
 756                vaddr &= PAGE_MASK;
 757                __asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758                                     "=r" (retval) :
 759                                     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760        } else {
 761                retval = leon_swprobe(vaddr, NULL);
 762        }
 763        return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772                                               unsigned long end)
 773{
 774        unsigned long probed;
 775        unsigned long addr;
 776        pgd_t *pgdp;
 777        p4d_t *p4dp;
 778        pud_t *pudp;
 779        pmd_t *pmdp;
 780        pte_t *ptep;
 781        int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783        while (start <= end) {
 784                if (start == 0)
 785                        break; /* probably wrap around */
 786                if (start == 0xfef00000)
 787                        start = KADB_DEBUGGER_BEGVM;
 788                probed = srmmu_probe(start);
 789                if (!probed) {
 790                        /* continue probing until we find an entry */
 791                        start += PAGE_SIZE;
 792                        continue;
 793                }
 794
 795                /* A red snapper, see what it really is. */
 796                what = 0;
 797                addr = start - PAGE_SIZE;
 798
 799                if (!(start & ~(PMD_MASK))) {
 800                        if (srmmu_probe(addr + PMD_SIZE) == probed)
 801                                what = 1;
 802                }
 803
 804                if (!(start & ~(PGDIR_MASK))) {
 805                        if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806                                what = 2;
 807                }
 808
 809                pgdp = pgd_offset_k(start);
 810                p4dp = p4d_offset(pgdp, start);
 811                pudp = pud_offset(p4dp, start);
 812                if (what == 2) {
 813                        *__nocache_fix(pgdp) = __pgd(probed);
 814                        start += PGDIR_SIZE;
 815                        continue;
 816                }
 817                if (pud_none(*__nocache_fix(pudp))) {
 818                        pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819                                                   SRMMU_PMD_TABLE_SIZE);
 820                        if (pmdp == NULL)
 821                                early_pgtable_allocfail("pmd");
 822                        memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823                        pud_set(__nocache_fix(pudp), pmdp);
 824                }
 825                pmdp = pmd_offset(__nocache_fix(pudp), start);
 826                if (what == 1) {
 827                        *(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828                        start += PMD_SIZE;
 829                        continue;
 830                }
 831                if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 832                        ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833                        if (ptep == NULL)
 834                                early_pgtable_allocfail("pte");
 835                        memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836                        pmd_set(__nocache_fix(pmdp), ptep);
 837                }
 838                ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839                *__nocache_fix(ptep) = __pte(probed);
 840                start += PAGE_SIZE;
 841        }
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849        pgd_t *pgdp = pgd_offset_k(vaddr);
 850        unsigned long big_pte;
 851
 852        big_pte = KERNEL_PTE(phys_base >> 4);
 853        *__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859        unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860        unsigned long vstart = (vbase & PGDIR_MASK);
 861        unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862        /* Map "low" memory only */
 863        const unsigned long min_vaddr = PAGE_OFFSET;
 864        const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866        if (vstart < min_vaddr || vstart >= max_vaddr)
 867                return vstart;
 868
 869        if (vend > max_vaddr || vend < min_vaddr)
 870                vend = max_vaddr;
 871
 872        while (vstart < vend) {
 873                do_large_mapping(vstart, pstart);
 874                vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875        }
 876        return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881        int i;
 882
 883        if (phys_base > 0) {
 884                do_large_mapping(PAGE_OFFSET, phys_base);
 885        }
 886
 887        for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888                map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889        }
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896        int i;
 897        phandle cpunode;
 898        char node_str[128];
 899        pgd_t *pgd;
 900        p4d_t *p4d;
 901        pud_t *pud;
 902        pmd_t *pmd;
 903        pte_t *pte;
 904        unsigned long pages_avail;
 905
 906        init_mm.context = (unsigned long) NO_CONTEXT;
 907        sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
 908
 909        if (sparc_cpu_model == sun4d)
 910                num_contexts = 65536; /* We know it is Viking */
 911        else {
 912                /* Find the number of contexts on the srmmu. */
 913                cpunode = prom_getchild(prom_root_node);
 914                num_contexts = 0;
 915                while (cpunode != 0) {
 916                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917                        if (!strcmp(node_str, "cpu")) {
 918                                num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919                                break;
 920                        }
 921                        cpunode = prom_getsibling(cpunode);
 922                }
 923        }
 924
 925        if (!num_contexts) {
 926                prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927                prom_halt();
 928        }
 929
 930        pages_avail = 0;
 931        last_valid_pfn = bootmem_init(&pages_avail);
 932
 933        srmmu_nocache_calcsize();
 934        srmmu_nocache_init();
 935        srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936        map_kernel();
 937
 938        /* ctx table has to be physically aligned to its size */
 939        srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940        srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942        for (i = 0; i < num_contexts; i++)
 943                srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945        flush_cache_all();
 946        srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948        /* Stop from hanging here... */
 949        local_ops->tlb_all();
 950#else
 951        flush_tlb_all();
 952#endif
 953        poke_srmmu();
 954
 955        srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956        srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958        srmmu_allocate_ptable_skeleton(
 959                __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960        srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962        pgd = pgd_offset_k(PKMAP_BASE);
 963        p4d = p4d_offset(pgd, PKMAP_BASE);
 964        pud = pud_offset(p4d, PKMAP_BASE);
 965        pmd = pmd_offset(pud, PKMAP_BASE);
 966        pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967        pkmap_page_table = pte;
 968
 969        flush_cache_all();
 970        flush_tlb_all();
 971
 972        sparc_context_init(num_contexts);
 973
 974        {
 975                unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 976
 977                max_zone_pfn[ZONE_DMA] = max_low_pfn;
 978                max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 979                max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 980
 981                free_area_init(max_zone_pfn);
 982        }
 983}
 984
 985void mmu_info(struct seq_file *m)
 986{
 987        seq_printf(m,
 988                   "MMU type\t: %s\n"
 989                   "contexts\t: %d\n"
 990                   "nocache total\t: %ld\n"
 991                   "nocache used\t: %d\n",
 992                   srmmu_name,
 993                   num_contexts,
 994                   srmmu_nocache_size,
 995                   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 996}
 997
 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 999{
1000        mm->context = NO_CONTEXT;
1001        return 0;
1002}
1003
1004void destroy_context(struct mm_struct *mm)
1005{
1006        unsigned long flags;
1007
1008        if (mm->context != NO_CONTEXT) {
1009                flush_cache_mm(mm);
1010                srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1011                flush_tlb_mm(mm);
1012                spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013                free_context(mm->context);
1014                spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015                mm->context = NO_CONTEXT;
1016        }
1017}
1018
1019/* Init various srmmu chip types. */
1020static void __init srmmu_is_bad(void)
1021{
1022        prom_printf("Could not determine SRMMU chip type.\n");
1023        prom_halt();
1024}
1025
1026static void __init init_vac_layout(void)
1027{
1028        phandle nd;
1029        int cache_lines;
1030        char node_str[128];
1031#ifdef CONFIG_SMP
1032        int cpu = 0;
1033        unsigned long max_size = 0;
1034        unsigned long min_line_size = 0x10000000;
1035#endif
1036
1037        nd = prom_getchild(prom_root_node);
1038        while ((nd = prom_getsibling(nd)) != 0) {
1039                prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040                if (!strcmp(node_str, "cpu")) {
1041                        vac_line_size = prom_getint(nd, "cache-line-size");
1042                        if (vac_line_size == -1) {
1043                                prom_printf("can't determine cache-line-size, halting.\n");
1044                                prom_halt();
1045                        }
1046                        cache_lines = prom_getint(nd, "cache-nlines");
1047                        if (cache_lines == -1) {
1048                                prom_printf("can't determine cache-nlines, halting.\n");
1049                                prom_halt();
1050                        }
1051
1052                        vac_cache_size = cache_lines * vac_line_size;
1053#ifdef CONFIG_SMP
1054                        if (vac_cache_size > max_size)
1055                                max_size = vac_cache_size;
1056                        if (vac_line_size < min_line_size)
1057                                min_line_size = vac_line_size;
1058                        //FIXME: cpus not contiguous!!
1059                        cpu++;
1060                        if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061                                break;
1062#else
1063                        break;
1064#endif
1065                }
1066        }
1067        if (nd == 0) {
1068                prom_printf("No CPU nodes found, halting.\n");
1069                prom_halt();
1070        }
1071#ifdef CONFIG_SMP
1072        vac_cache_size = max_size;
1073        vac_line_size = min_line_size;
1074#endif
1075        printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076               (int)vac_cache_size, (int)vac_line_size);
1077}
1078
1079static void poke_hypersparc(void)
1080{
1081        volatile unsigned long clear;
1082        unsigned long mreg = srmmu_get_mmureg();
1083
1084        hyper_flush_unconditional_combined();
1085
1086        mreg &= ~(HYPERSPARC_CWENABLE);
1087        mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088        mreg |= (HYPERSPARC_CMODE);
1089
1090        srmmu_set_mmureg(mreg);
1091
1092#if 0 /* XXX I think this is bad news... -DaveM */
1093        hyper_clear_all_tags();
1094#endif
1095
1096        put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097        hyper_flush_whole_icache();
1098        clear = srmmu_get_faddr();
1099        clear = srmmu_get_fstatus();
1100}
1101
1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103        .cache_all      = hypersparc_flush_cache_all,
1104        .cache_mm       = hypersparc_flush_cache_mm,
1105        .cache_page     = hypersparc_flush_cache_page,
1106        .cache_range    = hypersparc_flush_cache_range,
1107        .tlb_all        = hypersparc_flush_tlb_all,
1108        .tlb_mm         = hypersparc_flush_tlb_mm,
1109        .tlb_page       = hypersparc_flush_tlb_page,
1110        .tlb_range      = hypersparc_flush_tlb_range,
1111        .page_to_ram    = hypersparc_flush_page_to_ram,
1112        .sig_insns      = hypersparc_flush_sig_insns,
1113        .page_for_dma   = hypersparc_flush_page_for_dma,
1114};
1115
1116static void __init init_hypersparc(void)
1117{
1118        srmmu_name = "ROSS HyperSparc";
1119        srmmu_modtype = HyperSparc;
1120
1121        init_vac_layout();
1122
1123        is_hypersparc = 1;
1124        sparc32_cachetlb_ops = &hypersparc_ops;
1125
1126        poke_srmmu = poke_hypersparc;
1127
1128        hypersparc_setup_blockops();
1129}
1130
1131static void poke_swift(void)
1132{
1133        unsigned long mreg;
1134
1135        /* Clear any crap from the cache or else... */
1136        swift_flush_cache_all();
1137
1138        /* Enable I & D caches */
1139        mreg = srmmu_get_mmureg();
1140        mreg |= (SWIFT_IE | SWIFT_DE);
1141        /*
1142         * The Swift branch folding logic is completely broken.  At
1143         * trap time, if things are just right, if can mistakenly
1144         * think that a trap is coming from kernel mode when in fact
1145         * it is coming from user mode (it mis-executes the branch in
1146         * the trap code).  So you see things like crashme completely
1147         * hosing your machine which is completely unacceptable.  Turn
1148         * this shit off... nice job Fujitsu.
1149         */
1150        mreg &= ~(SWIFT_BF);
1151        srmmu_set_mmureg(mreg);
1152}
1153
1154static const struct sparc32_cachetlb_ops swift_ops = {
1155        .cache_all      = swift_flush_cache_all,
1156        .cache_mm       = swift_flush_cache_mm,
1157        .cache_page     = swift_flush_cache_page,
1158        .cache_range    = swift_flush_cache_range,
1159        .tlb_all        = swift_flush_tlb_all,
1160        .tlb_mm         = swift_flush_tlb_mm,
1161        .tlb_page       = swift_flush_tlb_page,
1162        .tlb_range      = swift_flush_tlb_range,
1163        .page_to_ram    = swift_flush_page_to_ram,
1164        .sig_insns      = swift_flush_sig_insns,
1165        .page_for_dma   = swift_flush_page_for_dma,
1166};
1167
1168#define SWIFT_MASKID_ADDR  0x10003018
1169static void __init init_swift(void)
1170{
1171        unsigned long swift_rev;
1172
1173        __asm__ __volatile__("lda [%1] %2, %0\n\t"
1174                             "srl %0, 0x18, %0\n\t" :
1175                             "=r" (swift_rev) :
1176                             "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177        srmmu_name = "Fujitsu Swift";
1178        switch (swift_rev) {
1179        case 0x11:
1180        case 0x20:
1181        case 0x23:
1182        case 0x30:
1183                srmmu_modtype = Swift_lots_o_bugs;
1184                hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1185                /*
1186                 * Gee george, I wonder why Sun is so hush hush about
1187                 * this hardware bug... really braindamage stuff going
1188                 * on here.  However I think we can find a way to avoid
1189                 * all of the workaround overhead under Linux.  Basically,
1190                 * any page fault can cause kernel pages to become user
1191                 * accessible (the mmu gets confused and clears some of
1192                 * the ACC bits in kernel ptes).  Aha, sounds pretty
1193                 * horrible eh?  But wait, after extensive testing it appears
1194                 * that if you use pgd_t level large kernel pte's (like the
1195                 * 4MB pages on the Pentium) the bug does not get tripped
1196                 * at all.  This avoids almost all of the major overhead.
1197                 * Welcome to a world where your vendor tells you to,
1198                 * "apply this kernel patch" instead of "sorry for the
1199                 * broken hardware, send it back and we'll give you
1200                 * properly functioning parts"
1201                 */
1202                break;
1203        case 0x25:
1204        case 0x31:
1205                srmmu_modtype = Swift_bad_c;
1206                hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1207                /*
1208                 * You see Sun allude to this hardware bug but never
1209                 * admit things directly, they'll say things like,
1210                 * "the Swift chip cache problems" or similar.
1211                 */
1212                break;
1213        default:
1214                srmmu_modtype = Swift_ok;
1215                break;
1216        }
1217
1218        sparc32_cachetlb_ops = &swift_ops;
1219        flush_page_for_dma_global = 0;
1220
1221        /*
1222         * Are you now convinced that the Swift is one of the
1223         * biggest VLSI abortions of all time?  Bravo Fujitsu!
1224         * Fujitsu, the !#?!%$'d up processor people.  I bet if
1225         * you examined the microcode of the Swift you'd find
1226         * XXX's all over the place.
1227         */
1228        poke_srmmu = poke_swift;
1229}
1230
1231static void turbosparc_flush_cache_all(void)
1232{
1233        flush_user_windows();
1234        turbosparc_idflash_clear();
1235}
1236
1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1238{
1239        FLUSH_BEGIN(mm)
1240        flush_user_windows();
1241        turbosparc_idflash_clear();
1242        FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1246{
1247        FLUSH_BEGIN(vma->vm_mm)
1248        flush_user_windows();
1249        turbosparc_idflash_clear();
1250        FLUSH_END
1251}
1252
1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1254{
1255        FLUSH_BEGIN(vma->vm_mm)
1256        flush_user_windows();
1257        if (vma->vm_flags & VM_EXEC)
1258                turbosparc_flush_icache();
1259        turbosparc_flush_dcache();
1260        FLUSH_END
1261}
1262
1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264static void turbosparc_flush_page_to_ram(unsigned long page)
1265{
1266#ifdef TURBOSPARC_WRITEBACK
1267        volatile unsigned long clear;
1268
1269        if (srmmu_probe(page))
1270                turbosparc_flush_page_cache(page);
1271        clear = srmmu_get_fstatus();
1272#endif
1273}
1274
1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1276{
1277}
1278
1279static void turbosparc_flush_page_for_dma(unsigned long page)
1280{
1281        turbosparc_flush_dcache();
1282}
1283
1284static void turbosparc_flush_tlb_all(void)
1285{
1286        srmmu_flush_whole_tlb();
1287}
1288
1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1290{
1291        FLUSH_BEGIN(mm)
1292        srmmu_flush_whole_tlb();
1293        FLUSH_END
1294}
1295
1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1297{
1298        FLUSH_BEGIN(vma->vm_mm)
1299        srmmu_flush_whole_tlb();
1300        FLUSH_END
1301}
1302
1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1304{
1305        FLUSH_BEGIN(vma->vm_mm)
1306        srmmu_flush_whole_tlb();
1307        FLUSH_END
1308}
1309
1310
1311static void poke_turbosparc(void)
1312{
1313        unsigned long mreg = srmmu_get_mmureg();
1314        unsigned long ccreg;
1315
1316        /* Clear any crap from the cache or else... */
1317        turbosparc_flush_cache_all();
1318        /* Temporarily disable I & D caches */
1319        mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320        mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1321        srmmu_set_mmureg(mreg);
1322
1323        ccreg = turbosparc_get_ccreg();
1324
1325#ifdef TURBOSPARC_WRITEBACK
1326        ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1327        ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328                        /* Write-back D-cache, emulate VLSI
1329                         * abortion number three, not number one */
1330#else
1331        /* For now let's play safe, optimize later */
1332        ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333                        /* Do DVMA snooping in Dcache, Write-thru D-cache */
1334        ccreg &= ~(TURBOSPARC_uS2);
1335                        /* Emulate VLSI abortion number three, not number one */
1336#endif
1337
1338        switch (ccreg & 7) {
1339        case 0: /* No SE cache */
1340        case 7: /* Test mode */
1341                break;
1342        default:
1343                ccreg |= (TURBOSPARC_SCENABLE);
1344        }
1345        turbosparc_set_ccreg(ccreg);
1346
1347        mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348        mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1349        srmmu_set_mmureg(mreg);
1350}
1351
1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353        .cache_all      = turbosparc_flush_cache_all,
1354        .cache_mm       = turbosparc_flush_cache_mm,
1355        .cache_page     = turbosparc_flush_cache_page,
1356        .cache_range    = turbosparc_flush_cache_range,
1357        .tlb_all        = turbosparc_flush_tlb_all,
1358        .tlb_mm         = turbosparc_flush_tlb_mm,
1359        .tlb_page       = turbosparc_flush_tlb_page,
1360        .tlb_range      = turbosparc_flush_tlb_range,
1361        .page_to_ram    = turbosparc_flush_page_to_ram,
1362        .sig_insns      = turbosparc_flush_sig_insns,
1363        .page_for_dma   = turbosparc_flush_page_for_dma,
1364};
1365
1366static void __init init_turbosparc(void)
1367{
1368        srmmu_name = "Fujitsu TurboSparc";
1369        srmmu_modtype = TurboSparc;
1370        sparc32_cachetlb_ops = &turbosparc_ops;
1371        poke_srmmu = poke_turbosparc;
1372}
1373
1374static void poke_tsunami(void)
1375{
1376        unsigned long mreg = srmmu_get_mmureg();
1377
1378        tsunami_flush_icache();
1379        tsunami_flush_dcache();
1380        mreg &= ~TSUNAMI_ITD;
1381        mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382        srmmu_set_mmureg(mreg);
1383}
1384
1385static const struct sparc32_cachetlb_ops tsunami_ops = {
1386        .cache_all      = tsunami_flush_cache_all,
1387        .cache_mm       = tsunami_flush_cache_mm,
1388        .cache_page     = tsunami_flush_cache_page,
1389        .cache_range    = tsunami_flush_cache_range,
1390        .tlb_all        = tsunami_flush_tlb_all,
1391        .tlb_mm         = tsunami_flush_tlb_mm,
1392        .tlb_page       = tsunami_flush_tlb_page,
1393        .tlb_range      = tsunami_flush_tlb_range,
1394        .page_to_ram    = tsunami_flush_page_to_ram,
1395        .sig_insns      = tsunami_flush_sig_insns,
1396        .page_for_dma   = tsunami_flush_page_for_dma,
1397};
1398
1399static void __init init_tsunami(void)
1400{
1401        /*
1402         * Tsunami's pretty sane, Sun and TI actually got it
1403         * somewhat right this time.  Fujitsu should have
1404         * taken some lessons from them.
1405         */
1406
1407        srmmu_name = "TI Tsunami";
1408        srmmu_modtype = Tsunami;
1409        sparc32_cachetlb_ops = &tsunami_ops;
1410        poke_srmmu = poke_tsunami;
1411
1412        tsunami_setup_blockops();
1413}
1414
1415static void poke_viking(void)
1416{
1417        unsigned long mreg = srmmu_get_mmureg();
1418        static int smp_catch;
1419
1420        if (viking_mxcc_present) {
1421                unsigned long mxcc_control = mxcc_get_creg();
1422
1423                mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424                mxcc_control &= ~(MXCC_CTL_RRC);
1425                mxcc_set_creg(mxcc_control);
1426
1427                /*
1428                 * We don't need memory parity checks.
1429                 * XXX This is a mess, have to dig out later. ecd.
1430                viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1431                 */
1432
1433                /* We do cache ptables on MXCC. */
1434                mreg |= VIKING_TCENABLE;
1435        } else {
1436                unsigned long bpreg;
1437
1438                mreg &= ~(VIKING_TCENABLE);
1439                if (smp_catch++) {
1440                        /* Must disable mixed-cmd mode here for other cpu's. */
1441                        bpreg = viking_get_bpreg();
1442                        bpreg &= ~(VIKING_ACTION_MIX);
1443                        viking_set_bpreg(bpreg);
1444
1445                        /* Just in case PROM does something funny. */
1446                        msi_set_sync();
1447                }
1448        }
1449
1450        mreg |= VIKING_SPENABLE;
1451        mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452        mreg |= VIKING_SBENABLE;
1453        mreg &= ~(VIKING_ACENABLE);
1454        srmmu_set_mmureg(mreg);
1455}
1456
1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458        .cache_all      = viking_flush_cache_all,
1459        .cache_mm       = viking_flush_cache_mm,
1460        .cache_page     = viking_flush_cache_page,
1461        .cache_range    = viking_flush_cache_range,
1462        .tlb_all        = viking_flush_tlb_all,
1463        .tlb_mm         = viking_flush_tlb_mm,
1464        .tlb_page       = viking_flush_tlb_page,
1465        .tlb_range      = viking_flush_tlb_range,
1466        .page_to_ram    = viking_flush_page_to_ram,
1467        .sig_insns      = viking_flush_sig_insns,
1468        .page_for_dma   = viking_flush_page_for_dma,
1469};
1470
1471#ifdef CONFIG_SMP
1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1476 *
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1481 *
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending.  It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1487 */
1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489        .cache_all      = viking_flush_cache_all,
1490        .cache_mm       = viking_flush_cache_mm,
1491        .cache_page     = viking_flush_cache_page,
1492        .cache_range    = viking_flush_cache_range,
1493        .tlb_all        = sun4dsmp_flush_tlb_all,
1494        .tlb_mm         = sun4dsmp_flush_tlb_mm,
1495        .tlb_page       = sun4dsmp_flush_tlb_page,
1496        .tlb_range      = sun4dsmp_flush_tlb_range,
1497        .page_to_ram    = viking_flush_page_to_ram,
1498        .sig_insns      = viking_flush_sig_insns,
1499        .page_for_dma   = viking_flush_page_for_dma,
1500};
1501#endif
1502
1503static void __init init_viking(void)
1504{
1505        unsigned long mreg = srmmu_get_mmureg();
1506
1507        /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1508        if (mreg & VIKING_MMODE) {
1509                srmmu_name = "TI Viking";
1510                viking_mxcc_present = 0;
1511                msi_set_sync();
1512
1513                /*
1514                 * We need this to make sure old viking takes no hits
1515                 * on it's cache for dma snoops to workaround the
1516                 * "load from non-cacheable memory" interrupt bug.
1517                 * This is only necessary because of the new way in
1518                 * which we use the IOMMU.
1519                 */
1520                viking_ops.page_for_dma = viking_flush_page;
1521#ifdef CONFIG_SMP
1522                viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1523#endif
1524                flush_page_for_dma_global = 0;
1525        } else {
1526                srmmu_name = "TI Viking/MXCC";
1527                viking_mxcc_present = 1;
1528                srmmu_cache_pagetables = 1;
1529        }
1530
1531        sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1532                &viking_ops;
1533#ifdef CONFIG_SMP
1534        if (sparc_cpu_model == sun4d)
1535                sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536                        &viking_sun4d_smp_ops;
1537#endif
1538
1539        poke_srmmu = poke_viking;
1540}
1541
1542/* Probe for the srmmu chip version. */
1543static void __init get_srmmu_type(void)
1544{
1545        unsigned long mreg, psr;
1546        unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1547
1548        srmmu_modtype = SRMMU_INVAL_MOD;
1549        hwbug_bitmask = 0;
1550
1551        mreg = srmmu_get_mmureg(); psr = get_psr();
1552        mod_typ = (mreg & 0xf0000000) >> 28;
1553        mod_rev = (mreg & 0x0f000000) >> 24;
1554        psr_typ = (psr >> 28) & 0xf;
1555        psr_vers = (psr >> 24) & 0xf;
1556
1557        /* First, check for sparc-leon. */
1558        if (sparc_cpu_model == sparc_leon) {
1559                init_leon();
1560                return;
1561        }
1562
1563        /* Second, check for HyperSparc or Cypress. */
1564        if (mod_typ == 1) {
1565                switch (mod_rev) {
1566                case 7:
1567                        /* UP or MP Hypersparc */
1568                        init_hypersparc();
1569                        break;
1570                case 0:
1571                case 2:
1572                case 10:
1573                case 11:
1574                case 12:
1575                case 13:
1576                case 14:
1577                case 15:
1578                default:
1579                        prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1580                        prom_halt();
1581                        break;
1582                }
1583                return;
1584        }
1585
1586        /* Now Fujitsu TurboSparc. It might happen that it is
1587         * in Swift emulation mode, so we will check later...
1588         */
1589        if (psr_typ == 0 && psr_vers == 5) {
1590                init_turbosparc();
1591                return;
1592        }
1593
1594        /* Next check for Fujitsu Swift. */
1595        if (psr_typ == 0 && psr_vers == 4) {
1596                phandle cpunode;
1597                char node_str[128];
1598
1599                /* Look if it is not a TurboSparc emulating Swift... */
1600                cpunode = prom_getchild(prom_root_node);
1601                while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602                        prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603                        if (!strcmp(node_str, "cpu")) {
1604                                if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605                                    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1606                                        init_turbosparc();
1607                                        return;
1608                                }
1609                                break;
1610                        }
1611                }
1612
1613                init_swift();
1614                return;
1615        }
1616
1617        /* Now the Viking family of srmmu. */
1618        if (psr_typ == 4 &&
1619           ((psr_vers == 0) ||
1620            ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1621                init_viking();
1622                return;
1623        }
1624
1625        /* Finally the Tsunami. */
1626        if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1627                init_tsunami();
1628                return;
1629        }
1630
1631        /* Oh well */
1632        srmmu_is_bad();
1633}
1634
1635#ifdef CONFIG_SMP
1636/* Local cross-calls. */
1637static void smp_flush_page_for_dma(unsigned long page)
1638{
1639        xc1((smpfunc_t) local_ops->page_for_dma, page);
1640        local_ops->page_for_dma(page);
1641}
1642
1643static void smp_flush_cache_all(void)
1644{
1645        xc0((smpfunc_t) local_ops->cache_all);
1646        local_ops->cache_all();
1647}
1648
1649static void smp_flush_tlb_all(void)
1650{
1651        xc0((smpfunc_t) local_ops->tlb_all);
1652        local_ops->tlb_all();
1653}
1654
1655static void smp_flush_cache_mm(struct mm_struct *mm)
1656{
1657        if (mm->context != NO_CONTEXT) {
1658                cpumask_t cpu_mask;
1659                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661                if (!cpumask_empty(&cpu_mask))
1662                        xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1663                local_ops->cache_mm(mm);
1664        }
1665}
1666
1667static void smp_flush_tlb_mm(struct mm_struct *mm)
1668{
1669        if (mm->context != NO_CONTEXT) {
1670                cpumask_t cpu_mask;
1671                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673                if (!cpumask_empty(&cpu_mask)) {
1674                        xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1675                        if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676                                cpumask_copy(mm_cpumask(mm),
1677                                             cpumask_of(smp_processor_id()));
1678                }
1679                local_ops->tlb_mm(mm);
1680        }
1681}
1682
1683static void smp_flush_cache_range(struct vm_area_struct *vma,
1684                                  unsigned long start,
1685                                  unsigned long end)
1686{
1687        struct mm_struct *mm = vma->vm_mm;
1688
1689        if (mm->context != NO_CONTEXT) {
1690                cpumask_t cpu_mask;
1691                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693                if (!cpumask_empty(&cpu_mask))
1694                        xc3((smpfunc_t) local_ops->cache_range,
1695                            (unsigned long) vma, start, end);
1696                local_ops->cache_range(vma, start, end);
1697        }
1698}
1699
1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701                                unsigned long start,
1702                                unsigned long end)
1703{
1704        struct mm_struct *mm = vma->vm_mm;
1705
1706        if (mm->context != NO_CONTEXT) {
1707                cpumask_t cpu_mask;
1708                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710                if (!cpumask_empty(&cpu_mask))
1711                        xc3((smpfunc_t) local_ops->tlb_range,
1712                            (unsigned long) vma, start, end);
1713                local_ops->tlb_range(vma, start, end);
1714        }
1715}
1716
1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719        struct mm_struct *mm = vma->vm_mm;
1720
1721        if (mm->context != NO_CONTEXT) {
1722                cpumask_t cpu_mask;
1723                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725                if (!cpumask_empty(&cpu_mask))
1726                        xc2((smpfunc_t) local_ops->cache_page,
1727                            (unsigned long) vma, page);
1728                local_ops->cache_page(vma, page);
1729        }
1730}
1731
1732static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1733{
1734        struct mm_struct *mm = vma->vm_mm;
1735
1736        if (mm->context != NO_CONTEXT) {
1737                cpumask_t cpu_mask;
1738                cpumask_copy(&cpu_mask, mm_cpumask(mm));
1739                cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1740                if (!cpumask_empty(&cpu_mask))
1741                        xc2((smpfunc_t) local_ops->tlb_page,
1742                            (unsigned long) vma, page);
1743                local_ops->tlb_page(vma, page);
1744        }
1745}
1746
1747static void smp_flush_page_to_ram(unsigned long page)
1748{
1749        /* Current theory is that those who call this are the one's
1750         * who have just dirtied their cache with the pages contents
1751         * in kernel space, therefore we only run this on local cpu.
1752         *
1753         * XXX This experiment failed, research further... -DaveM
1754         */
1755#if 1
1756        xc1((smpfunc_t) local_ops->page_to_ram, page);
1757#endif
1758        local_ops->page_to_ram(page);
1759}
1760
1761static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1762{
1763        cpumask_t cpu_mask;
1764        cpumask_copy(&cpu_mask, mm_cpumask(mm));
1765        cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1766        if (!cpumask_empty(&cpu_mask))
1767                xc2((smpfunc_t) local_ops->sig_insns,
1768                    (unsigned long) mm, insn_addr);
1769        local_ops->sig_insns(mm, insn_addr);
1770}
1771
1772static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1773        .cache_all      = smp_flush_cache_all,
1774        .cache_mm       = smp_flush_cache_mm,
1775        .cache_page     = smp_flush_cache_page,
1776        .cache_range    = smp_flush_cache_range,
1777        .tlb_all        = smp_flush_tlb_all,
1778        .tlb_mm         = smp_flush_tlb_mm,
1779        .tlb_page       = smp_flush_tlb_page,
1780        .tlb_range      = smp_flush_tlb_range,
1781        .page_to_ram    = smp_flush_page_to_ram,
1782        .sig_insns      = smp_flush_sig_insns,
1783        .page_for_dma   = smp_flush_page_for_dma,
1784};
1785#endif
1786
1787/* Load up routines and constants for sun4m and sun4d mmu */
1788void __init load_mmu(void)
1789{
1790        /* Functions */
1791        get_srmmu_type();
1792
1793#ifdef CONFIG_SMP
1794        /* El switcheroo... */
1795        local_ops = sparc32_cachetlb_ops;
1796
1797        if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1798                smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1799                smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1800                smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1801                smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1802        }
1803
1804        if (poke_srmmu == poke_viking) {
1805                /* Avoid unnecessary cross calls. */
1806                smp_cachetlb_ops.cache_all = local_ops->cache_all;
1807                smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1808                smp_cachetlb_ops.cache_range = local_ops->cache_range;
1809                smp_cachetlb_ops.cache_page = local_ops->cache_page;
1810
1811                smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1812                smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1813                smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1814        }
1815
1816        /* It really is const after this point. */
1817        sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1818                &smp_cachetlb_ops;
1819#endif
1820
1821        if (sparc_cpu_model != sun4d)
1822                ld_mmu_iommu();
1823#ifdef CONFIG_SMP
1824        if (sparc_cpu_model == sun4d)
1825                sun4d_init_smp();
1826        else if (sparc_cpu_model == sparc_leon)
1827                leon_init_smp();
1828        else
1829                sun4m_init_smp();
1830#endif
1831}
1832