linux/arch/sparc/net/bpf_jit_comp_32.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/moduleloader.h>
   3#include <linux/workqueue.h>
   4#include <linux/netdevice.h>
   5#include <linux/filter.h>
   6#include <linux/cache.h>
   7#include <linux/if_vlan.h>
   8
   9#include <asm/cacheflush.h>
  10#include <asm/ptrace.h>
  11
  12#include "bpf_jit_32.h"
  13
  14static inline bool is_simm13(unsigned int value)
  15{
  16        return value + 0x1000 < 0x2000;
  17}
  18
  19#define SEEN_DATAREF 1 /* might call external helpers */
  20#define SEEN_XREG    2 /* ebx is used */
  21#define SEEN_MEM     4 /* use mem[] for temporary storage */
  22
  23#define S13(X)          ((X) & 0x1fff)
  24#define IMMED           0x00002000
  25#define RD(X)           ((X) << 25)
  26#define RS1(X)          ((X) << 14)
  27#define RS2(X)          ((X))
  28#define OP(X)           ((X) << 30)
  29#define OP2(X)          ((X) << 22)
  30#define OP3(X)          ((X) << 19)
  31#define COND(X)         ((X) << 25)
  32#define F1(X)           OP(X)
  33#define F2(X, Y)        (OP(X) | OP2(Y))
  34#define F3(X, Y)        (OP(X) | OP3(Y))
  35
  36#define CONDN           COND(0x0)
  37#define CONDE           COND(0x1)
  38#define CONDLE          COND(0x2)
  39#define CONDL           COND(0x3)
  40#define CONDLEU         COND(0x4)
  41#define CONDCS          COND(0x5)
  42#define CONDNEG         COND(0x6)
  43#define CONDVC          COND(0x7)
  44#define CONDA           COND(0x8)
  45#define CONDNE          COND(0x9)
  46#define CONDG           COND(0xa)
  47#define CONDGE          COND(0xb)
  48#define CONDGU          COND(0xc)
  49#define CONDCC          COND(0xd)
  50#define CONDPOS         COND(0xe)
  51#define CONDVS          COND(0xf)
  52
  53#define CONDGEU         CONDCC
  54#define CONDLU          CONDCS
  55
  56#define WDISP22(X)      (((X) >> 2) & 0x3fffff)
  57
  58#define BA              (F2(0, 2) | CONDA)
  59#define BGU             (F2(0, 2) | CONDGU)
  60#define BLEU            (F2(0, 2) | CONDLEU)
  61#define BGEU            (F2(0, 2) | CONDGEU)
  62#define BLU             (F2(0, 2) | CONDLU)
  63#define BE              (F2(0, 2) | CONDE)
  64#define BNE             (F2(0, 2) | CONDNE)
  65
  66#define BE_PTR          BE
  67
  68#define SETHI(K, REG)   \
  69        (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  70#define OR_LO(K, REG)   \
  71        (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  72
  73#define ADD             F3(2, 0x00)
  74#define AND             F3(2, 0x01)
  75#define ANDCC           F3(2, 0x11)
  76#define OR              F3(2, 0x02)
  77#define XOR             F3(2, 0x03)
  78#define SUB             F3(2, 0x04)
  79#define SUBCC           F3(2, 0x14)
  80#define MUL             F3(2, 0x0a)     /* umul */
  81#define DIV             F3(2, 0x0e)     /* udiv */
  82#define SLL             F3(2, 0x25)
  83#define SRL             F3(2, 0x26)
  84#define JMPL            F3(2, 0x38)
  85#define CALL            F1(1)
  86#define BR              F2(0, 0x01)
  87#define RD_Y            F3(2, 0x28)
  88#define WR_Y            F3(2, 0x30)
  89
  90#define LD32            F3(3, 0x00)
  91#define LD8             F3(3, 0x01)
  92#define LD16            F3(3, 0x02)
  93#define LD64            F3(3, 0x0b)
  94#define ST32            F3(3, 0x04)
  95
  96#define LDPTR           LD32
  97#define BASE_STACKFRAME 96
  98
  99#define LD32I           (LD32 | IMMED)
 100#define LD8I            (LD8 | IMMED)
 101#define LD16I           (LD16 | IMMED)
 102#define LD64I           (LD64 | IMMED)
 103#define LDPTRI          (LDPTR | IMMED)
 104#define ST32I           (ST32 | IMMED)
 105
 106#define emit_nop()              \
 107do {                            \
 108        *prog++ = SETHI(0, G0); \
 109} while (0)
 110
 111#define emit_neg()                                      \
 112do {    /* sub %g0, r_A, r_A */                         \
 113        *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A);   \
 114} while (0)
 115
 116#define emit_reg_move(FROM, TO)                         \
 117do {    /* or %g0, FROM, TO */                          \
 118        *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO);    \
 119} while (0)
 120
 121#define emit_clear(REG)                                 \
 122do {    /* or %g0, %g0, REG */                          \
 123        *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG);     \
 124} while (0)
 125
 126#define emit_set_const(K, REG)                                  \
 127do {    /* sethi %hi(K), REG */                                 \
 128        *prog++ = SETHI(K, REG);                                \
 129        /* or REG, %lo(K), REG */                               \
 130        *prog++ = OR_LO(K, REG);                                \
 131} while (0)
 132
 133        /* Emit
 134         *
 135         *      OP      r_A, r_X, r_A
 136         */
 137#define emit_alu_X(OPCODE)                                      \
 138do {                                                            \
 139        seen |= SEEN_XREG;                                      \
 140        *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A);       \
 141} while (0)
 142
 143        /* Emit either:
 144         *
 145         *      OP      r_A, K, r_A
 146         *
 147         * or
 148         *
 149         *      sethi   %hi(K), r_TMP
 150         *      or      r_TMP, %lo(K), r_TMP
 151         *      OP      r_A, r_TMP, r_A
 152         *
 153         * depending upon whether K fits in a signed 13-bit
 154         * immediate instruction field.  Emit nothing if K
 155         * is zero.
 156         */
 157#define emit_alu_K(OPCODE, K)                                   \
 158do {                                                            \
 159        if (K || OPCODE == AND || OPCODE == MUL) {              \
 160                unsigned int _insn = OPCODE;                    \
 161                _insn |= RS1(r_A) | RD(r_A);                    \
 162                if (is_simm13(K)) {                             \
 163                        *prog++ = _insn | IMMED | S13(K);       \
 164                } else {                                        \
 165                        emit_set_const(K, r_TMP);               \
 166                        *prog++ = _insn | RS2(r_TMP);           \
 167                }                                               \
 168        }                                                       \
 169} while (0)
 170
 171#define emit_loadimm(K, DEST)                                           \
 172do {                                                                    \
 173        if (is_simm13(K)) {                                             \
 174                /* or %g0, K, DEST */                                   \
 175                *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST);     \
 176        } else {                                                        \
 177                emit_set_const(K, DEST);                                \
 178        }                                                               \
 179} while (0)
 180
 181#define emit_loadptr(BASE, STRUCT, FIELD, DEST)                         \
 182do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 183        BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(void *));    \
 184        *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST);            \
 185} while (0)
 186
 187#define emit_load32(BASE, STRUCT, FIELD, DEST)                          \
 188do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 189        BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u32));       \
 190        *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST);             \
 191} while (0)
 192
 193#define emit_load16(BASE, STRUCT, FIELD, DEST)                          \
 194do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 195        BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u16));       \
 196        *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST);             \
 197} while (0)
 198
 199#define __emit_load8(BASE, STRUCT, FIELD, DEST)                         \
 200do {    unsigned int _off = offsetof(STRUCT, FIELD);                    \
 201        *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST);              \
 202} while (0)
 203
 204#define emit_load8(BASE, STRUCT, FIELD, DEST)                           \
 205do {    BUILD_BUG_ON(sizeof_field(STRUCT, FIELD) != sizeof(u8));        \
 206        __emit_load8(BASE, STRUCT, FIELD, DEST);                        \
 207} while (0)
 208
 209#define BIAS (-4)
 210
 211#define emit_ldmem(OFF, DEST)                                           \
 212do {    *prog++ = LD32I | RS1(SP) | S13(BIAS - (OFF)) | RD(DEST);       \
 213} while (0)
 214
 215#define emit_stmem(OFF, SRC)                                            \
 216do {    *prog++ = ST32I | RS1(SP) | S13(BIAS - (OFF)) | RD(SRC);        \
 217} while (0)
 218
 219#ifdef CONFIG_SMP
 220#define emit_load_cpu(REG)                                              \
 221        emit_load32(G6, struct thread_info, cpu, REG)
 222#else
 223#define emit_load_cpu(REG)      emit_clear(REG)
 224#endif
 225
 226#define emit_skb_loadptr(FIELD, DEST) \
 227        emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
 228#define emit_skb_load32(FIELD, DEST) \
 229        emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
 230#define emit_skb_load16(FIELD, DEST) \
 231        emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
 232#define __emit_skb_load8(FIELD, DEST) \
 233        __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 234#define emit_skb_load8(FIELD, DEST) \
 235        emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
 236
 237#define emit_jmpl(BASE, IMM_OFF, LREG) \
 238        *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
 239
 240#define emit_call(FUNC)                                 \
 241do {    void *_here = image + addrs[i] - 8;             \
 242        unsigned int _off = (void *)(FUNC) - _here;     \
 243        *prog++ = CALL | (((_off) >> 2) & 0x3fffffff);  \
 244        emit_nop();                                     \
 245} while (0)
 246
 247#define emit_branch(BR_OPC, DEST)                       \
 248do {    unsigned int _here = addrs[i] - 8;              \
 249        *prog++ = BR_OPC | WDISP22((DEST) - _here);     \
 250} while (0)
 251
 252#define emit_branch_off(BR_OPC, OFF)                    \
 253do {    *prog++ = BR_OPC | WDISP22(OFF);                \
 254} while (0)
 255
 256#define emit_jump(DEST)         emit_branch(BA, DEST)
 257
 258#define emit_read_y(REG)        *prog++ = RD_Y | RD(REG)
 259#define emit_write_y(REG)       *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
 260
 261#define emit_cmp(R1, R2) \
 262        *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
 263
 264#define emit_cmpi(R1, IMM) \
 265        *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 266
 267#define emit_btst(R1, R2) \
 268        *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
 269
 270#define emit_btsti(R1, IMM) \
 271        *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
 272
 273#define emit_sub(R1, R2, R3) \
 274        *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
 275
 276#define emit_subi(R1, IMM, R3) \
 277        *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 278
 279#define emit_add(R1, R2, R3) \
 280        *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
 281
 282#define emit_addi(R1, IMM, R3) \
 283        *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 284
 285#define emit_and(R1, R2, R3) \
 286        *prog++ = (AND | RS1(R1) | RS2(R2) | RD(R3))
 287
 288#define emit_andi(R1, IMM, R3) \
 289        *prog++ = (AND | IMMED | RS1(R1) | S13(IMM) | RD(R3))
 290
 291#define emit_alloc_stack(SZ) \
 292        *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 293
 294#define emit_release_stack(SZ) \
 295        *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
 296
 297/* A note about branch offset calculations.  The addrs[] array,
 298 * indexed by BPF instruction, records the address after all the
 299 * sparc instructions emitted for that BPF instruction.
 300 *
 301 * The most common case is to emit a branch at the end of such
 302 * a code sequence.  So this would be two instructions, the
 303 * branch and it's delay slot.
 304 *
 305 * Therefore by default the branch emitters calculate the branch
 306 * offset field as:
 307 *
 308 *      destination - (addrs[i] - 8)
 309 *
 310 * This "addrs[i] - 8" is the address of the branch itself or
 311 * what "." would be in assembler notation.  The "8" part is
 312 * how we take into consideration the branch and it's delay
 313 * slot mentioned above.
 314 *
 315 * Sometimes we need to emit a branch earlier in the code
 316 * sequence.  And in these situations we adjust "destination"
 317 * to accommodate this difference.  For example, if we needed
 318 * to emit a branch (and it's delay slot) right before the
 319 * final instruction emitted for a BPF opcode, we'd use
 320 * "destination + 4" instead of just plain "destination" above.
 321 *
 322 * This is why you see all of these funny emit_branch() and
 323 * emit_jump() calls with adjusted offsets.
 324 */
 325
 326void bpf_jit_compile(struct bpf_prog *fp)
 327{
 328        unsigned int cleanup_addr, proglen, oldproglen = 0;
 329        u32 temp[8], *prog, *func, seen = 0, pass;
 330        const struct sock_filter *filter = fp->insns;
 331        int i, flen = fp->len, pc_ret0 = -1;
 332        unsigned int *addrs;
 333        void *image;
 334
 335        if (!bpf_jit_enable)
 336                return;
 337
 338        addrs = kmalloc_array(flen, sizeof(*addrs), GFP_KERNEL);
 339        if (addrs == NULL)
 340                return;
 341
 342        /* Before first pass, make a rough estimation of addrs[]
 343         * each bpf instruction is translated to less than 64 bytes
 344         */
 345        for (proglen = 0, i = 0; i < flen; i++) {
 346                proglen += 64;
 347                addrs[i] = proglen;
 348        }
 349        cleanup_addr = proglen; /* epilogue address */
 350        image = NULL;
 351        for (pass = 0; pass < 10; pass++) {
 352                u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
 353
 354                /* no prologue/epilogue for trivial filters (RET something) */
 355                proglen = 0;
 356                prog = temp;
 357
 358                /* Prologue */
 359                if (seen_or_pass0) {
 360                        if (seen_or_pass0 & SEEN_MEM) {
 361                                unsigned int sz = BASE_STACKFRAME;
 362                                sz += BPF_MEMWORDS * sizeof(u32);
 363                                emit_alloc_stack(sz);
 364                        }
 365
 366                        /* Make sure we dont leek kernel memory. */
 367                        if (seen_or_pass0 & SEEN_XREG)
 368                                emit_clear(r_X);
 369
 370                        /* If this filter needs to access skb data,
 371                         * load %o4 and %o5 with:
 372                         *  %o4 = skb->len - skb->data_len
 373                         *  %o5 = skb->data
 374                         * And also back up %o7 into r_saved_O7 so we can
 375                         * invoke the stubs using 'call'.
 376                         */
 377                        if (seen_or_pass0 & SEEN_DATAREF) {
 378                                emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
 379                                emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
 380                                emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
 381                                emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
 382                        }
 383                }
 384                emit_reg_move(O7, r_saved_O7);
 385
 386                /* Make sure we dont leak kernel information to the user. */
 387                if (bpf_needs_clear_a(&filter[0]))
 388                        emit_clear(r_A); /* A = 0 */
 389
 390                for (i = 0; i < flen; i++) {
 391                        unsigned int K = filter[i].k;
 392                        unsigned int t_offset;
 393                        unsigned int f_offset;
 394                        u32 t_op, f_op;
 395                        u16 code = bpf_anc_helper(&filter[i]);
 396                        int ilen;
 397
 398                        switch (code) {
 399                        case BPF_ALU | BPF_ADD | BPF_X: /* A += X; */
 400                                emit_alu_X(ADD);
 401                                break;
 402                        case BPF_ALU | BPF_ADD | BPF_K: /* A += K; */
 403                                emit_alu_K(ADD, K);
 404                                break;
 405                        case BPF_ALU | BPF_SUB | BPF_X: /* A -= X; */
 406                                emit_alu_X(SUB);
 407                                break;
 408                        case BPF_ALU | BPF_SUB | BPF_K: /* A -= K */
 409                                emit_alu_K(SUB, K);
 410                                break;
 411                        case BPF_ALU | BPF_AND | BPF_X: /* A &= X */
 412                                emit_alu_X(AND);
 413                                break;
 414                        case BPF_ALU | BPF_AND | BPF_K: /* A &= K */
 415                                emit_alu_K(AND, K);
 416                                break;
 417                        case BPF_ALU | BPF_OR | BPF_X:  /* A |= X */
 418                                emit_alu_X(OR);
 419                                break;
 420                        case BPF_ALU | BPF_OR | BPF_K:  /* A |= K */
 421                                emit_alu_K(OR, K);
 422                                break;
 423                        case BPF_ANC | SKF_AD_ALU_XOR_X: /* A ^= X; */
 424                        case BPF_ALU | BPF_XOR | BPF_X:
 425                                emit_alu_X(XOR);
 426                                break;
 427                        case BPF_ALU | BPF_XOR | BPF_K: /* A ^= K */
 428                                emit_alu_K(XOR, K);
 429                                break;
 430                        case BPF_ALU | BPF_LSH | BPF_X: /* A <<= X */
 431                                emit_alu_X(SLL);
 432                                break;
 433                        case BPF_ALU | BPF_LSH | BPF_K: /* A <<= K */
 434                                emit_alu_K(SLL, K);
 435                                break;
 436                        case BPF_ALU | BPF_RSH | BPF_X: /* A >>= X */
 437                                emit_alu_X(SRL);
 438                                break;
 439                        case BPF_ALU | BPF_RSH | BPF_K: /* A >>= K */
 440                                emit_alu_K(SRL, K);
 441                                break;
 442                        case BPF_ALU | BPF_MUL | BPF_X: /* A *= X; */
 443                                emit_alu_X(MUL);
 444                                break;
 445                        case BPF_ALU | BPF_MUL | BPF_K: /* A *= K */
 446                                emit_alu_K(MUL, K);
 447                                break;
 448                        case BPF_ALU | BPF_DIV | BPF_K: /* A /= K with K != 0*/
 449                                if (K == 1)
 450                                        break;
 451                                emit_write_y(G0);
 452                                /* The Sparc v8 architecture requires
 453                                 * three instructions between a %y
 454                                 * register write and the first use.
 455                                 */
 456                                emit_nop();
 457                                emit_nop();
 458                                emit_nop();
 459                                emit_alu_K(DIV, K);
 460                                break;
 461                        case BPF_ALU | BPF_DIV | BPF_X: /* A /= X; */
 462                                emit_cmpi(r_X, 0);
 463                                if (pc_ret0 > 0) {
 464                                        t_offset = addrs[pc_ret0 - 1];
 465                                        emit_branch(BE, t_offset + 20);
 466                                        emit_nop(); /* delay slot */
 467                                } else {
 468                                        emit_branch_off(BNE, 16);
 469                                        emit_nop();
 470                                        emit_jump(cleanup_addr + 20);
 471                                        emit_clear(r_A);
 472                                }
 473                                emit_write_y(G0);
 474                                /* The Sparc v8 architecture requires
 475                                 * three instructions between a %y
 476                                 * register write and the first use.
 477                                 */
 478                                emit_nop();
 479                                emit_nop();
 480                                emit_nop();
 481                                emit_alu_X(DIV);
 482                                break;
 483                        case BPF_ALU | BPF_NEG:
 484                                emit_neg();
 485                                break;
 486                        case BPF_RET | BPF_K:
 487                                if (!K) {
 488                                        if (pc_ret0 == -1)
 489                                                pc_ret0 = i;
 490                                        emit_clear(r_A);
 491                                } else {
 492                                        emit_loadimm(K, r_A);
 493                                }
 494                                fallthrough;
 495                        case BPF_RET | BPF_A:
 496                                if (seen_or_pass0) {
 497                                        if (i != flen - 1) {
 498                                                emit_jump(cleanup_addr);
 499                                                emit_nop();
 500                                                break;
 501                                        }
 502                                        if (seen_or_pass0 & SEEN_MEM) {
 503                                                unsigned int sz = BASE_STACKFRAME;
 504                                                sz += BPF_MEMWORDS * sizeof(u32);
 505                                                emit_release_stack(sz);
 506                                        }
 507                                }
 508                                /* jmpl %r_saved_O7 + 8, %g0 */
 509                                emit_jmpl(r_saved_O7, 8, G0);
 510                                emit_reg_move(r_A, O0); /* delay slot */
 511                                break;
 512                        case BPF_MISC | BPF_TAX:
 513                                seen |= SEEN_XREG;
 514                                emit_reg_move(r_A, r_X);
 515                                break;
 516                        case BPF_MISC | BPF_TXA:
 517                                seen |= SEEN_XREG;
 518                                emit_reg_move(r_X, r_A);
 519                                break;
 520                        case BPF_ANC | SKF_AD_CPU:
 521                                emit_load_cpu(r_A);
 522                                break;
 523                        case BPF_ANC | SKF_AD_PROTOCOL:
 524                                emit_skb_load16(protocol, r_A);
 525                                break;
 526                        case BPF_ANC | SKF_AD_PKTTYPE:
 527                                __emit_skb_load8(__pkt_type_offset, r_A);
 528                                emit_andi(r_A, PKT_TYPE_MAX, r_A);
 529                                emit_alu_K(SRL, 5);
 530                                break;
 531                        case BPF_ANC | SKF_AD_IFINDEX:
 532                                emit_skb_loadptr(dev, r_A);
 533                                emit_cmpi(r_A, 0);
 534                                emit_branch(BE_PTR, cleanup_addr + 4);
 535                                emit_nop();
 536                                emit_load32(r_A, struct net_device, ifindex, r_A);
 537                                break;
 538                        case BPF_ANC | SKF_AD_MARK:
 539                                emit_skb_load32(mark, r_A);
 540                                break;
 541                        case BPF_ANC | SKF_AD_QUEUE:
 542                                emit_skb_load16(queue_mapping, r_A);
 543                                break;
 544                        case BPF_ANC | SKF_AD_HATYPE:
 545                                emit_skb_loadptr(dev, r_A);
 546                                emit_cmpi(r_A, 0);
 547                                emit_branch(BE_PTR, cleanup_addr + 4);
 548                                emit_nop();
 549                                emit_load16(r_A, struct net_device, type, r_A);
 550                                break;
 551                        case BPF_ANC | SKF_AD_RXHASH:
 552                                emit_skb_load32(hash, r_A);
 553                                break;
 554                        case BPF_ANC | SKF_AD_VLAN_TAG:
 555                                emit_skb_load16(vlan_tci, r_A);
 556                                break;
 557                        case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 558                                __emit_skb_load8(__pkt_vlan_present_offset, r_A);
 559                                if (PKT_VLAN_PRESENT_BIT)
 560                                        emit_alu_K(SRL, PKT_VLAN_PRESENT_BIT);
 561                                if (PKT_VLAN_PRESENT_BIT < 7)
 562                                        emit_andi(r_A, 1, r_A);
 563                                break;
 564                        case BPF_LD | BPF_W | BPF_LEN:
 565                                emit_skb_load32(len, r_A);
 566                                break;
 567                        case BPF_LDX | BPF_W | BPF_LEN:
 568                                emit_skb_load32(len, r_X);
 569                                break;
 570                        case BPF_LD | BPF_IMM:
 571                                emit_loadimm(K, r_A);
 572                                break;
 573                        case BPF_LDX | BPF_IMM:
 574                                emit_loadimm(K, r_X);
 575                                break;
 576                        case BPF_LD | BPF_MEM:
 577                                seen |= SEEN_MEM;
 578                                emit_ldmem(K * 4, r_A);
 579                                break;
 580                        case BPF_LDX | BPF_MEM:
 581                                seen |= SEEN_MEM | SEEN_XREG;
 582                                emit_ldmem(K * 4, r_X);
 583                                break;
 584                        case BPF_ST:
 585                                seen |= SEEN_MEM;
 586                                emit_stmem(K * 4, r_A);
 587                                break;
 588                        case BPF_STX:
 589                                seen |= SEEN_MEM | SEEN_XREG;
 590                                emit_stmem(K * 4, r_X);
 591                                break;
 592
 593#define CHOOSE_LOAD_FUNC(K, func) \
 594        ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
 595
 596                        case BPF_LD | BPF_W | BPF_ABS:
 597                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
 598common_load:                    seen |= SEEN_DATAREF;
 599                                emit_loadimm(K, r_OFF);
 600                                emit_call(func);
 601                                break;
 602                        case BPF_LD | BPF_H | BPF_ABS:
 603                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
 604                                goto common_load;
 605                        case BPF_LD | BPF_B | BPF_ABS:
 606                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
 607                                goto common_load;
 608                        case BPF_LDX | BPF_B | BPF_MSH:
 609                                func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
 610                                goto common_load;
 611                        case BPF_LD | BPF_W | BPF_IND:
 612                                func = bpf_jit_load_word;
 613common_load_ind:                seen |= SEEN_DATAREF | SEEN_XREG;
 614                                if (K) {
 615                                        if (is_simm13(K)) {
 616                                                emit_addi(r_X, K, r_OFF);
 617                                        } else {
 618                                                emit_loadimm(K, r_TMP);
 619                                                emit_add(r_X, r_TMP, r_OFF);
 620                                        }
 621                                } else {
 622                                        emit_reg_move(r_X, r_OFF);
 623                                }
 624                                emit_call(func);
 625                                break;
 626                        case BPF_LD | BPF_H | BPF_IND:
 627                                func = bpf_jit_load_half;
 628                                goto common_load_ind;
 629                        case BPF_LD | BPF_B | BPF_IND:
 630                                func = bpf_jit_load_byte;
 631                                goto common_load_ind;
 632                        case BPF_JMP | BPF_JA:
 633                                emit_jump(addrs[i + K]);
 634                                emit_nop();
 635                                break;
 636
 637#define COND_SEL(CODE, TOP, FOP)        \
 638        case CODE:                      \
 639                t_op = TOP;             \
 640                f_op = FOP;             \
 641                goto cond_branch
 642
 643                        COND_SEL(BPF_JMP | BPF_JGT | BPF_K, BGU, BLEU);
 644                        COND_SEL(BPF_JMP | BPF_JGE | BPF_K, BGEU, BLU);
 645                        COND_SEL(BPF_JMP | BPF_JEQ | BPF_K, BE, BNE);
 646                        COND_SEL(BPF_JMP | BPF_JSET | BPF_K, BNE, BE);
 647                        COND_SEL(BPF_JMP | BPF_JGT | BPF_X, BGU, BLEU);
 648                        COND_SEL(BPF_JMP | BPF_JGE | BPF_X, BGEU, BLU);
 649                        COND_SEL(BPF_JMP | BPF_JEQ | BPF_X, BE, BNE);
 650                        COND_SEL(BPF_JMP | BPF_JSET | BPF_X, BNE, BE);
 651
 652cond_branch:                    f_offset = addrs[i + filter[i].jf];
 653                                t_offset = addrs[i + filter[i].jt];
 654
 655                                /* same targets, can avoid doing the test :) */
 656                                if (filter[i].jt == filter[i].jf) {
 657                                        emit_jump(t_offset);
 658                                        emit_nop();
 659                                        break;
 660                                }
 661
 662                                switch (code) {
 663                                case BPF_JMP | BPF_JGT | BPF_X:
 664                                case BPF_JMP | BPF_JGE | BPF_X:
 665                                case BPF_JMP | BPF_JEQ | BPF_X:
 666                                        seen |= SEEN_XREG;
 667                                        emit_cmp(r_A, r_X);
 668                                        break;
 669                                case BPF_JMP | BPF_JSET | BPF_X:
 670                                        seen |= SEEN_XREG;
 671                                        emit_btst(r_A, r_X);
 672                                        break;
 673                                case BPF_JMP | BPF_JEQ | BPF_K:
 674                                case BPF_JMP | BPF_JGT | BPF_K:
 675                                case BPF_JMP | BPF_JGE | BPF_K:
 676                                        if (is_simm13(K)) {
 677                                                emit_cmpi(r_A, K);
 678                                        } else {
 679                                                emit_loadimm(K, r_TMP);
 680                                                emit_cmp(r_A, r_TMP);
 681                                        }
 682                                        break;
 683                                case BPF_JMP | BPF_JSET | BPF_K:
 684                                        if (is_simm13(K)) {
 685                                                emit_btsti(r_A, K);
 686                                        } else {
 687                                                emit_loadimm(K, r_TMP);
 688                                                emit_btst(r_A, r_TMP);
 689                                        }
 690                                        break;
 691                                }
 692                                if (filter[i].jt != 0) {
 693                                        if (filter[i].jf)
 694                                                t_offset += 8;
 695                                        emit_branch(t_op, t_offset);
 696                                        emit_nop(); /* delay slot */
 697                                        if (filter[i].jf) {
 698                                                emit_jump(f_offset);
 699                                                emit_nop();
 700                                        }
 701                                        break;
 702                                }
 703                                emit_branch(f_op, f_offset);
 704                                emit_nop(); /* delay slot */
 705                                break;
 706
 707                        default:
 708                                /* hmm, too complex filter, give up with jit compiler */
 709                                goto out;
 710                        }
 711                        ilen = (void *) prog - (void *) temp;
 712                        if (image) {
 713                                if (unlikely(proglen + ilen > oldproglen)) {
 714                                        pr_err("bpb_jit_compile fatal error\n");
 715                                        kfree(addrs);
 716                                        module_memfree(image);
 717                                        return;
 718                                }
 719                                memcpy(image + proglen, temp, ilen);
 720                        }
 721                        proglen += ilen;
 722                        addrs[i] = proglen;
 723                        prog = temp;
 724                }
 725                /* last bpf instruction is always a RET :
 726                 * use it to give the cleanup instruction(s) addr
 727                 */
 728                cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
 729                if (seen_or_pass0 & SEEN_MEM)
 730                        cleanup_addr -= 4; /* add %sp, X, %sp; */
 731
 732                if (image) {
 733                        if (proglen != oldproglen)
 734                                pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
 735                                       proglen, oldproglen);
 736                        break;
 737                }
 738                if (proglen == oldproglen) {
 739                        image = module_alloc(proglen);
 740                        if (!image)
 741                                goto out;
 742                }
 743                oldproglen = proglen;
 744        }
 745
 746        if (bpf_jit_enable > 1)
 747                bpf_jit_dump(flen, proglen, pass + 1, image);
 748
 749        if (image) {
 750                fp->bpf_func = (void *)image;
 751                fp->jited = 1;
 752        }
 753out:
 754        kfree(addrs);
 755        return;
 756}
 757
 758void bpf_jit_free(struct bpf_prog *fp)
 759{
 760        if (fp->jited)
 761                module_memfree(fp->bpf_func);
 762
 763        bpf_prog_unlock_free(fp);
 764}
 765