linux/arch/x86/crypto/crct10dif-pcl-asm_64.S
<<
>>
Prefs
   1########################################################################
   2# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
   3#
   4# Copyright (c) 2013, Intel Corporation
   5#
   6# Authors:
   7#     Erdinc Ozturk <erdinc.ozturk@intel.com>
   8#     Vinodh Gopal <vinodh.gopal@intel.com>
   9#     James Guilford <james.guilford@intel.com>
  10#     Tim Chen <tim.c.chen@linux.intel.com>
  11#
  12# This software is available to you under a choice of one of two
  13# licenses.  You may choose to be licensed under the terms of the GNU
  14# General Public License (GPL) Version 2, available from the file
  15# COPYING in the main directory of this source tree, or the
  16# OpenIB.org BSD license below:
  17#
  18# Redistribution and use in source and binary forms, with or without
  19# modification, are permitted provided that the following conditions are
  20# met:
  21#
  22# * Redistributions of source code must retain the above copyright
  23#   notice, this list of conditions and the following disclaimer.
  24#
  25# * Redistributions in binary form must reproduce the above copyright
  26#   notice, this list of conditions and the following disclaimer in the
  27#   documentation and/or other materials provided with the
  28#   distribution.
  29#
  30# * Neither the name of the Intel Corporation nor the names of its
  31#   contributors may be used to endorse or promote products derived from
  32#   this software without specific prior written permission.
  33#
  34#
  35# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
  36# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
  39# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  40# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  41# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  42# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  43# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  44# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  45# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  46#
  47#       Reference paper titled "Fast CRC Computation for Generic
  48#       Polynomials Using PCLMULQDQ Instruction"
  49#       URL: http://www.intel.com/content/dam/www/public/us/en/documents
  50#  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
  51#
  52
  53#include <linux/linkage.h>
  54
  55.text
  56
  57#define         init_crc        %edi
  58#define         buf             %rsi
  59#define         len             %rdx
  60
  61#define         FOLD_CONSTS     %xmm10
  62#define         BSWAP_MASK      %xmm11
  63
  64# Fold reg1, reg2 into the next 32 data bytes, storing the result back into
  65# reg1, reg2.
  66.macro  fold_32_bytes   offset, reg1, reg2
  67        movdqu  \offset(buf), %xmm9
  68        movdqu  \offset+16(buf), %xmm12
  69        pshufb  BSWAP_MASK, %xmm9
  70        pshufb  BSWAP_MASK, %xmm12
  71        movdqa  \reg1, %xmm8
  72        movdqa  \reg2, %xmm13
  73        pclmulqdq       $0x00, FOLD_CONSTS, \reg1
  74        pclmulqdq       $0x11, FOLD_CONSTS, %xmm8
  75        pclmulqdq       $0x00, FOLD_CONSTS, \reg2
  76        pclmulqdq       $0x11, FOLD_CONSTS, %xmm13
  77        pxor    %xmm9 , \reg1
  78        xorps   %xmm8 , \reg1
  79        pxor    %xmm12, \reg2
  80        xorps   %xmm13, \reg2
  81.endm
  82
  83# Fold src_reg into dst_reg.
  84.macro  fold_16_bytes   src_reg, dst_reg
  85        movdqa  \src_reg, %xmm8
  86        pclmulqdq       $0x11, FOLD_CONSTS, \src_reg
  87        pclmulqdq       $0x00, FOLD_CONSTS, %xmm8
  88        pxor    %xmm8, \dst_reg
  89        xorps   \src_reg, \dst_reg
  90.endm
  91
  92#
  93# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
  94#
  95# Assumes len >= 16.
  96#
  97.align 16
  98SYM_FUNC_START(crc_t10dif_pcl)
  99
 100        movdqa  .Lbswap_mask(%rip), BSWAP_MASK
 101
 102        # For sizes less than 256 bytes, we can't fold 128 bytes at a time.
 103        cmp     $256, len
 104        jl      .Lless_than_256_bytes
 105
 106        # Load the first 128 data bytes.  Byte swapping is necessary to make the
 107        # bit order match the polynomial coefficient order.
 108        movdqu  16*0(buf), %xmm0
 109        movdqu  16*1(buf), %xmm1
 110        movdqu  16*2(buf), %xmm2
 111        movdqu  16*3(buf), %xmm3
 112        movdqu  16*4(buf), %xmm4
 113        movdqu  16*5(buf), %xmm5
 114        movdqu  16*6(buf), %xmm6
 115        movdqu  16*7(buf), %xmm7
 116        add     $128, buf
 117        pshufb  BSWAP_MASK, %xmm0
 118        pshufb  BSWAP_MASK, %xmm1
 119        pshufb  BSWAP_MASK, %xmm2
 120        pshufb  BSWAP_MASK, %xmm3
 121        pshufb  BSWAP_MASK, %xmm4
 122        pshufb  BSWAP_MASK, %xmm5
 123        pshufb  BSWAP_MASK, %xmm6
 124        pshufb  BSWAP_MASK, %xmm7
 125
 126        # XOR the first 16 data *bits* with the initial CRC value.
 127        pxor    %xmm8, %xmm8
 128        pinsrw  $7, init_crc, %xmm8
 129        pxor    %xmm8, %xmm0
 130
 131        movdqa  .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
 132
 133        # Subtract 128 for the 128 data bytes just consumed.  Subtract another
 134        # 128 to simplify the termination condition of the following loop.
 135        sub     $256, len
 136
 137        # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
 138        # bytes xmm0-7 into them, storing the result back into xmm0-7.
 139.Lfold_128_bytes_loop:
 140        fold_32_bytes   0, %xmm0, %xmm1
 141        fold_32_bytes   32, %xmm2, %xmm3
 142        fold_32_bytes   64, %xmm4, %xmm5
 143        fold_32_bytes   96, %xmm6, %xmm7
 144        add     $128, buf
 145        sub     $128, len
 146        jge     .Lfold_128_bytes_loop
 147
 148        # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
 149
 150        # Fold across 64 bytes.
 151        movdqa  .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
 152        fold_16_bytes   %xmm0, %xmm4
 153        fold_16_bytes   %xmm1, %xmm5
 154        fold_16_bytes   %xmm2, %xmm6
 155        fold_16_bytes   %xmm3, %xmm7
 156        # Fold across 32 bytes.
 157        movdqa  .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
 158        fold_16_bytes   %xmm4, %xmm6
 159        fold_16_bytes   %xmm5, %xmm7
 160        # Fold across 16 bytes.
 161        movdqa  .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
 162        fold_16_bytes   %xmm6, %xmm7
 163
 164        # Add 128 to get the correct number of data bytes remaining in 0...127
 165        # (not counting xmm7), following the previous extra subtraction by 128.
 166        # Then subtract 16 to simplify the termination condition of the
 167        # following loop.
 168        add     $128-16, len
 169
 170        # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
 171        # xmm7 into them, storing the result back into xmm7.
 172        jl      .Lfold_16_bytes_loop_done
 173.Lfold_16_bytes_loop:
 174        movdqa  %xmm7, %xmm8
 175        pclmulqdq       $0x11, FOLD_CONSTS, %xmm7
 176        pclmulqdq       $0x00, FOLD_CONSTS, %xmm8
 177        pxor    %xmm8, %xmm7
 178        movdqu  (buf), %xmm0
 179        pshufb  BSWAP_MASK, %xmm0
 180        pxor    %xmm0 , %xmm7
 181        add     $16, buf
 182        sub     $16, len
 183        jge     .Lfold_16_bytes_loop
 184
 185.Lfold_16_bytes_loop_done:
 186        # Add 16 to get the correct number of data bytes remaining in 0...15
 187        # (not counting xmm7), following the previous extra subtraction by 16.
 188        add     $16, len
 189        je      .Lreduce_final_16_bytes
 190
 191.Lhandle_partial_segment:
 192        # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
 193        # bytes are in xmm7 and the rest are the remaining data in 'buf'.  To do
 194        # this without needing a fold constant for each possible 'len', redivide
 195        # the bytes into a first chunk of 'len' bytes and a second chunk of 16
 196        # bytes, then fold the first chunk into the second.
 197
 198        movdqa  %xmm7, %xmm2
 199
 200        # xmm1 = last 16 original data bytes
 201        movdqu  -16(buf, len), %xmm1
 202        pshufb  BSWAP_MASK, %xmm1
 203
 204        # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
 205        lea     .Lbyteshift_table+16(%rip), %rax
 206        sub     len, %rax
 207        movdqu  (%rax), %xmm0
 208        pshufb  %xmm0, %xmm2
 209
 210        # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
 211        pxor    .Lmask1(%rip), %xmm0
 212        pshufb  %xmm0, %xmm7
 213
 214        # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
 215        # then '16-len' bytes from xmm2 (high-order bytes).
 216        pblendvb        %xmm2, %xmm1    #xmm0 is implicit
 217
 218        # Fold the first chunk into the second chunk, storing the result in xmm7.
 219        movdqa  %xmm7, %xmm8
 220        pclmulqdq       $0x11, FOLD_CONSTS, %xmm7
 221        pclmulqdq       $0x00, FOLD_CONSTS, %xmm8
 222        pxor    %xmm8, %xmm7
 223        pxor    %xmm1, %xmm7
 224
 225.Lreduce_final_16_bytes:
 226        # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
 227
 228        # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
 229        movdqa  .Lfinal_fold_consts(%rip), FOLD_CONSTS
 230
 231        # Fold the high 64 bits into the low 64 bits, while also multiplying by
 232        # x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
 233        # whose low 48 bits are 0.
 234        movdqa  %xmm7, %xmm0
 235        pclmulqdq       $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
 236        pslldq  $8, %xmm0
 237        pxor    %xmm0, %xmm7                      # + low bits * x^64
 238
 239        # Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
 240        # value congruent to x^64 * M(x) and whose low 48 bits are 0.
 241        movdqa  %xmm7, %xmm0
 242        pand    .Lmask2(%rip), %xmm0              # zero high 32 bits
 243        psrldq  $12, %xmm7                        # extract high 32 bits
 244        pclmulqdq       $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
 245        pxor    %xmm0, %xmm7                      # + low bits
 246
 247        # Load G(x) and floor(x^48 / G(x)).
 248        movdqa  .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
 249
 250        # Use Barrett reduction to compute the final CRC value.
 251        movdqa  %xmm7, %xmm0
 252        pclmulqdq       $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
 253        psrlq   $32, %xmm7                        # /= x^32
 254        pclmulqdq       $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
 255        psrlq   $48, %xmm0
 256        pxor    %xmm7, %xmm0                 # + low 16 nonzero bits
 257        # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
 258
 259        pextrw  $0, %xmm0, %eax
 260        ret
 261
 262.align 16
 263.Lless_than_256_bytes:
 264        # Checksumming a buffer of length 16...255 bytes
 265
 266        # Load the first 16 data bytes.
 267        movdqu  (buf), %xmm7
 268        pshufb  BSWAP_MASK, %xmm7
 269        add     $16, buf
 270
 271        # XOR the first 16 data *bits* with the initial CRC value.
 272        pxor    %xmm0, %xmm0
 273        pinsrw  $7, init_crc, %xmm0
 274        pxor    %xmm0, %xmm7
 275
 276        movdqa  .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
 277        cmp     $16, len
 278        je      .Lreduce_final_16_bytes         # len == 16
 279        sub     $32, len
 280        jge     .Lfold_16_bytes_loop            # 32 <= len <= 255
 281        add     $16, len
 282        jmp     .Lhandle_partial_segment        # 17 <= len <= 31
 283SYM_FUNC_END(crc_t10dif_pcl)
 284
 285.section        .rodata, "a", @progbits
 286.align 16
 287
 288# Fold constants precomputed from the polynomial 0x18bb7
 289# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
 290.Lfold_across_128_bytes_consts:
 291        .quad           0x0000000000006123      # x^(8*128)     mod G(x)
 292        .quad           0x0000000000002295      # x^(8*128+64)  mod G(x)
 293.Lfold_across_64_bytes_consts:
 294        .quad           0x0000000000001069      # x^(4*128)     mod G(x)
 295        .quad           0x000000000000dd31      # x^(4*128+64)  mod G(x)
 296.Lfold_across_32_bytes_consts:
 297        .quad           0x000000000000857d      # x^(2*128)     mod G(x)
 298        .quad           0x0000000000007acc      # x^(2*128+64)  mod G(x)
 299.Lfold_across_16_bytes_consts:
 300        .quad           0x000000000000a010      # x^(1*128)     mod G(x)
 301        .quad           0x0000000000001faa      # x^(1*128+64)  mod G(x)
 302.Lfinal_fold_consts:
 303        .quad           0x1368000000000000      # x^48 * (x^48 mod G(x))
 304        .quad           0x2d56000000000000      # x^48 * (x^80 mod G(x))
 305.Lbarrett_reduction_consts:
 306        .quad           0x0000000000018bb7      # G(x)
 307        .quad           0x00000001f65a57f8      # floor(x^48 / G(x))
 308
 309.section        .rodata.cst16.mask1, "aM", @progbits, 16
 310.align 16
 311.Lmask1:
 312        .octa   0x80808080808080808080808080808080
 313
 314.section        .rodata.cst16.mask2, "aM", @progbits, 16
 315.align 16
 316.Lmask2:
 317        .octa   0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
 318
 319.section        .rodata.cst16.bswap_mask, "aM", @progbits, 16
 320.align 16
 321.Lbswap_mask:
 322        .octa   0x000102030405060708090A0B0C0D0E0F
 323
 324.section        .rodata.cst32.byteshift_table, "aM", @progbits, 32
 325.align 16
 326# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
 327# is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
 328# 0x80} XOR the index vector to shift right by '16 - len' bytes.
 329.Lbyteshift_table:
 330        .byte            0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
 331        .byte           0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
 332        .byte            0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
 333        .byte            0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0
 334