linux/arch/x86/entry/entry_64.S
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 *  linux/arch/x86_64/entry.S
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
   7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
   8 *
   9 * entry.S contains the system-call and fault low-level handling routines.
  10 *
  11 * Some of this is documented in Documentation/x86/entry_64.rst
  12 *
  13 * A note on terminology:
  14 * - iret frame:        Architecture defined interrupt frame from SS to RIP
  15 *                      at the top of the kernel process stack.
  16 *
  17 * Some macro usage:
  18 * - SYM_FUNC_START/END:Define functions in the symbol table.
  19 * - idtentry:          Define exception entry points.
  20 */
  21#include <linux/linkage.h>
  22#include <asm/segment.h>
  23#include <asm/cache.h>
  24#include <asm/errno.h>
  25#include <asm/asm-offsets.h>
  26#include <asm/msr.h>
  27#include <asm/unistd.h>
  28#include <asm/thread_info.h>
  29#include <asm/hw_irq.h>
  30#include <asm/page_types.h>
  31#include <asm/irqflags.h>
  32#include <asm/paravirt.h>
  33#include <asm/percpu.h>
  34#include <asm/asm.h>
  35#include <asm/smap.h>
  36#include <asm/pgtable_types.h>
  37#include <asm/export.h>
  38#include <asm/frame.h>
  39#include <asm/trapnr.h>
  40#include <asm/nospec-branch.h>
  41#include <asm/fsgsbase.h>
  42#include <linux/err.h>
  43
  44#include "calling.h"
  45
  46.code64
  47.section .entry.text, "ax"
  48
  49/*
  50 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
  51 *
  52 * This is the only entry point used for 64-bit system calls.  The
  53 * hardware interface is reasonably well designed and the register to
  54 * argument mapping Linux uses fits well with the registers that are
  55 * available when SYSCALL is used.
  56 *
  57 * SYSCALL instructions can be found inlined in libc implementations as
  58 * well as some other programs and libraries.  There are also a handful
  59 * of SYSCALL instructions in the vDSO used, for example, as a
  60 * clock_gettimeofday fallback.
  61 *
  62 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
  63 * then loads new ss, cs, and rip from previously programmed MSRs.
  64 * rflags gets masked by a value from another MSR (so CLD and CLAC
  65 * are not needed). SYSCALL does not save anything on the stack
  66 * and does not change rsp.
  67 *
  68 * Registers on entry:
  69 * rax  system call number
  70 * rcx  return address
  71 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
  72 * rdi  arg0
  73 * rsi  arg1
  74 * rdx  arg2
  75 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
  76 * r8   arg4
  77 * r9   arg5
  78 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
  79 *
  80 * Only called from user space.
  81 *
  82 * When user can change pt_regs->foo always force IRET. That is because
  83 * it deals with uncanonical addresses better. SYSRET has trouble
  84 * with them due to bugs in both AMD and Intel CPUs.
  85 */
  86
  87SYM_CODE_START(entry_SYSCALL_64)
  88        UNWIND_HINT_EMPTY
  89
  90        swapgs
  91        /* tss.sp2 is scratch space. */
  92        movq    %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
  93        SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
  94        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
  95
  96SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
  97
  98        /* Construct struct pt_regs on stack */
  99        pushq   $__USER_DS                              /* pt_regs->ss */
 100        pushq   PER_CPU_VAR(cpu_tss_rw + TSS_sp2)       /* pt_regs->sp */
 101        pushq   %r11                                    /* pt_regs->flags */
 102        pushq   $__USER_CS                              /* pt_regs->cs */
 103        pushq   %rcx                                    /* pt_regs->ip */
 104SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
 105        pushq   %rax                                    /* pt_regs->orig_ax */
 106
 107        PUSH_AND_CLEAR_REGS rax=$-ENOSYS
 108
 109        /* IRQs are off. */
 110        movq    %rsp, %rdi
 111        /* Sign extend the lower 32bit as syscall numbers are treated as int */
 112        movslq  %eax, %rsi
 113        call    do_syscall_64           /* returns with IRQs disabled */
 114
 115        /*
 116         * Try to use SYSRET instead of IRET if we're returning to
 117         * a completely clean 64-bit userspace context.  If we're not,
 118         * go to the slow exit path.
 119         * In the Xen PV case we must use iret anyway.
 120         */
 121
 122        ALTERNATIVE "", "jmp    swapgs_restore_regs_and_return_to_usermode", \
 123                X86_FEATURE_XENPV
 124
 125        movq    RCX(%rsp), %rcx
 126        movq    RIP(%rsp), %r11
 127
 128        cmpq    %rcx, %r11      /* SYSRET requires RCX == RIP */
 129        jne     swapgs_restore_regs_and_return_to_usermode
 130
 131        /*
 132         * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
 133         * in kernel space.  This essentially lets the user take over
 134         * the kernel, since userspace controls RSP.
 135         *
 136         * If width of "canonical tail" ever becomes variable, this will need
 137         * to be updated to remain correct on both old and new CPUs.
 138         *
 139         * Change top bits to match most significant bit (47th or 56th bit
 140         * depending on paging mode) in the address.
 141         */
 142#ifdef CONFIG_X86_5LEVEL
 143        ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
 144                "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
 145#else
 146        shl     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 147        sar     $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
 148#endif
 149
 150        /* If this changed %rcx, it was not canonical */
 151        cmpq    %rcx, %r11
 152        jne     swapgs_restore_regs_and_return_to_usermode
 153
 154        cmpq    $__USER_CS, CS(%rsp)            /* CS must match SYSRET */
 155        jne     swapgs_restore_regs_and_return_to_usermode
 156
 157        movq    R11(%rsp), %r11
 158        cmpq    %r11, EFLAGS(%rsp)              /* R11 == RFLAGS */
 159        jne     swapgs_restore_regs_and_return_to_usermode
 160
 161        /*
 162         * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
 163         * restore RF properly. If the slowpath sets it for whatever reason, we
 164         * need to restore it correctly.
 165         *
 166         * SYSRET can restore TF, but unlike IRET, restoring TF results in a
 167         * trap from userspace immediately after SYSRET.  This would cause an
 168         * infinite loop whenever #DB happens with register state that satisfies
 169         * the opportunistic SYSRET conditions.  For example, single-stepping
 170         * this user code:
 171         *
 172         *           movq       $stuck_here, %rcx
 173         *           pushfq
 174         *           popq %r11
 175         *   stuck_here:
 176         *
 177         * would never get past 'stuck_here'.
 178         */
 179        testq   $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
 180        jnz     swapgs_restore_regs_and_return_to_usermode
 181
 182        /* nothing to check for RSP */
 183
 184        cmpq    $__USER_DS, SS(%rsp)            /* SS must match SYSRET */
 185        jne     swapgs_restore_regs_and_return_to_usermode
 186
 187        /*
 188         * We win! This label is here just for ease of understanding
 189         * perf profiles. Nothing jumps here.
 190         */
 191syscall_return_via_sysret:
 192        /* rcx and r11 are already restored (see code above) */
 193        POP_REGS pop_rdi=0 skip_r11rcx=1
 194
 195        /*
 196         * Now all regs are restored except RSP and RDI.
 197         * Save old stack pointer and switch to trampoline stack.
 198         */
 199        movq    %rsp, %rdi
 200        movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 201        UNWIND_HINT_EMPTY
 202
 203        pushq   RSP-RDI(%rdi)   /* RSP */
 204        pushq   (%rdi)          /* RDI */
 205
 206        /*
 207         * We are on the trampoline stack.  All regs except RDI are live.
 208         * We can do future final exit work right here.
 209         */
 210        STACKLEAK_ERASE_NOCLOBBER
 211
 212        SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 213
 214        popq    %rdi
 215        popq    %rsp
 216        swapgs
 217        sysretq
 218SYM_CODE_END(entry_SYSCALL_64)
 219
 220/*
 221 * %rdi: prev task
 222 * %rsi: next task
 223 */
 224.pushsection .text, "ax"
 225SYM_FUNC_START(__switch_to_asm)
 226        /*
 227         * Save callee-saved registers
 228         * This must match the order in inactive_task_frame
 229         */
 230        pushq   %rbp
 231        pushq   %rbx
 232        pushq   %r12
 233        pushq   %r13
 234        pushq   %r14
 235        pushq   %r15
 236
 237        /* switch stack */
 238        movq    %rsp, TASK_threadsp(%rdi)
 239        movq    TASK_threadsp(%rsi), %rsp
 240
 241#ifdef CONFIG_STACKPROTECTOR
 242        movq    TASK_stack_canary(%rsi), %rbx
 243        movq    %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
 244#endif
 245
 246#ifdef CONFIG_RETPOLINE
 247        /*
 248         * When switching from a shallower to a deeper call stack
 249         * the RSB may either underflow or use entries populated
 250         * with userspace addresses. On CPUs where those concerns
 251         * exist, overwrite the RSB with entries which capture
 252         * speculative execution to prevent attack.
 253         */
 254        FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 255#endif
 256
 257        /* restore callee-saved registers */
 258        popq    %r15
 259        popq    %r14
 260        popq    %r13
 261        popq    %r12
 262        popq    %rbx
 263        popq    %rbp
 264
 265        jmp     __switch_to
 266SYM_FUNC_END(__switch_to_asm)
 267.popsection
 268
 269/*
 270 * A newly forked process directly context switches into this address.
 271 *
 272 * rax: prev task we switched from
 273 * rbx: kernel thread func (NULL for user thread)
 274 * r12: kernel thread arg
 275 */
 276.pushsection .text, "ax"
 277SYM_CODE_START(ret_from_fork)
 278        UNWIND_HINT_EMPTY
 279        movq    %rax, %rdi
 280        call    schedule_tail                   /* rdi: 'prev' task parameter */
 281
 282        testq   %rbx, %rbx                      /* from kernel_thread? */
 283        jnz     1f                              /* kernel threads are uncommon */
 284
 2852:
 286        UNWIND_HINT_REGS
 287        movq    %rsp, %rdi
 288        call    syscall_exit_to_user_mode       /* returns with IRQs disabled */
 289        jmp     swapgs_restore_regs_and_return_to_usermode
 290
 2911:
 292        /* kernel thread */
 293        UNWIND_HINT_EMPTY
 294        movq    %r12, %rdi
 295        CALL_NOSPEC rbx
 296        /*
 297         * A kernel thread is allowed to return here after successfully
 298         * calling kernel_execve().  Exit to userspace to complete the execve()
 299         * syscall.
 300         */
 301        movq    $0, RAX(%rsp)
 302        jmp     2b
 303SYM_CODE_END(ret_from_fork)
 304.popsection
 305
 306.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
 307#ifdef CONFIG_DEBUG_ENTRY
 308        pushq %rax
 309        SAVE_FLAGS
 310        testl $X86_EFLAGS_IF, %eax
 311        jz .Lokay_\@
 312        ud2
 313.Lokay_\@:
 314        popq %rax
 315#endif
 316.endm
 317
 318/**
 319 * idtentry_body - Macro to emit code calling the C function
 320 * @cfunc:              C function to be called
 321 * @has_error_code:     Hardware pushed error code on stack
 322 */
 323.macro idtentry_body cfunc has_error_code:req
 324
 325        call    error_entry
 326        UNWIND_HINT_REGS
 327
 328        movq    %rsp, %rdi                      /* pt_regs pointer into 1st argument*/
 329
 330        .if \has_error_code == 1
 331                movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
 332                movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
 333        .endif
 334
 335        call    \cfunc
 336
 337        jmp     error_return
 338.endm
 339
 340/**
 341 * idtentry - Macro to generate entry stubs for simple IDT entries
 342 * @vector:             Vector number
 343 * @asmsym:             ASM symbol for the entry point
 344 * @cfunc:              C function to be called
 345 * @has_error_code:     Hardware pushed error code on stack
 346 *
 347 * The macro emits code to set up the kernel context for straight forward
 348 * and simple IDT entries. No IST stack, no paranoid entry checks.
 349 */
 350.macro idtentry vector asmsym cfunc has_error_code:req
 351SYM_CODE_START(\asmsym)
 352        UNWIND_HINT_IRET_REGS offset=\has_error_code*8
 353        ASM_CLAC
 354
 355        .if \has_error_code == 0
 356                pushq   $-1                     /* ORIG_RAX: no syscall to restart */
 357        .endif
 358
 359        .if \vector == X86_TRAP_BP
 360                /*
 361                 * If coming from kernel space, create a 6-word gap to allow the
 362                 * int3 handler to emulate a call instruction.
 363                 */
 364                testb   $3, CS-ORIG_RAX(%rsp)
 365                jnz     .Lfrom_usermode_no_gap_\@
 366                .rept   6
 367                pushq   5*8(%rsp)
 368                .endr
 369                UNWIND_HINT_IRET_REGS offset=8
 370.Lfrom_usermode_no_gap_\@:
 371        .endif
 372
 373        idtentry_body \cfunc \has_error_code
 374
 375_ASM_NOKPROBE(\asmsym)
 376SYM_CODE_END(\asmsym)
 377.endm
 378
 379/*
 380 * Interrupt entry/exit.
 381 *
 382 + The interrupt stubs push (vector) onto the stack, which is the error_code
 383 * position of idtentry exceptions, and jump to one of the two idtentry points
 384 * (common/spurious).
 385 *
 386 * common_interrupt is a hotpath, align it to a cache line
 387 */
 388.macro idtentry_irq vector cfunc
 389        .p2align CONFIG_X86_L1_CACHE_SHIFT
 390        idtentry \vector asm_\cfunc \cfunc has_error_code=1
 391.endm
 392
 393/*
 394 * System vectors which invoke their handlers directly and are not
 395 * going through the regular common device interrupt handling code.
 396 */
 397.macro idtentry_sysvec vector cfunc
 398        idtentry \vector asm_\cfunc \cfunc has_error_code=0
 399.endm
 400
 401/**
 402 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
 403 * @vector:             Vector number
 404 * @asmsym:             ASM symbol for the entry point
 405 * @cfunc:              C function to be called
 406 *
 407 * The macro emits code to set up the kernel context for #MC and #DB
 408 *
 409 * If the entry comes from user space it uses the normal entry path
 410 * including the return to user space work and preemption checks on
 411 * exit.
 412 *
 413 * If hits in kernel mode then it needs to go through the paranoid
 414 * entry as the exception can hit any random state. No preemption
 415 * check on exit to keep the paranoid path simple.
 416 */
 417.macro idtentry_mce_db vector asmsym cfunc
 418SYM_CODE_START(\asmsym)
 419        UNWIND_HINT_IRET_REGS
 420        ASM_CLAC
 421
 422        pushq   $-1                     /* ORIG_RAX: no syscall to restart */
 423
 424        /*
 425         * If the entry is from userspace, switch stacks and treat it as
 426         * a normal entry.
 427         */
 428        testb   $3, CS-ORIG_RAX(%rsp)
 429        jnz     .Lfrom_usermode_switch_stack_\@
 430
 431        /* paranoid_entry returns GS information for paranoid_exit in EBX. */
 432        call    paranoid_entry
 433
 434        UNWIND_HINT_REGS
 435
 436        movq    %rsp, %rdi              /* pt_regs pointer */
 437
 438        call    \cfunc
 439
 440        jmp     paranoid_exit
 441
 442        /* Switch to the regular task stack and use the noist entry point */
 443.Lfrom_usermode_switch_stack_\@:
 444        idtentry_body noist_\cfunc, has_error_code=0
 445
 446_ASM_NOKPROBE(\asmsym)
 447SYM_CODE_END(\asmsym)
 448.endm
 449
 450#ifdef CONFIG_AMD_MEM_ENCRYPT
 451/**
 452 * idtentry_vc - Macro to generate entry stub for #VC
 453 * @vector:             Vector number
 454 * @asmsym:             ASM symbol for the entry point
 455 * @cfunc:              C function to be called
 456 *
 457 * The macro emits code to set up the kernel context for #VC. The #VC handler
 458 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
 459 *
 460 * To make this work the #VC entry code tries its best to pretend it doesn't use
 461 * an IST stack by switching to the task stack if coming from user-space (which
 462 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
 463 * entered from kernel-mode.
 464 *
 465 * If entered from kernel-mode the return stack is validated first, and if it is
 466 * not safe to use (e.g. because it points to the entry stack) the #VC handler
 467 * will switch to a fall-back stack (VC2) and call a special handler function.
 468 *
 469 * The macro is only used for one vector, but it is planned to be extended in
 470 * the future for the #HV exception.
 471 */
 472.macro idtentry_vc vector asmsym cfunc
 473SYM_CODE_START(\asmsym)
 474        UNWIND_HINT_IRET_REGS
 475        ASM_CLAC
 476
 477        /*
 478         * If the entry is from userspace, switch stacks and treat it as
 479         * a normal entry.
 480         */
 481        testb   $3, CS-ORIG_RAX(%rsp)
 482        jnz     .Lfrom_usermode_switch_stack_\@
 483
 484        /*
 485         * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
 486         * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
 487         */
 488        call    paranoid_entry
 489
 490        UNWIND_HINT_REGS
 491
 492        /*
 493         * Switch off the IST stack to make it free for nested exceptions. The
 494         * vc_switch_off_ist() function will switch back to the interrupted
 495         * stack if it is safe to do so. If not it switches to the VC fall-back
 496         * stack.
 497         */
 498        movq    %rsp, %rdi              /* pt_regs pointer */
 499        call    vc_switch_off_ist
 500        movq    %rax, %rsp              /* Switch to new stack */
 501
 502        UNWIND_HINT_REGS
 503
 504        /* Update pt_regs */
 505        movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
 506        movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
 507
 508        movq    %rsp, %rdi              /* pt_regs pointer */
 509
 510        call    kernel_\cfunc
 511
 512        /*
 513         * No need to switch back to the IST stack. The current stack is either
 514         * identical to the stack in the IRET frame or the VC fall-back stack,
 515         * so it is definitely mapped even with PTI enabled.
 516         */
 517        jmp     paranoid_exit
 518
 519        /* Switch to the regular task stack */
 520.Lfrom_usermode_switch_stack_\@:
 521        idtentry_body user_\cfunc, has_error_code=1
 522
 523_ASM_NOKPROBE(\asmsym)
 524SYM_CODE_END(\asmsym)
 525.endm
 526#endif
 527
 528/*
 529 * Double fault entry. Straight paranoid. No checks from which context
 530 * this comes because for the espfix induced #DF this would do the wrong
 531 * thing.
 532 */
 533.macro idtentry_df vector asmsym cfunc
 534SYM_CODE_START(\asmsym)
 535        UNWIND_HINT_IRET_REGS offset=8
 536        ASM_CLAC
 537
 538        /* paranoid_entry returns GS information for paranoid_exit in EBX. */
 539        call    paranoid_entry
 540        UNWIND_HINT_REGS
 541
 542        movq    %rsp, %rdi              /* pt_regs pointer into first argument */
 543        movq    ORIG_RAX(%rsp), %rsi    /* get error code into 2nd argument*/
 544        movq    $-1, ORIG_RAX(%rsp)     /* no syscall to restart */
 545        call    \cfunc
 546
 547        jmp     paranoid_exit
 548
 549_ASM_NOKPROBE(\asmsym)
 550SYM_CODE_END(\asmsym)
 551.endm
 552
 553/*
 554 * Include the defines which emit the idt entries which are shared
 555 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
 556 * so the stacktrace boundary checks work.
 557 */
 558        .align 16
 559        .globl __irqentry_text_start
 560__irqentry_text_start:
 561
 562#include <asm/idtentry.h>
 563
 564        .align 16
 565        .globl __irqentry_text_end
 566__irqentry_text_end:
 567
 568SYM_CODE_START_LOCAL(common_interrupt_return)
 569SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
 570#ifdef CONFIG_DEBUG_ENTRY
 571        /* Assert that pt_regs indicates user mode. */
 572        testb   $3, CS(%rsp)
 573        jnz     1f
 574        ud2
 5751:
 576#endif
 577        POP_REGS pop_rdi=0
 578
 579        /*
 580         * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
 581         * Save old stack pointer and switch to trampoline stack.
 582         */
 583        movq    %rsp, %rdi
 584        movq    PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
 585        UNWIND_HINT_EMPTY
 586
 587        /* Copy the IRET frame to the trampoline stack. */
 588        pushq   6*8(%rdi)       /* SS */
 589        pushq   5*8(%rdi)       /* RSP */
 590        pushq   4*8(%rdi)       /* EFLAGS */
 591        pushq   3*8(%rdi)       /* CS */
 592        pushq   2*8(%rdi)       /* RIP */
 593
 594        /* Push user RDI on the trampoline stack. */
 595        pushq   (%rdi)
 596
 597        /*
 598         * We are on the trampoline stack.  All regs except RDI are live.
 599         * We can do future final exit work right here.
 600         */
 601        STACKLEAK_ERASE_NOCLOBBER
 602
 603        SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 604
 605        /* Restore RDI. */
 606        popq    %rdi
 607        SWAPGS
 608        INTERRUPT_RETURN
 609
 610
 611SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
 612#ifdef CONFIG_DEBUG_ENTRY
 613        /* Assert that pt_regs indicates kernel mode. */
 614        testb   $3, CS(%rsp)
 615        jz      1f
 616        ud2
 6171:
 618#endif
 619        POP_REGS
 620        addq    $8, %rsp        /* skip regs->orig_ax */
 621        /*
 622         * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 623         * when returning from IPI handler.
 624         */
 625        INTERRUPT_RETURN
 626
 627SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
 628        UNWIND_HINT_IRET_REGS
 629        /*
 630         * Are we returning to a stack segment from the LDT?  Note: in
 631         * 64-bit mode SS:RSP on the exception stack is always valid.
 632         */
 633#ifdef CONFIG_X86_ESPFIX64
 634        testb   $4, (SS-RIP)(%rsp)
 635        jnz     native_irq_return_ldt
 636#endif
 637
 638SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
 639        /*
 640         * This may fault.  Non-paranoid faults on return to userspace are
 641         * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
 642         * Double-faults due to espfix64 are handled in exc_double_fault.
 643         * Other faults here are fatal.
 644         */
 645        iretq
 646
 647#ifdef CONFIG_X86_ESPFIX64
 648native_irq_return_ldt:
 649        /*
 650         * We are running with user GSBASE.  All GPRs contain their user
 651         * values.  We have a percpu ESPFIX stack that is eight slots
 652         * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
 653         * of the ESPFIX stack.
 654         *
 655         * We clobber RAX and RDI in this code.  We stash RDI on the
 656         * normal stack and RAX on the ESPFIX stack.
 657         *
 658         * The ESPFIX stack layout we set up looks like this:
 659         *
 660         * --- top of ESPFIX stack ---
 661         * SS
 662         * RSP
 663         * RFLAGS
 664         * CS
 665         * RIP  <-- RSP points here when we're done
 666         * RAX  <-- espfix_waddr points here
 667         * --- bottom of ESPFIX stack ---
 668         */
 669
 670        pushq   %rdi                            /* Stash user RDI */
 671        swapgs                                  /* to kernel GS */
 672        SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi   /* to kernel CR3 */
 673
 674        movq    PER_CPU_VAR(espfix_waddr), %rdi
 675        movq    %rax, (0*8)(%rdi)               /* user RAX */
 676        movq    (1*8)(%rsp), %rax               /* user RIP */
 677        movq    %rax, (1*8)(%rdi)
 678        movq    (2*8)(%rsp), %rax               /* user CS */
 679        movq    %rax, (2*8)(%rdi)
 680        movq    (3*8)(%rsp), %rax               /* user RFLAGS */
 681        movq    %rax, (3*8)(%rdi)
 682        movq    (5*8)(%rsp), %rax               /* user SS */
 683        movq    %rax, (5*8)(%rdi)
 684        movq    (4*8)(%rsp), %rax               /* user RSP */
 685        movq    %rax, (4*8)(%rdi)
 686        /* Now RAX == RSP. */
 687
 688        andl    $0xffff0000, %eax               /* RAX = (RSP & 0xffff0000) */
 689
 690        /*
 691         * espfix_stack[31:16] == 0.  The page tables are set up such that
 692         * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
 693         * espfix_waddr for any X.  That is, there are 65536 RO aliases of
 694         * the same page.  Set up RSP so that RSP[31:16] contains the
 695         * respective 16 bits of the /userspace/ RSP and RSP nonetheless
 696         * still points to an RO alias of the ESPFIX stack.
 697         */
 698        orq     PER_CPU_VAR(espfix_stack), %rax
 699
 700        SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
 701        swapgs                                  /* to user GS */
 702        popq    %rdi                            /* Restore user RDI */
 703
 704        movq    %rax, %rsp
 705        UNWIND_HINT_IRET_REGS offset=8
 706
 707        /*
 708         * At this point, we cannot write to the stack any more, but we can
 709         * still read.
 710         */
 711        popq    %rax                            /* Restore user RAX */
 712
 713        /*
 714         * RSP now points to an ordinary IRET frame, except that the page
 715         * is read-only and RSP[31:16] are preloaded with the userspace
 716         * values.  We can now IRET back to userspace.
 717         */
 718        jmp     native_irq_return_iret
 719#endif
 720SYM_CODE_END(common_interrupt_return)
 721_ASM_NOKPROBE(common_interrupt_return)
 722
 723/*
 724 * Reload gs selector with exception handling
 725 * edi:  new selector
 726 *
 727 * Is in entry.text as it shouldn't be instrumented.
 728 */
 729SYM_FUNC_START(asm_load_gs_index)
 730        FRAME_BEGIN
 731        swapgs
 732.Lgs_change:
 733        movl    %edi, %gs
 7342:      ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
 735        swapgs
 736        FRAME_END
 737        ret
 738SYM_FUNC_END(asm_load_gs_index)
 739EXPORT_SYMBOL(asm_load_gs_index)
 740
 741        _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
 742        .section .fixup, "ax"
 743        /* running with kernelgs */
 744SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
 745        swapgs                                  /* switch back to user gs */
 746.macro ZAP_GS
 747        /* This can't be a string because the preprocessor needs to see it. */
 748        movl $__USER_DS, %eax
 749        movl %eax, %gs
 750.endm
 751        ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
 752        xorl    %eax, %eax
 753        movl    %eax, %gs
 754        jmp     2b
 755SYM_CODE_END(.Lbad_gs)
 756        .previous
 757
 758#ifdef CONFIG_XEN_PV
 759/*
 760 * A note on the "critical region" in our callback handler.
 761 * We want to avoid stacking callback handlers due to events occurring
 762 * during handling of the last event. To do this, we keep events disabled
 763 * until we've done all processing. HOWEVER, we must enable events before
 764 * popping the stack frame (can't be done atomically) and so it would still
 765 * be possible to get enough handler activations to overflow the stack.
 766 * Although unlikely, bugs of that kind are hard to track down, so we'd
 767 * like to avoid the possibility.
 768 * So, on entry to the handler we detect whether we interrupted an
 769 * existing activation in its critical region -- if so, we pop the current
 770 * activation and restart the handler using the previous one.
 771 *
 772 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
 773 */
 774SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
 775
 776/*
 777 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 778 * see the correct pointer to the pt_regs
 779 */
 780        UNWIND_HINT_FUNC
 781        movq    %rdi, %rsp                      /* we don't return, adjust the stack frame */
 782        UNWIND_HINT_REGS
 783
 784        call    xen_pv_evtchn_do_upcall
 785
 786        jmp     error_return
 787SYM_CODE_END(exc_xen_hypervisor_callback)
 788
 789/*
 790 * Hypervisor uses this for application faults while it executes.
 791 * We get here for two reasons:
 792 *  1. Fault while reloading DS, ES, FS or GS
 793 *  2. Fault while executing IRET
 794 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 795 * registers that could be reloaded and zeroed the others.
 796 * Category 2 we fix up by killing the current process. We cannot use the
 797 * normal Linux return path in this case because if we use the IRET hypercall
 798 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 799 * We distinguish between categories by comparing each saved segment register
 800 * with its current contents: any discrepancy means we in category 1.
 801 */
 802SYM_CODE_START(xen_failsafe_callback)
 803        UNWIND_HINT_EMPTY
 804        movl    %ds, %ecx
 805        cmpw    %cx, 0x10(%rsp)
 806        jne     1f
 807        movl    %es, %ecx
 808        cmpw    %cx, 0x18(%rsp)
 809        jne     1f
 810        movl    %fs, %ecx
 811        cmpw    %cx, 0x20(%rsp)
 812        jne     1f
 813        movl    %gs, %ecx
 814        cmpw    %cx, 0x28(%rsp)
 815        jne     1f
 816        /* All segments match their saved values => Category 2 (Bad IRET). */
 817        movq    (%rsp), %rcx
 818        movq    8(%rsp), %r11
 819        addq    $0x30, %rsp
 820        pushq   $0                              /* RIP */
 821        UNWIND_HINT_IRET_REGS offset=8
 822        jmp     asm_exc_general_protection
 8231:      /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
 824        movq    (%rsp), %rcx
 825        movq    8(%rsp), %r11
 826        addq    $0x30, %rsp
 827        UNWIND_HINT_IRET_REGS
 828        pushq   $-1 /* orig_ax = -1 => not a system call */
 829        PUSH_AND_CLEAR_REGS
 830        ENCODE_FRAME_POINTER
 831        jmp     error_return
 832SYM_CODE_END(xen_failsafe_callback)
 833#endif /* CONFIG_XEN_PV */
 834
 835/*
 836 * Save all registers in pt_regs. Return GSBASE related information
 837 * in EBX depending on the availability of the FSGSBASE instructions:
 838 *
 839 * FSGSBASE     R/EBX
 840 *     N        0 -> SWAPGS on exit
 841 *              1 -> no SWAPGS on exit
 842 *
 843 *     Y        GSBASE value at entry, must be restored in paranoid_exit
 844 */
 845SYM_CODE_START_LOCAL(paranoid_entry)
 846        UNWIND_HINT_FUNC
 847        cld
 848        PUSH_AND_CLEAR_REGS save_ret=1
 849        ENCODE_FRAME_POINTER 8
 850
 851        /*
 852         * Always stash CR3 in %r14.  This value will be restored,
 853         * verbatim, at exit.  Needed if paranoid_entry interrupted
 854         * another entry that already switched to the user CR3 value
 855         * but has not yet returned to userspace.
 856         *
 857         * This is also why CS (stashed in the "iret frame" by the
 858         * hardware at entry) can not be used: this may be a return
 859         * to kernel code, but with a user CR3 value.
 860         *
 861         * Switching CR3 does not depend on kernel GSBASE so it can
 862         * be done before switching to the kernel GSBASE. This is
 863         * required for FSGSBASE because the kernel GSBASE has to
 864         * be retrieved from a kernel internal table.
 865         */
 866        SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
 867
 868        /*
 869         * Handling GSBASE depends on the availability of FSGSBASE.
 870         *
 871         * Without FSGSBASE the kernel enforces that negative GSBASE
 872         * values indicate kernel GSBASE. With FSGSBASE no assumptions
 873         * can be made about the GSBASE value when entering from user
 874         * space.
 875         */
 876        ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
 877
 878        /*
 879         * Read the current GSBASE and store it in %rbx unconditionally,
 880         * retrieve and set the current CPUs kernel GSBASE. The stored value
 881         * has to be restored in paranoid_exit unconditionally.
 882         *
 883         * The unconditional write to GS base below ensures that no subsequent
 884         * loads based on a mispredicted GS base can happen, therefore no LFENCE
 885         * is needed here.
 886         */
 887        SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
 888        ret
 889
 890.Lparanoid_entry_checkgs:
 891        /* EBX = 1 -> kernel GSBASE active, no restore required */
 892        movl    $1, %ebx
 893        /*
 894         * The kernel-enforced convention is a negative GSBASE indicates
 895         * a kernel value. No SWAPGS needed on entry and exit.
 896         */
 897        movl    $MSR_GS_BASE, %ecx
 898        rdmsr
 899        testl   %edx, %edx
 900        jns     .Lparanoid_entry_swapgs
 901        ret
 902
 903.Lparanoid_entry_swapgs:
 904        swapgs
 905
 906        /*
 907         * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
 908         * unconditional CR3 write, even in the PTI case.  So do an lfence
 909         * to prevent GS speculation, regardless of whether PTI is enabled.
 910         */
 911        FENCE_SWAPGS_KERNEL_ENTRY
 912
 913        /* EBX = 0 -> SWAPGS required on exit */
 914        xorl    %ebx, %ebx
 915        ret
 916SYM_CODE_END(paranoid_entry)
 917
 918/*
 919 * "Paranoid" exit path from exception stack.  This is invoked
 920 * only on return from non-NMI IST interrupts that came
 921 * from kernel space.
 922 *
 923 * We may be returning to very strange contexts (e.g. very early
 924 * in syscall entry), so checking for preemption here would
 925 * be complicated.  Fortunately, there's no good reason to try
 926 * to handle preemption here.
 927 *
 928 * R/EBX contains the GSBASE related information depending on the
 929 * availability of the FSGSBASE instructions:
 930 *
 931 * FSGSBASE     R/EBX
 932 *     N        0 -> SWAPGS on exit
 933 *              1 -> no SWAPGS on exit
 934 *
 935 *     Y        User space GSBASE, must be restored unconditionally
 936 */
 937SYM_CODE_START_LOCAL(paranoid_exit)
 938        UNWIND_HINT_REGS
 939        /*
 940         * The order of operations is important. RESTORE_CR3 requires
 941         * kernel GSBASE.
 942         *
 943         * NB to anyone to try to optimize this code: this code does
 944         * not execute at all for exceptions from user mode. Those
 945         * exceptions go through error_exit instead.
 946         */
 947        RESTORE_CR3     scratch_reg=%rax save_reg=%r14
 948
 949        /* Handle the three GSBASE cases */
 950        ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
 951
 952        /* With FSGSBASE enabled, unconditionally restore GSBASE */
 953        wrgsbase        %rbx
 954        jmp             restore_regs_and_return_to_kernel
 955
 956.Lparanoid_exit_checkgs:
 957        /* On non-FSGSBASE systems, conditionally do SWAPGS */
 958        testl           %ebx, %ebx
 959        jnz             restore_regs_and_return_to_kernel
 960
 961        /* We are returning to a context with user GSBASE */
 962        swapgs
 963        jmp             restore_regs_and_return_to_kernel
 964SYM_CODE_END(paranoid_exit)
 965
 966/*
 967 * Save all registers in pt_regs, and switch GS if needed.
 968 */
 969SYM_CODE_START_LOCAL(error_entry)
 970        UNWIND_HINT_FUNC
 971        cld
 972        PUSH_AND_CLEAR_REGS save_ret=1
 973        ENCODE_FRAME_POINTER 8
 974        testb   $3, CS+8(%rsp)
 975        jz      .Lerror_kernelspace
 976
 977        /*
 978         * We entered from user mode or we're pretending to have entered
 979         * from user mode due to an IRET fault.
 980         */
 981        SWAPGS
 982        FENCE_SWAPGS_USER_ENTRY
 983        /* We have user CR3.  Change to kernel CR3. */
 984        SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
 985
 986.Lerror_entry_from_usermode_after_swapgs:
 987        /* Put us onto the real thread stack. */
 988        popq    %r12                            /* save return addr in %12 */
 989        movq    %rsp, %rdi                      /* arg0 = pt_regs pointer */
 990        call    sync_regs
 991        movq    %rax, %rsp                      /* switch stack */
 992        ENCODE_FRAME_POINTER
 993        pushq   %r12
 994        ret
 995
 996.Lerror_entry_done_lfence:
 997        FENCE_SWAPGS_KERNEL_ENTRY
 998.Lerror_entry_done:
 999        ret
1000
1001        /*
1002         * There are two places in the kernel that can potentially fault with
1003         * usergs. Handle them here.  B stepping K8s sometimes report a
1004         * truncated RIP for IRET exceptions returning to compat mode. Check
1005         * for these here too.
1006         */
1007.Lerror_kernelspace:
1008        leaq    native_irq_return_iret(%rip), %rcx
1009        cmpq    %rcx, RIP+8(%rsp)
1010        je      .Lerror_bad_iret
1011        movl    %ecx, %eax                      /* zero extend */
1012        cmpq    %rax, RIP+8(%rsp)
1013        je      .Lbstep_iret
1014        cmpq    $.Lgs_change, RIP+8(%rsp)
1015        jne     .Lerror_entry_done_lfence
1016
1017        /*
1018         * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1019         * gsbase and proceed.  We'll fix up the exception and land in
1020         * .Lgs_change's error handler with kernel gsbase.
1021         */
1022        SWAPGS
1023        FENCE_SWAPGS_USER_ENTRY
1024        jmp .Lerror_entry_done
1025
1026.Lbstep_iret:
1027        /* Fix truncated RIP */
1028        movq    %rcx, RIP+8(%rsp)
1029        /* fall through */
1030
1031.Lerror_bad_iret:
1032        /*
1033         * We came from an IRET to user mode, so we have user
1034         * gsbase and CR3.  Switch to kernel gsbase and CR3:
1035         */
1036        SWAPGS
1037        FENCE_SWAPGS_USER_ENTRY
1038        SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1039
1040        /*
1041         * Pretend that the exception came from user mode: set up pt_regs
1042         * as if we faulted immediately after IRET.
1043         */
1044        mov     %rsp, %rdi
1045        call    fixup_bad_iret
1046        mov     %rax, %rsp
1047        jmp     .Lerror_entry_from_usermode_after_swapgs
1048SYM_CODE_END(error_entry)
1049
1050SYM_CODE_START_LOCAL(error_return)
1051        UNWIND_HINT_REGS
1052        DEBUG_ENTRY_ASSERT_IRQS_OFF
1053        testb   $3, CS(%rsp)
1054        jz      restore_regs_and_return_to_kernel
1055        jmp     swapgs_restore_regs_and_return_to_usermode
1056SYM_CODE_END(error_return)
1057
1058/*
1059 * Runs on exception stack.  Xen PV does not go through this path at all,
1060 * so we can use real assembly here.
1061 *
1062 * Registers:
1063 *      %r14: Used to save/restore the CR3 of the interrupted context
1064 *            when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1065 */
1066SYM_CODE_START(asm_exc_nmi)
1067        UNWIND_HINT_IRET_REGS
1068
1069        /*
1070         * We allow breakpoints in NMIs. If a breakpoint occurs, then
1071         * the iretq it performs will take us out of NMI context.
1072         * This means that we can have nested NMIs where the next
1073         * NMI is using the top of the stack of the previous NMI. We
1074         * can't let it execute because the nested NMI will corrupt the
1075         * stack of the previous NMI. NMI handlers are not re-entrant
1076         * anyway.
1077         *
1078         * To handle this case we do the following:
1079         *  Check the a special location on the stack that contains
1080         *  a variable that is set when NMIs are executing.
1081         *  The interrupted task's stack is also checked to see if it
1082         *  is an NMI stack.
1083         *  If the variable is not set and the stack is not the NMI
1084         *  stack then:
1085         *    o Set the special variable on the stack
1086         *    o Copy the interrupt frame into an "outermost" location on the
1087         *      stack
1088         *    o Copy the interrupt frame into an "iret" location on the stack
1089         *    o Continue processing the NMI
1090         *  If the variable is set or the previous stack is the NMI stack:
1091         *    o Modify the "iret" location to jump to the repeat_nmi
1092         *    o return back to the first NMI
1093         *
1094         * Now on exit of the first NMI, we first clear the stack variable
1095         * The NMI stack will tell any nested NMIs at that point that it is
1096         * nested. Then we pop the stack normally with iret, and if there was
1097         * a nested NMI that updated the copy interrupt stack frame, a
1098         * jump will be made to the repeat_nmi code that will handle the second
1099         * NMI.
1100         *
1101         * However, espfix prevents us from directly returning to userspace
1102         * with a single IRET instruction.  Similarly, IRET to user mode
1103         * can fault.  We therefore handle NMIs from user space like
1104         * other IST entries.
1105         */
1106
1107        ASM_CLAC
1108
1109        /* Use %rdx as our temp variable throughout */
1110        pushq   %rdx
1111
1112        testb   $3, CS-RIP+8(%rsp)
1113        jz      .Lnmi_from_kernel
1114
1115        /*
1116         * NMI from user mode.  We need to run on the thread stack, but we
1117         * can't go through the normal entry paths: NMIs are masked, and
1118         * we don't want to enable interrupts, because then we'll end
1119         * up in an awkward situation in which IRQs are on but NMIs
1120         * are off.
1121         *
1122         * We also must not push anything to the stack before switching
1123         * stacks lest we corrupt the "NMI executing" variable.
1124         */
1125
1126        swapgs
1127        cld
1128        FENCE_SWAPGS_USER_ENTRY
1129        SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1130        movq    %rsp, %rdx
1131        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1132        UNWIND_HINT_IRET_REGS base=%rdx offset=8
1133        pushq   5*8(%rdx)       /* pt_regs->ss */
1134        pushq   4*8(%rdx)       /* pt_regs->rsp */
1135        pushq   3*8(%rdx)       /* pt_regs->flags */
1136        pushq   2*8(%rdx)       /* pt_regs->cs */
1137        pushq   1*8(%rdx)       /* pt_regs->rip */
1138        UNWIND_HINT_IRET_REGS
1139        pushq   $-1             /* pt_regs->orig_ax */
1140        PUSH_AND_CLEAR_REGS rdx=(%rdx)
1141        ENCODE_FRAME_POINTER
1142
1143        /*
1144         * At this point we no longer need to worry about stack damage
1145         * due to nesting -- we're on the normal thread stack and we're
1146         * done with the NMI stack.
1147         */
1148
1149        movq    %rsp, %rdi
1150        movq    $-1, %rsi
1151        call    exc_nmi
1152
1153        /*
1154         * Return back to user mode.  We must *not* do the normal exit
1155         * work, because we don't want to enable interrupts.
1156         */
1157        jmp     swapgs_restore_regs_and_return_to_usermode
1158
1159.Lnmi_from_kernel:
1160        /*
1161         * Here's what our stack frame will look like:
1162         * +---------------------------------------------------------+
1163         * | original SS                                             |
1164         * | original Return RSP                                     |
1165         * | original RFLAGS                                         |
1166         * | original CS                                             |
1167         * | original RIP                                            |
1168         * +---------------------------------------------------------+
1169         * | temp storage for rdx                                    |
1170         * +---------------------------------------------------------+
1171         * | "NMI executing" variable                                |
1172         * +---------------------------------------------------------+
1173         * | iret SS          } Copied from "outermost" frame        |
1174         * | iret Return RSP  } on each loop iteration; overwritten  |
1175         * | iret RFLAGS      } by a nested NMI to force another     |
1176         * | iret CS          } iteration if needed.                 |
1177         * | iret RIP         }                                      |
1178         * +---------------------------------------------------------+
1179         * | outermost SS          } initialized in first_nmi;       |
1180         * | outermost Return RSP  } will not be changed before      |
1181         * | outermost RFLAGS      } NMI processing is done.         |
1182         * | outermost CS          } Copied to "iret" frame on each  |
1183         * | outermost RIP         } iteration.                      |
1184         * +---------------------------------------------------------+
1185         * | pt_regs                                                 |
1186         * +---------------------------------------------------------+
1187         *
1188         * The "original" frame is used by hardware.  Before re-enabling
1189         * NMIs, we need to be done with it, and we need to leave enough
1190         * space for the asm code here.
1191         *
1192         * We return by executing IRET while RSP points to the "iret" frame.
1193         * That will either return for real or it will loop back into NMI
1194         * processing.
1195         *
1196         * The "outermost" frame is copied to the "iret" frame on each
1197         * iteration of the loop, so each iteration starts with the "iret"
1198         * frame pointing to the final return target.
1199         */
1200
1201        /*
1202         * Determine whether we're a nested NMI.
1203         *
1204         * If we interrupted kernel code between repeat_nmi and
1205         * end_repeat_nmi, then we are a nested NMI.  We must not
1206         * modify the "iret" frame because it's being written by
1207         * the outer NMI.  That's okay; the outer NMI handler is
1208         * about to about to call exc_nmi() anyway, so we can just
1209         * resume the outer NMI.
1210         */
1211
1212        movq    $repeat_nmi, %rdx
1213        cmpq    8(%rsp), %rdx
1214        ja      1f
1215        movq    $end_repeat_nmi, %rdx
1216        cmpq    8(%rsp), %rdx
1217        ja      nested_nmi_out
12181:
1219
1220        /*
1221         * Now check "NMI executing".  If it's set, then we're nested.
1222         * This will not detect if we interrupted an outer NMI just
1223         * before IRET.
1224         */
1225        cmpl    $1, -8(%rsp)
1226        je      nested_nmi
1227
1228        /*
1229         * Now test if the previous stack was an NMI stack.  This covers
1230         * the case where we interrupt an outer NMI after it clears
1231         * "NMI executing" but before IRET.  We need to be careful, though:
1232         * there is one case in which RSP could point to the NMI stack
1233         * despite there being no NMI active: naughty userspace controls
1234         * RSP at the very beginning of the SYSCALL targets.  We can
1235         * pull a fast one on naughty userspace, though: we program
1236         * SYSCALL to mask DF, so userspace cannot cause DF to be set
1237         * if it controls the kernel's RSP.  We set DF before we clear
1238         * "NMI executing".
1239         */
1240        lea     6*8(%rsp), %rdx
1241        /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1242        cmpq    %rdx, 4*8(%rsp)
1243        /* If the stack pointer is above the NMI stack, this is a normal NMI */
1244        ja      first_nmi
1245
1246        subq    $EXCEPTION_STKSZ, %rdx
1247        cmpq    %rdx, 4*8(%rsp)
1248        /* If it is below the NMI stack, it is a normal NMI */
1249        jb      first_nmi
1250
1251        /* Ah, it is within the NMI stack. */
1252
1253        testb   $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1254        jz      first_nmi       /* RSP was user controlled. */
1255
1256        /* This is a nested NMI. */
1257
1258nested_nmi:
1259        /*
1260         * Modify the "iret" frame to point to repeat_nmi, forcing another
1261         * iteration of NMI handling.
1262         */
1263        subq    $8, %rsp
1264        leaq    -10*8(%rsp), %rdx
1265        pushq   $__KERNEL_DS
1266        pushq   %rdx
1267        pushfq
1268        pushq   $__KERNEL_CS
1269        pushq   $repeat_nmi
1270
1271        /* Put stack back */
1272        addq    $(6*8), %rsp
1273
1274nested_nmi_out:
1275        popq    %rdx
1276
1277        /* We are returning to kernel mode, so this cannot result in a fault. */
1278        iretq
1279
1280first_nmi:
1281        /* Restore rdx. */
1282        movq    (%rsp), %rdx
1283
1284        /* Make room for "NMI executing". */
1285        pushq   $0
1286
1287        /* Leave room for the "iret" frame */
1288        subq    $(5*8), %rsp
1289
1290        /* Copy the "original" frame to the "outermost" frame */
1291        .rept 5
1292        pushq   11*8(%rsp)
1293        .endr
1294        UNWIND_HINT_IRET_REGS
1295
1296        /* Everything up to here is safe from nested NMIs */
1297
1298#ifdef CONFIG_DEBUG_ENTRY
1299        /*
1300         * For ease of testing, unmask NMIs right away.  Disabled by
1301         * default because IRET is very expensive.
1302         */
1303        pushq   $0              /* SS */
1304        pushq   %rsp            /* RSP (minus 8 because of the previous push) */
1305        addq    $8, (%rsp)      /* Fix up RSP */
1306        pushfq                  /* RFLAGS */
1307        pushq   $__KERNEL_CS    /* CS */
1308        pushq   $1f             /* RIP */
1309        iretq                   /* continues at repeat_nmi below */
1310        UNWIND_HINT_IRET_REGS
13111:
1312#endif
1313
1314repeat_nmi:
1315        /*
1316         * If there was a nested NMI, the first NMI's iret will return
1317         * here. But NMIs are still enabled and we can take another
1318         * nested NMI. The nested NMI checks the interrupted RIP to see
1319         * if it is between repeat_nmi and end_repeat_nmi, and if so
1320         * it will just return, as we are about to repeat an NMI anyway.
1321         * This makes it safe to copy to the stack frame that a nested
1322         * NMI will update.
1323         *
1324         * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1325         * we're repeating an NMI, gsbase has the same value that it had on
1326         * the first iteration.  paranoid_entry will load the kernel
1327         * gsbase if needed before we call exc_nmi().  "NMI executing"
1328         * is zero.
1329         */
1330        movq    $1, 10*8(%rsp)          /* Set "NMI executing". */
1331
1332        /*
1333         * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1334         * here must not modify the "iret" frame while we're writing to
1335         * it or it will end up containing garbage.
1336         */
1337        addq    $(10*8), %rsp
1338        .rept 5
1339        pushq   -6*8(%rsp)
1340        .endr
1341        subq    $(5*8), %rsp
1342end_repeat_nmi:
1343
1344        /*
1345         * Everything below this point can be preempted by a nested NMI.
1346         * If this happens, then the inner NMI will change the "iret"
1347         * frame to point back to repeat_nmi.
1348         */
1349        pushq   $-1                             /* ORIG_RAX: no syscall to restart */
1350
1351        /*
1352         * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1353         * as we should not be calling schedule in NMI context.
1354         * Even with normal interrupts enabled. An NMI should not be
1355         * setting NEED_RESCHED or anything that normal interrupts and
1356         * exceptions might do.
1357         */
1358        call    paranoid_entry
1359        UNWIND_HINT_REGS
1360
1361        movq    %rsp, %rdi
1362        movq    $-1, %rsi
1363        call    exc_nmi
1364
1365        /* Always restore stashed CR3 value (see paranoid_entry) */
1366        RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1367
1368        /*
1369         * The above invocation of paranoid_entry stored the GSBASE
1370         * related information in R/EBX depending on the availability
1371         * of FSGSBASE.
1372         *
1373         * If FSGSBASE is enabled, restore the saved GSBASE value
1374         * unconditionally, otherwise take the conditional SWAPGS path.
1375         */
1376        ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1377
1378        wrgsbase        %rbx
1379        jmp     nmi_restore
1380
1381nmi_no_fsgsbase:
1382        /* EBX == 0 -> invoke SWAPGS */
1383        testl   %ebx, %ebx
1384        jnz     nmi_restore
1385
1386nmi_swapgs:
1387        swapgs
1388
1389nmi_restore:
1390        POP_REGS
1391
1392        /*
1393         * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1394         * at the "iret" frame.
1395         */
1396        addq    $6*8, %rsp
1397
1398        /*
1399         * Clear "NMI executing".  Set DF first so that we can easily
1400         * distinguish the remaining code between here and IRET from
1401         * the SYSCALL entry and exit paths.
1402         *
1403         * We arguably should just inspect RIP instead, but I (Andy) wrote
1404         * this code when I had the misapprehension that Xen PV supported
1405         * NMIs, and Xen PV would break that approach.
1406         */
1407        std
1408        movq    $0, 5*8(%rsp)           /* clear "NMI executing" */
1409
1410        /*
1411         * iretq reads the "iret" frame and exits the NMI stack in a
1412         * single instruction.  We are returning to kernel mode, so this
1413         * cannot result in a fault.  Similarly, we don't need to worry
1414         * about espfix64 on the way back to kernel mode.
1415         */
1416        iretq
1417SYM_CODE_END(asm_exc_nmi)
1418
1419#ifndef CONFIG_IA32_EMULATION
1420/*
1421 * This handles SYSCALL from 32-bit code.  There is no way to program
1422 * MSRs to fully disable 32-bit SYSCALL.
1423 */
1424SYM_CODE_START(ignore_sysret)
1425        UNWIND_HINT_EMPTY
1426        mov     $-ENOSYS, %eax
1427        sysretl
1428SYM_CODE_END(ignore_sysret)
1429#endif
1430
1431.pushsection .text, "ax"
1432SYM_CODE_START(rewind_stack_do_exit)
1433        UNWIND_HINT_FUNC
1434        /* Prevent any naive code from trying to unwind to our caller. */
1435        xorl    %ebp, %ebp
1436
1437        movq    PER_CPU_VAR(cpu_current_top_of_stack), %rax
1438        leaq    -PTREGS_SIZE(%rax), %rsp
1439        UNWIND_HINT_REGS
1440
1441        call    do_exit
1442SYM_CODE_END(rewind_stack_do_exit)
1443.popsection
1444