linux/arch/x86/include/asm/kvm_host.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This header defines architecture specific interfaces, x86 version
   6 */
   7
   8#ifndef _ASM_X86_KVM_HOST_H
   9#define _ASM_X86_KVM_HOST_H
  10
  11#include <linux/types.h>
  12#include <linux/mm.h>
  13#include <linux/mmu_notifier.h>
  14#include <linux/tracepoint.h>
  15#include <linux/cpumask.h>
  16#include <linux/irq_work.h>
  17#include <linux/irq.h>
  18
  19#include <linux/kvm.h>
  20#include <linux/kvm_para.h>
  21#include <linux/kvm_types.h>
  22#include <linux/perf_event.h>
  23#include <linux/pvclock_gtod.h>
  24#include <linux/clocksource.h>
  25#include <linux/irqbypass.h>
  26#include <linux/hyperv.h>
  27
  28#include <asm/apic.h>
  29#include <asm/pvclock-abi.h>
  30#include <asm/desc.h>
  31#include <asm/mtrr.h>
  32#include <asm/msr-index.h>
  33#include <asm/asm.h>
  34#include <asm/kvm_page_track.h>
  35#include <asm/kvm_vcpu_regs.h>
  36#include <asm/hyperv-tlfs.h>
  37
  38#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
  39
  40#define KVM_MAX_VCPUS 1024
  41#define KVM_SOFT_MAX_VCPUS 710
  42
  43/*
  44 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
  45 * might be larger than the actual number of VCPUs because the
  46 * APIC ID encodes CPU topology information.
  47 *
  48 * In the worst case, we'll need less than one extra bit for the
  49 * Core ID, and less than one extra bit for the Package (Die) ID,
  50 * so ratio of 4 should be enough.
  51 */
  52#define KVM_VCPU_ID_RATIO 4
  53#define KVM_MAX_VCPU_ID (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
  54
  55/* memory slots that are not exposed to userspace */
  56#define KVM_PRIVATE_MEM_SLOTS 3
  57
  58#define KVM_HALT_POLL_NS_DEFAULT 200000
  59
  60#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
  61
  62#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
  63                                        KVM_DIRTY_LOG_INITIALLY_SET)
  64
  65#define KVM_BUS_LOCK_DETECTION_VALID_MODE       (KVM_BUS_LOCK_DETECTION_OFF | \
  66                                                 KVM_BUS_LOCK_DETECTION_EXIT)
  67
  68/* x86-specific vcpu->requests bit members */
  69#define KVM_REQ_MIGRATE_TIMER           KVM_ARCH_REQ(0)
  70#define KVM_REQ_REPORT_TPR_ACCESS       KVM_ARCH_REQ(1)
  71#define KVM_REQ_TRIPLE_FAULT            KVM_ARCH_REQ(2)
  72#define KVM_REQ_MMU_SYNC                KVM_ARCH_REQ(3)
  73#define KVM_REQ_CLOCK_UPDATE            KVM_ARCH_REQ(4)
  74#define KVM_REQ_LOAD_MMU_PGD            KVM_ARCH_REQ(5)
  75#define KVM_REQ_EVENT                   KVM_ARCH_REQ(6)
  76#define KVM_REQ_APF_HALT                KVM_ARCH_REQ(7)
  77#define KVM_REQ_STEAL_UPDATE            KVM_ARCH_REQ(8)
  78#define KVM_REQ_NMI                     KVM_ARCH_REQ(9)
  79#define KVM_REQ_PMU                     KVM_ARCH_REQ(10)
  80#define KVM_REQ_PMI                     KVM_ARCH_REQ(11)
  81#define KVM_REQ_SMI                     KVM_ARCH_REQ(12)
  82#define KVM_REQ_MASTERCLOCK_UPDATE      KVM_ARCH_REQ(13)
  83#define KVM_REQ_MCLOCK_INPROGRESS \
  84        KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
  85#define KVM_REQ_SCAN_IOAPIC \
  86        KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
  87#define KVM_REQ_GLOBAL_CLOCK_UPDATE     KVM_ARCH_REQ(16)
  88#define KVM_REQ_APIC_PAGE_RELOAD \
  89        KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
  90#define KVM_REQ_HV_CRASH                KVM_ARCH_REQ(18)
  91#define KVM_REQ_IOAPIC_EOI_EXIT         KVM_ARCH_REQ(19)
  92#define KVM_REQ_HV_RESET                KVM_ARCH_REQ(20)
  93#define KVM_REQ_HV_EXIT                 KVM_ARCH_REQ(21)
  94#define KVM_REQ_HV_STIMER               KVM_ARCH_REQ(22)
  95#define KVM_REQ_LOAD_EOI_EXITMAP        KVM_ARCH_REQ(23)
  96#define KVM_REQ_GET_NESTED_STATE_PAGES  KVM_ARCH_REQ(24)
  97#define KVM_REQ_APICV_UPDATE \
  98        KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
  99#define KVM_REQ_TLB_FLUSH_CURRENT       KVM_ARCH_REQ(26)
 100#define KVM_REQ_TLB_FLUSH_GUEST \
 101        KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_NO_WAKEUP)
 102#define KVM_REQ_APF_READY               KVM_ARCH_REQ(28)
 103#define KVM_REQ_MSR_FILTER_CHANGED      KVM_ARCH_REQ(29)
 104#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
 105        KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 106
 107#define CR0_RESERVED_BITS                                               \
 108        (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
 109                          | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
 110                          | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
 111
 112#define CR4_RESERVED_BITS                                               \
 113        (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
 114                          | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
 115                          | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
 116                          | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
 117                          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
 118                          | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
 119
 120#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
 121
 122
 123
 124#define INVALID_PAGE (~(hpa_t)0)
 125#define VALID_PAGE(x) ((x) != INVALID_PAGE)
 126
 127#define UNMAPPED_GVA (~(gpa_t)0)
 128#define INVALID_GPA (~(gpa_t)0)
 129
 130/* KVM Hugepage definitions for x86 */
 131#define KVM_MAX_HUGEPAGE_LEVEL  PG_LEVEL_1G
 132#define KVM_NR_PAGE_SIZES       (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
 133#define KVM_HPAGE_GFN_SHIFT(x)  (((x) - 1) * 9)
 134#define KVM_HPAGE_SHIFT(x)      (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
 135#define KVM_HPAGE_SIZE(x)       (1UL << KVM_HPAGE_SHIFT(x))
 136#define KVM_HPAGE_MASK(x)       (~(KVM_HPAGE_SIZE(x) - 1))
 137#define KVM_PAGES_PER_HPAGE(x)  (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
 138
 139#define KVM_PERMILLE_MMU_PAGES 20
 140#define KVM_MIN_ALLOC_MMU_PAGES 64UL
 141#define KVM_MMU_HASH_SHIFT 12
 142#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
 143#define KVM_MIN_FREE_MMU_PAGES 5
 144#define KVM_REFILL_PAGES 25
 145#define KVM_MAX_CPUID_ENTRIES 256
 146#define KVM_NR_FIXED_MTRR_REGION 88
 147#define KVM_NR_VAR_MTRR 8
 148
 149#define ASYNC_PF_PER_VCPU 64
 150
 151enum kvm_reg {
 152        VCPU_REGS_RAX = __VCPU_REGS_RAX,
 153        VCPU_REGS_RCX = __VCPU_REGS_RCX,
 154        VCPU_REGS_RDX = __VCPU_REGS_RDX,
 155        VCPU_REGS_RBX = __VCPU_REGS_RBX,
 156        VCPU_REGS_RSP = __VCPU_REGS_RSP,
 157        VCPU_REGS_RBP = __VCPU_REGS_RBP,
 158        VCPU_REGS_RSI = __VCPU_REGS_RSI,
 159        VCPU_REGS_RDI = __VCPU_REGS_RDI,
 160#ifdef CONFIG_X86_64
 161        VCPU_REGS_R8  = __VCPU_REGS_R8,
 162        VCPU_REGS_R9  = __VCPU_REGS_R9,
 163        VCPU_REGS_R10 = __VCPU_REGS_R10,
 164        VCPU_REGS_R11 = __VCPU_REGS_R11,
 165        VCPU_REGS_R12 = __VCPU_REGS_R12,
 166        VCPU_REGS_R13 = __VCPU_REGS_R13,
 167        VCPU_REGS_R14 = __VCPU_REGS_R14,
 168        VCPU_REGS_R15 = __VCPU_REGS_R15,
 169#endif
 170        VCPU_REGS_RIP,
 171        NR_VCPU_REGS,
 172
 173        VCPU_EXREG_PDPTR = NR_VCPU_REGS,
 174        VCPU_EXREG_CR0,
 175        VCPU_EXREG_CR3,
 176        VCPU_EXREG_CR4,
 177        VCPU_EXREG_RFLAGS,
 178        VCPU_EXREG_SEGMENTS,
 179        VCPU_EXREG_EXIT_INFO_1,
 180        VCPU_EXREG_EXIT_INFO_2,
 181};
 182
 183enum {
 184        VCPU_SREG_ES,
 185        VCPU_SREG_CS,
 186        VCPU_SREG_SS,
 187        VCPU_SREG_DS,
 188        VCPU_SREG_FS,
 189        VCPU_SREG_GS,
 190        VCPU_SREG_TR,
 191        VCPU_SREG_LDTR,
 192};
 193
 194enum exit_fastpath_completion {
 195        EXIT_FASTPATH_NONE,
 196        EXIT_FASTPATH_REENTER_GUEST,
 197        EXIT_FASTPATH_EXIT_HANDLED,
 198};
 199typedef enum exit_fastpath_completion fastpath_t;
 200
 201struct x86_emulate_ctxt;
 202struct x86_exception;
 203enum x86_intercept;
 204enum x86_intercept_stage;
 205
 206#define KVM_NR_DB_REGS  4
 207
 208#define DR6_BUS_LOCK   (1 << 11)
 209#define DR6_BD          (1 << 13)
 210#define DR6_BS          (1 << 14)
 211#define DR6_BT          (1 << 15)
 212#define DR6_RTM         (1 << 16)
 213/*
 214 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
 215 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
 216 * they will never be 0 for now, but when they are defined
 217 * in the future it will require no code change.
 218 *
 219 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
 220 */
 221#define DR6_ACTIVE_LOW  0xffff0ff0
 222#define DR6_VOLATILE    0x0001e80f
 223#define DR6_FIXED_1     (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
 224
 225#define DR7_BP_EN_MASK  0x000000ff
 226#define DR7_GE          (1 << 9)
 227#define DR7_GD          (1 << 13)
 228#define DR7_FIXED_1     0x00000400
 229#define DR7_VOLATILE    0xffff2bff
 230
 231#define KVM_GUESTDBG_VALID_MASK \
 232        (KVM_GUESTDBG_ENABLE | \
 233        KVM_GUESTDBG_SINGLESTEP | \
 234        KVM_GUESTDBG_USE_HW_BP | \
 235        KVM_GUESTDBG_USE_SW_BP | \
 236        KVM_GUESTDBG_INJECT_BP | \
 237        KVM_GUESTDBG_INJECT_DB | \
 238        KVM_GUESTDBG_BLOCKIRQ)
 239
 240
 241#define PFERR_PRESENT_BIT 0
 242#define PFERR_WRITE_BIT 1
 243#define PFERR_USER_BIT 2
 244#define PFERR_RSVD_BIT 3
 245#define PFERR_FETCH_BIT 4
 246#define PFERR_PK_BIT 5
 247#define PFERR_SGX_BIT 15
 248#define PFERR_GUEST_FINAL_BIT 32
 249#define PFERR_GUEST_PAGE_BIT 33
 250
 251#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
 252#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
 253#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
 254#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
 255#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
 256#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
 257#define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
 258#define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
 259#define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
 260
 261#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |        \
 262                                 PFERR_WRITE_MASK |             \
 263                                 PFERR_PRESENT_MASK)
 264
 265/* apic attention bits */
 266#define KVM_APIC_CHECK_VAPIC    0
 267/*
 268 * The following bit is set with PV-EOI, unset on EOI.
 269 * We detect PV-EOI changes by guest by comparing
 270 * this bit with PV-EOI in guest memory.
 271 * See the implementation in apic_update_pv_eoi.
 272 */
 273#define KVM_APIC_PV_EOI_PENDING 1
 274
 275struct kvm_kernel_irq_routing_entry;
 276
 277/*
 278 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
 279 * also includes TDP pages) to determine whether or not a page can be used in
 280 * the given MMU context.  This is a subset of the overall kvm_mmu_role to
 281 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
 282 * 2 bytes per gfn instead of 4 bytes per gfn.
 283 *
 284 * Indirect upper-level shadow pages are tracked for write-protection via
 285 * gfn_track.  As above, gfn_track is a 16 bit counter, so KVM must not create
 286 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
 287 * gfn_track will overflow and explosions will ensure.
 288 *
 289 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
 290 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
 291 * incorporates various mode bits and properties of the SP.  Roughly speaking,
 292 * the number of unique SPs that can theoretically be created is 2^n, where n
 293 * is the number of bits that are used to compute the role.
 294 *
 295 * But, even though there are 18 bits in the mask below, not all combinations
 296 * of modes and flags are possible.  The maximum number of possible upper-level
 297 * shadow pages for a single gfn is in the neighborhood of 2^13.
 298 *
 299 *   - invalid shadow pages are not accounted.
 300 *   - level is effectively limited to four combinations, not 16 as the number
 301 *     bits would imply, as 4k SPs are not tracked (allowed to go unsync).
 302 *   - level is effectively unused for non-PAE paging because there is exactly
 303 *     one upper level (see 4k SP exception above).
 304 *   - quadrant is used only for non-PAE paging and is exclusive with
 305 *     gpte_is_8_bytes.
 306 *   - execonly and ad_disabled are used only for nested EPT, which makes it
 307 *     exclusive with quadrant.
 308 */
 309union kvm_mmu_page_role {
 310        u32 word;
 311        struct {
 312                unsigned level:4;
 313                unsigned gpte_is_8_bytes:1;
 314                unsigned quadrant:2;
 315                unsigned direct:1;
 316                unsigned access:3;
 317                unsigned invalid:1;
 318                unsigned efer_nx:1;
 319                unsigned cr0_wp:1;
 320                unsigned smep_andnot_wp:1;
 321                unsigned smap_andnot_wp:1;
 322                unsigned ad_disabled:1;
 323                unsigned guest_mode:1;
 324                unsigned :6;
 325
 326                /*
 327                 * This is left at the top of the word so that
 328                 * kvm_memslots_for_spte_role can extract it with a
 329                 * simple shift.  While there is room, give it a whole
 330                 * byte so it is also faster to load it from memory.
 331                 */
 332                unsigned smm:8;
 333        };
 334};
 335
 336/*
 337 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
 338 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
 339 * including on nested transitions, if nothing in the full role changes then
 340 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
 341 * don't treat all-zero structure as valid data.
 342 *
 343 * The properties that are tracked in the extended role but not the page role
 344 * are for things that either (a) do not affect the validity of the shadow page
 345 * or (b) are indirectly reflected in the shadow page's role.  For example,
 346 * CR4.PKE only affects permission checks for software walks of the guest page
 347 * tables (because KVM doesn't support Protection Keys with shadow paging), and
 348 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
 349 *
 350 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
 351 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
 352 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
 353 * SMAP aware regardless of CR0.WP.
 354 */
 355union kvm_mmu_extended_role {
 356        u32 word;
 357        struct {
 358                unsigned int valid:1;
 359                unsigned int execonly:1;
 360                unsigned int cr0_pg:1;
 361                unsigned int cr4_pae:1;
 362                unsigned int cr4_pse:1;
 363                unsigned int cr4_pke:1;
 364                unsigned int cr4_smap:1;
 365                unsigned int cr4_smep:1;
 366                unsigned int cr4_la57:1;
 367        };
 368};
 369
 370union kvm_mmu_role {
 371        u64 as_u64;
 372        struct {
 373                union kvm_mmu_page_role base;
 374                union kvm_mmu_extended_role ext;
 375        };
 376};
 377
 378struct kvm_rmap_head {
 379        unsigned long val;
 380};
 381
 382struct kvm_pio_request {
 383        unsigned long linear_rip;
 384        unsigned long count;
 385        int in;
 386        int port;
 387        int size;
 388};
 389
 390#define PT64_ROOT_MAX_LEVEL 5
 391
 392struct rsvd_bits_validate {
 393        u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
 394        u64 bad_mt_xwr;
 395};
 396
 397struct kvm_mmu_root_info {
 398        gpa_t pgd;
 399        hpa_t hpa;
 400};
 401
 402#define KVM_MMU_ROOT_INFO_INVALID \
 403        ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
 404
 405#define KVM_MMU_NUM_PREV_ROOTS 3
 406
 407#define KVM_HAVE_MMU_RWLOCK
 408
 409struct kvm_mmu_page;
 410
 411/*
 412 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
 413 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
 414 * current mmu mode.
 415 */
 416struct kvm_mmu {
 417        unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
 418        u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
 419        int (*page_fault)(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u32 err,
 420                          bool prefault);
 421        void (*inject_page_fault)(struct kvm_vcpu *vcpu,
 422                                  struct x86_exception *fault);
 423        gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
 424                            u32 access, struct x86_exception *exception);
 425        gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
 426                               struct x86_exception *exception);
 427        int (*sync_page)(struct kvm_vcpu *vcpu,
 428                         struct kvm_mmu_page *sp);
 429        void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
 430        hpa_t root_hpa;
 431        gpa_t root_pgd;
 432        union kvm_mmu_role mmu_role;
 433        u8 root_level;
 434        u8 shadow_root_level;
 435        u8 ept_ad;
 436        bool direct_map;
 437        struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
 438
 439        /*
 440         * Bitmap; bit set = permission fault
 441         * Byte index: page fault error code [4:1]
 442         * Bit index: pte permissions in ACC_* format
 443         */
 444        u8 permissions[16];
 445
 446        /*
 447        * The pkru_mask indicates if protection key checks are needed.  It
 448        * consists of 16 domains indexed by page fault error code bits [4:1],
 449        * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
 450        * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
 451        */
 452        u32 pkru_mask;
 453
 454        u64 *pae_root;
 455        u64 *pml4_root;
 456        u64 *pml5_root;
 457
 458        /*
 459         * check zero bits on shadow page table entries, these
 460         * bits include not only hardware reserved bits but also
 461         * the bits spte never used.
 462         */
 463        struct rsvd_bits_validate shadow_zero_check;
 464
 465        struct rsvd_bits_validate guest_rsvd_check;
 466
 467        u64 pdptrs[4]; /* pae */
 468};
 469
 470struct kvm_tlb_range {
 471        u64 start_gfn;
 472        u64 pages;
 473};
 474
 475enum pmc_type {
 476        KVM_PMC_GP = 0,
 477        KVM_PMC_FIXED,
 478};
 479
 480struct kvm_pmc {
 481        enum pmc_type type;
 482        u8 idx;
 483        u64 counter;
 484        u64 eventsel;
 485        struct perf_event *perf_event;
 486        struct kvm_vcpu *vcpu;
 487        /*
 488         * eventsel value for general purpose counters,
 489         * ctrl value for fixed counters.
 490         */
 491        u64 current_config;
 492        bool is_paused;
 493};
 494
 495struct kvm_pmu {
 496        unsigned nr_arch_gp_counters;
 497        unsigned nr_arch_fixed_counters;
 498        unsigned available_event_types;
 499        u64 fixed_ctr_ctrl;
 500        u64 global_ctrl;
 501        u64 global_status;
 502        u64 global_ovf_ctrl;
 503        u64 counter_bitmask[2];
 504        u64 global_ctrl_mask;
 505        u64 global_ovf_ctrl_mask;
 506        u64 reserved_bits;
 507        u8 version;
 508        struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
 509        struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
 510        struct irq_work irq_work;
 511        DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
 512        DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
 513        DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
 514
 515        /*
 516         * The gate to release perf_events not marked in
 517         * pmc_in_use only once in a vcpu time slice.
 518         */
 519        bool need_cleanup;
 520
 521        /*
 522         * The total number of programmed perf_events and it helps to avoid
 523         * redundant check before cleanup if guest don't use vPMU at all.
 524         */
 525        u8 event_count;
 526};
 527
 528struct kvm_pmu_ops;
 529
 530enum {
 531        KVM_DEBUGREG_BP_ENABLED = 1,
 532        KVM_DEBUGREG_WONT_EXIT = 2,
 533};
 534
 535struct kvm_mtrr_range {
 536        u64 base;
 537        u64 mask;
 538        struct list_head node;
 539};
 540
 541struct kvm_mtrr {
 542        struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
 543        mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
 544        u64 deftype;
 545
 546        struct list_head head;
 547};
 548
 549/* Hyper-V SynIC timer */
 550struct kvm_vcpu_hv_stimer {
 551        struct hrtimer timer;
 552        int index;
 553        union hv_stimer_config config;
 554        u64 count;
 555        u64 exp_time;
 556        struct hv_message msg;
 557        bool msg_pending;
 558};
 559
 560/* Hyper-V synthetic interrupt controller (SynIC)*/
 561struct kvm_vcpu_hv_synic {
 562        u64 version;
 563        u64 control;
 564        u64 msg_page;
 565        u64 evt_page;
 566        atomic64_t sint[HV_SYNIC_SINT_COUNT];
 567        atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
 568        DECLARE_BITMAP(auto_eoi_bitmap, 256);
 569        DECLARE_BITMAP(vec_bitmap, 256);
 570        bool active;
 571        bool dont_zero_synic_pages;
 572};
 573
 574/* Hyper-V per vcpu emulation context */
 575struct kvm_vcpu_hv {
 576        struct kvm_vcpu *vcpu;
 577        u32 vp_index;
 578        u64 hv_vapic;
 579        s64 runtime_offset;
 580        struct kvm_vcpu_hv_synic synic;
 581        struct kvm_hyperv_exit exit;
 582        struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
 583        DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
 584        cpumask_t tlb_flush;
 585        bool enforce_cpuid;
 586        struct {
 587                u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
 588                u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
 589                u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
 590                u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
 591                u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
 592                u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
 593        } cpuid_cache;
 594};
 595
 596/* Xen HVM per vcpu emulation context */
 597struct kvm_vcpu_xen {
 598        u64 hypercall_rip;
 599        u32 current_runstate;
 600        bool vcpu_info_set;
 601        bool vcpu_time_info_set;
 602        bool runstate_set;
 603        struct gfn_to_hva_cache vcpu_info_cache;
 604        struct gfn_to_hva_cache vcpu_time_info_cache;
 605        struct gfn_to_hva_cache runstate_cache;
 606        u64 last_steal;
 607        u64 runstate_entry_time;
 608        u64 runstate_times[4];
 609};
 610
 611struct kvm_vcpu_arch {
 612        /*
 613         * rip and regs accesses must go through
 614         * kvm_{register,rip}_{read,write} functions.
 615         */
 616        unsigned long regs[NR_VCPU_REGS];
 617        u32 regs_avail;
 618        u32 regs_dirty;
 619
 620        unsigned long cr0;
 621        unsigned long cr0_guest_owned_bits;
 622        unsigned long cr2;
 623        unsigned long cr3;
 624        unsigned long cr4;
 625        unsigned long cr4_guest_owned_bits;
 626        unsigned long cr4_guest_rsvd_bits;
 627        unsigned long cr8;
 628        u32 host_pkru;
 629        u32 pkru;
 630        u32 hflags;
 631        u64 efer;
 632        u64 apic_base;
 633        struct kvm_lapic *apic;    /* kernel irqchip context */
 634        bool apicv_active;
 635        bool load_eoi_exitmap_pending;
 636        DECLARE_BITMAP(ioapic_handled_vectors, 256);
 637        unsigned long apic_attention;
 638        int32_t apic_arb_prio;
 639        int mp_state;
 640        u64 ia32_misc_enable_msr;
 641        u64 smbase;
 642        u64 smi_count;
 643        bool tpr_access_reporting;
 644        bool xsaves_enabled;
 645        u64 ia32_xss;
 646        u64 microcode_version;
 647        u64 arch_capabilities;
 648        u64 perf_capabilities;
 649
 650        /*
 651         * Paging state of the vcpu
 652         *
 653         * If the vcpu runs in guest mode with two level paging this still saves
 654         * the paging mode of the l1 guest. This context is always used to
 655         * handle faults.
 656         */
 657        struct kvm_mmu *mmu;
 658
 659        /* Non-nested MMU for L1 */
 660        struct kvm_mmu root_mmu;
 661
 662        /* L1 MMU when running nested */
 663        struct kvm_mmu guest_mmu;
 664
 665        /*
 666         * Paging state of an L2 guest (used for nested npt)
 667         *
 668         * This context will save all necessary information to walk page tables
 669         * of an L2 guest. This context is only initialized for page table
 670         * walking and not for faulting since we never handle l2 page faults on
 671         * the host.
 672         */
 673        struct kvm_mmu nested_mmu;
 674
 675        /*
 676         * Pointer to the mmu context currently used for
 677         * gva_to_gpa translations.
 678         */
 679        struct kvm_mmu *walk_mmu;
 680
 681        struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
 682        struct kvm_mmu_memory_cache mmu_shadow_page_cache;
 683        struct kvm_mmu_memory_cache mmu_gfn_array_cache;
 684        struct kvm_mmu_memory_cache mmu_page_header_cache;
 685
 686        /*
 687         * QEMU userspace and the guest each have their own FPU state.
 688         * In vcpu_run, we switch between the user and guest FPU contexts.
 689         * While running a VCPU, the VCPU thread will have the guest FPU
 690         * context.
 691         *
 692         * Note that while the PKRU state lives inside the fpu registers,
 693         * it is switched out separately at VMENTER and VMEXIT time. The
 694         * "guest_fpu" state here contains the guest FPU context, with the
 695         * host PRKU bits.
 696         */
 697        struct fpu *user_fpu;
 698        struct fpu *guest_fpu;
 699
 700        u64 xcr0;
 701        u64 guest_supported_xcr0;
 702
 703        struct kvm_pio_request pio;
 704        void *pio_data;
 705        void *sev_pio_data;
 706        unsigned sev_pio_count;
 707
 708        u8 event_exit_inst_len;
 709
 710        struct kvm_queued_exception {
 711                bool pending;
 712                bool injected;
 713                bool has_error_code;
 714                u8 nr;
 715                u32 error_code;
 716                unsigned long payload;
 717                bool has_payload;
 718                u8 nested_apf;
 719        } exception;
 720
 721        struct kvm_queued_interrupt {
 722                bool injected;
 723                bool soft;
 724                u8 nr;
 725        } interrupt;
 726
 727        int halt_request; /* real mode on Intel only */
 728
 729        int cpuid_nent;
 730        struct kvm_cpuid_entry2 *cpuid_entries;
 731
 732        u64 reserved_gpa_bits;
 733        int maxphyaddr;
 734
 735        /* emulate context */
 736
 737        struct x86_emulate_ctxt *emulate_ctxt;
 738        bool emulate_regs_need_sync_to_vcpu;
 739        bool emulate_regs_need_sync_from_vcpu;
 740        int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
 741
 742        gpa_t time;
 743        struct pvclock_vcpu_time_info hv_clock;
 744        unsigned int hw_tsc_khz;
 745        struct gfn_to_hva_cache pv_time;
 746        bool pv_time_enabled;
 747        /* set guest stopped flag in pvclock flags field */
 748        bool pvclock_set_guest_stopped_request;
 749
 750        struct {
 751                u8 preempted;
 752                u64 msr_val;
 753                u64 last_steal;
 754                struct gfn_to_pfn_cache cache;
 755        } st;
 756
 757        u64 l1_tsc_offset;
 758        u64 tsc_offset; /* current tsc offset */
 759        u64 last_guest_tsc;
 760        u64 last_host_tsc;
 761        u64 tsc_offset_adjustment;
 762        u64 this_tsc_nsec;
 763        u64 this_tsc_write;
 764        u64 this_tsc_generation;
 765        bool tsc_catchup;
 766        bool tsc_always_catchup;
 767        s8 virtual_tsc_shift;
 768        u32 virtual_tsc_mult;
 769        u32 virtual_tsc_khz;
 770        s64 ia32_tsc_adjust_msr;
 771        u64 msr_ia32_power_ctl;
 772        u64 l1_tsc_scaling_ratio;
 773        u64 tsc_scaling_ratio; /* current scaling ratio */
 774
 775        atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
 776        unsigned nmi_pending; /* NMI queued after currently running handler */
 777        bool nmi_injected;    /* Trying to inject an NMI this entry */
 778        bool smi_pending;    /* SMI queued after currently running handler */
 779
 780        struct kvm_mtrr mtrr_state;
 781        u64 pat;
 782
 783        unsigned switch_db_regs;
 784        unsigned long db[KVM_NR_DB_REGS];
 785        unsigned long dr6;
 786        unsigned long dr7;
 787        unsigned long eff_db[KVM_NR_DB_REGS];
 788        unsigned long guest_debug_dr7;
 789        u64 msr_platform_info;
 790        u64 msr_misc_features_enables;
 791
 792        u64 mcg_cap;
 793        u64 mcg_status;
 794        u64 mcg_ctl;
 795        u64 mcg_ext_ctl;
 796        u64 *mce_banks;
 797
 798        /* Cache MMIO info */
 799        u64 mmio_gva;
 800        unsigned mmio_access;
 801        gfn_t mmio_gfn;
 802        u64 mmio_gen;
 803
 804        struct kvm_pmu pmu;
 805
 806        /* used for guest single stepping over the given code position */
 807        unsigned long singlestep_rip;
 808
 809        bool hyperv_enabled;
 810        struct kvm_vcpu_hv *hyperv;
 811        struct kvm_vcpu_xen xen;
 812
 813        cpumask_var_t wbinvd_dirty_mask;
 814
 815        unsigned long last_retry_eip;
 816        unsigned long last_retry_addr;
 817
 818        struct {
 819                bool halted;
 820                gfn_t gfns[ASYNC_PF_PER_VCPU];
 821                struct gfn_to_hva_cache data;
 822                u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
 823                u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
 824                u16 vec;
 825                u32 id;
 826                bool send_user_only;
 827                u32 host_apf_flags;
 828                unsigned long nested_apf_token;
 829                bool delivery_as_pf_vmexit;
 830                bool pageready_pending;
 831        } apf;
 832
 833        /* OSVW MSRs (AMD only) */
 834        struct {
 835                u64 length;
 836                u64 status;
 837        } osvw;
 838
 839        struct {
 840                u64 msr_val;
 841                struct gfn_to_hva_cache data;
 842        } pv_eoi;
 843
 844        u64 msr_kvm_poll_control;
 845
 846        /*
 847         * Indicates the guest is trying to write a gfn that contains one or
 848         * more of the PTEs used to translate the write itself, i.e. the access
 849         * is changing its own translation in the guest page tables.  KVM exits
 850         * to userspace if emulation of the faulting instruction fails and this
 851         * flag is set, as KVM cannot make forward progress.
 852         *
 853         * If emulation fails for a write to guest page tables, KVM unprotects
 854         * (zaps) the shadow page for the target gfn and resumes the guest to
 855         * retry the non-emulatable instruction (on hardware).  Unprotecting the
 856         * gfn doesn't allow forward progress for a self-changing access because
 857         * doing so also zaps the translation for the gfn, i.e. retrying the
 858         * instruction will hit a !PRESENT fault, which results in a new shadow
 859         * page and sends KVM back to square one.
 860         */
 861        bool write_fault_to_shadow_pgtable;
 862
 863        /* set at EPT violation at this point */
 864        unsigned long exit_qualification;
 865
 866        /* pv related host specific info */
 867        struct {
 868                bool pv_unhalted;
 869        } pv;
 870
 871        int pending_ioapic_eoi;
 872        int pending_external_vector;
 873
 874        /* be preempted when it's in kernel-mode(cpl=0) */
 875        bool preempted_in_kernel;
 876
 877        /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
 878        bool l1tf_flush_l1d;
 879
 880        /* Host CPU on which VM-entry was most recently attempted */
 881        int last_vmentry_cpu;
 882
 883        /* AMD MSRC001_0015 Hardware Configuration */
 884        u64 msr_hwcr;
 885
 886        /* pv related cpuid info */
 887        struct {
 888                /*
 889                 * value of the eax register in the KVM_CPUID_FEATURES CPUID
 890                 * leaf.
 891                 */
 892                u32 features;
 893
 894                /*
 895                 * indicates whether pv emulation should be disabled if features
 896                 * are not present in the guest's cpuid
 897                 */
 898                bool enforce;
 899        } pv_cpuid;
 900
 901        /* Protected Guests */
 902        bool guest_state_protected;
 903
 904        /*
 905         * Set when PDPTS were loaded directly by the userspace without
 906         * reading the guest memory
 907         */
 908        bool pdptrs_from_userspace;
 909
 910#if IS_ENABLED(CONFIG_HYPERV)
 911        hpa_t hv_root_tdp;
 912#endif
 913};
 914
 915struct kvm_lpage_info {
 916        int disallow_lpage;
 917};
 918
 919struct kvm_arch_memory_slot {
 920        struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
 921        struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
 922        unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
 923};
 924
 925/*
 926 * We use as the mode the number of bits allocated in the LDR for the
 927 * logical processor ID.  It happens that these are all powers of two.
 928 * This makes it is very easy to detect cases where the APICs are
 929 * configured for multiple modes; in that case, we cannot use the map and
 930 * hence cannot use kvm_irq_delivery_to_apic_fast either.
 931 */
 932#define KVM_APIC_MODE_XAPIC_CLUSTER          4
 933#define KVM_APIC_MODE_XAPIC_FLAT             8
 934#define KVM_APIC_MODE_X2APIC                16
 935
 936struct kvm_apic_map {
 937        struct rcu_head rcu;
 938        u8 mode;
 939        u32 max_apic_id;
 940        union {
 941                struct kvm_lapic *xapic_flat_map[8];
 942                struct kvm_lapic *xapic_cluster_map[16][4];
 943        };
 944        struct kvm_lapic *phys_map[];
 945};
 946
 947/* Hyper-V synthetic debugger (SynDbg)*/
 948struct kvm_hv_syndbg {
 949        struct {
 950                u64 control;
 951                u64 status;
 952                u64 send_page;
 953                u64 recv_page;
 954                u64 pending_page;
 955        } control;
 956        u64 options;
 957};
 958
 959/* Current state of Hyper-V TSC page clocksource */
 960enum hv_tsc_page_status {
 961        /* TSC page was not set up or disabled */
 962        HV_TSC_PAGE_UNSET = 0,
 963        /* TSC page MSR was written by the guest, update pending */
 964        HV_TSC_PAGE_GUEST_CHANGED,
 965        /* TSC page MSR was written by KVM userspace, update pending */
 966        HV_TSC_PAGE_HOST_CHANGED,
 967        /* TSC page was properly set up and is currently active  */
 968        HV_TSC_PAGE_SET,
 969        /* TSC page is currently being updated and therefore is inactive */
 970        HV_TSC_PAGE_UPDATING,
 971        /* TSC page was set up with an inaccessible GPA */
 972        HV_TSC_PAGE_BROKEN,
 973};
 974
 975/* Hyper-V emulation context */
 976struct kvm_hv {
 977        struct mutex hv_lock;
 978        u64 hv_guest_os_id;
 979        u64 hv_hypercall;
 980        u64 hv_tsc_page;
 981        enum hv_tsc_page_status hv_tsc_page_status;
 982
 983        /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
 984        u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
 985        u64 hv_crash_ctl;
 986
 987        struct ms_hyperv_tsc_page tsc_ref;
 988
 989        struct idr conn_to_evt;
 990
 991        u64 hv_reenlightenment_control;
 992        u64 hv_tsc_emulation_control;
 993        u64 hv_tsc_emulation_status;
 994
 995        /* How many vCPUs have VP index != vCPU index */
 996        atomic_t num_mismatched_vp_indexes;
 997
 998        /*
 999         * How many SynICs use 'AutoEOI' feature
1000         * (protected by arch.apicv_update_lock)
1001         */
1002        unsigned int synic_auto_eoi_used;
1003
1004        struct hv_partition_assist_pg *hv_pa_pg;
1005        struct kvm_hv_syndbg hv_syndbg;
1006};
1007
1008struct msr_bitmap_range {
1009        u32 flags;
1010        u32 nmsrs;
1011        u32 base;
1012        unsigned long *bitmap;
1013};
1014
1015/* Xen emulation context */
1016struct kvm_xen {
1017        bool long_mode;
1018        u8 upcall_vector;
1019        gfn_t shinfo_gfn;
1020};
1021
1022enum kvm_irqchip_mode {
1023        KVM_IRQCHIP_NONE,
1024        KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1025        KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1026};
1027
1028struct kvm_x86_msr_filter {
1029        u8 count;
1030        bool default_allow:1;
1031        struct msr_bitmap_range ranges[16];
1032};
1033
1034#define APICV_INHIBIT_REASON_DISABLE    0
1035#define APICV_INHIBIT_REASON_HYPERV     1
1036#define APICV_INHIBIT_REASON_NESTED     2
1037#define APICV_INHIBIT_REASON_IRQWIN     3
1038#define APICV_INHIBIT_REASON_PIT_REINJ  4
1039#define APICV_INHIBIT_REASON_X2APIC     5
1040
1041struct kvm_arch {
1042        unsigned long n_used_mmu_pages;
1043        unsigned long n_requested_mmu_pages;
1044        unsigned long n_max_mmu_pages;
1045        unsigned int indirect_shadow_pages;
1046        u8 mmu_valid_gen;
1047        struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1048        struct list_head active_mmu_pages;
1049        struct list_head zapped_obsolete_pages;
1050        struct list_head lpage_disallowed_mmu_pages;
1051        struct kvm_page_track_notifier_node mmu_sp_tracker;
1052        struct kvm_page_track_notifier_head track_notifier_head;
1053        /*
1054         * Protects marking pages unsync during page faults, as TDP MMU page
1055         * faults only take mmu_lock for read.  For simplicity, the unsync
1056         * pages lock is always taken when marking pages unsync regardless of
1057         * whether mmu_lock is held for read or write.
1058         */
1059        spinlock_t mmu_unsync_pages_lock;
1060
1061        struct list_head assigned_dev_head;
1062        struct iommu_domain *iommu_domain;
1063        bool iommu_noncoherent;
1064#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1065        atomic_t noncoherent_dma_count;
1066#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1067        atomic_t assigned_device_count;
1068        struct kvm_pic *vpic;
1069        struct kvm_ioapic *vioapic;
1070        struct kvm_pit *vpit;
1071        atomic_t vapics_in_nmi_mode;
1072        struct mutex apic_map_lock;
1073        struct kvm_apic_map __rcu *apic_map;
1074        atomic_t apic_map_dirty;
1075
1076        /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1077        struct mutex apicv_update_lock;
1078
1079        bool apic_access_memslot_enabled;
1080        unsigned long apicv_inhibit_reasons;
1081
1082        gpa_t wall_clock;
1083
1084        bool mwait_in_guest;
1085        bool hlt_in_guest;
1086        bool pause_in_guest;
1087        bool cstate_in_guest;
1088
1089        unsigned long irq_sources_bitmap;
1090        s64 kvmclock_offset;
1091        raw_spinlock_t tsc_write_lock;
1092        u64 last_tsc_nsec;
1093        u64 last_tsc_write;
1094        u32 last_tsc_khz;
1095        u64 cur_tsc_nsec;
1096        u64 cur_tsc_write;
1097        u64 cur_tsc_offset;
1098        u64 cur_tsc_generation;
1099        int nr_vcpus_matched_tsc;
1100
1101        raw_spinlock_t pvclock_gtod_sync_lock;
1102        bool use_master_clock;
1103        u64 master_kernel_ns;
1104        u64 master_cycle_now;
1105        struct delayed_work kvmclock_update_work;
1106        struct delayed_work kvmclock_sync_work;
1107
1108        struct kvm_xen_hvm_config xen_hvm_config;
1109
1110        /* reads protected by irq_srcu, writes by irq_lock */
1111        struct hlist_head mask_notifier_list;
1112
1113        struct kvm_hv hyperv;
1114        struct kvm_xen xen;
1115
1116        #ifdef CONFIG_KVM_MMU_AUDIT
1117        int audit_point;
1118        #endif
1119
1120        bool backwards_tsc_observed;
1121        bool boot_vcpu_runs_old_kvmclock;
1122        u32 bsp_vcpu_id;
1123
1124        u64 disabled_quirks;
1125        int cpu_dirty_logging_count;
1126
1127        enum kvm_irqchip_mode irqchip_mode;
1128        u8 nr_reserved_ioapic_pins;
1129
1130        bool disabled_lapic_found;
1131
1132        bool x2apic_format;
1133        bool x2apic_broadcast_quirk_disabled;
1134
1135        bool guest_can_read_msr_platform_info;
1136        bool exception_payload_enabled;
1137
1138        bool bus_lock_detection_enabled;
1139        /*
1140         * If exit_on_emulation_error is set, and the in-kernel instruction
1141         * emulator fails to emulate an instruction, allow userspace
1142         * the opportunity to look at it.
1143         */
1144        bool exit_on_emulation_error;
1145
1146        /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1147        u32 user_space_msr_mask;
1148        struct kvm_x86_msr_filter __rcu *msr_filter;
1149
1150        u32 hypercall_exit_enabled;
1151
1152        /* Guest can access the SGX PROVISIONKEY. */
1153        bool sgx_provisioning_allowed;
1154
1155        struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1156        struct task_struct *nx_lpage_recovery_thread;
1157
1158#ifdef CONFIG_X86_64
1159        /*
1160         * Whether the TDP MMU is enabled for this VM. This contains a
1161         * snapshot of the TDP MMU module parameter from when the VM was
1162         * created and remains unchanged for the life of the VM. If this is
1163         * true, TDP MMU handler functions will run for various MMU
1164         * operations.
1165         */
1166        bool tdp_mmu_enabled;
1167
1168        /*
1169         * List of struct kvm_mmu_pages being used as roots.
1170         * All struct kvm_mmu_pages in the list should have
1171         * tdp_mmu_page set.
1172         *
1173         * For reads, this list is protected by:
1174         *      the MMU lock in read mode + RCU or
1175         *      the MMU lock in write mode
1176         *
1177         * For writes, this list is protected by:
1178         *      the MMU lock in read mode + the tdp_mmu_pages_lock or
1179         *      the MMU lock in write mode
1180         *
1181         * Roots will remain in the list until their tdp_mmu_root_count
1182         * drops to zero, at which point the thread that decremented the
1183         * count to zero should removed the root from the list and clean
1184         * it up, freeing the root after an RCU grace period.
1185         */
1186        struct list_head tdp_mmu_roots;
1187
1188        /*
1189         * List of struct kvmp_mmu_pages not being used as roots.
1190         * All struct kvm_mmu_pages in the list should have
1191         * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1192         */
1193        struct list_head tdp_mmu_pages;
1194
1195        /*
1196         * Protects accesses to the following fields when the MMU lock
1197         * is held in read mode:
1198         *  - tdp_mmu_roots (above)
1199         *  - tdp_mmu_pages (above)
1200         *  - the link field of struct kvm_mmu_pages used by the TDP MMU
1201         *  - lpage_disallowed_mmu_pages
1202         *  - the lpage_disallowed_link field of struct kvm_mmu_pages used
1203         *    by the TDP MMU
1204         * It is acceptable, but not necessary, to acquire this lock when
1205         * the thread holds the MMU lock in write mode.
1206         */
1207        spinlock_t tdp_mmu_pages_lock;
1208#endif /* CONFIG_X86_64 */
1209
1210        /*
1211         * If set, rmaps have been allocated for all memslots and should be
1212         * allocated for any newly created or modified memslots.
1213         */
1214        bool memslots_have_rmaps;
1215
1216#if IS_ENABLED(CONFIG_HYPERV)
1217        hpa_t   hv_root_tdp;
1218        spinlock_t hv_root_tdp_lock;
1219#endif
1220};
1221
1222struct kvm_vm_stat {
1223        struct kvm_vm_stat_generic generic;
1224        u64 mmu_shadow_zapped;
1225        u64 mmu_pte_write;
1226        u64 mmu_pde_zapped;
1227        u64 mmu_flooded;
1228        u64 mmu_recycled;
1229        u64 mmu_cache_miss;
1230        u64 mmu_unsync;
1231        union {
1232                struct {
1233                        atomic64_t pages_4k;
1234                        atomic64_t pages_2m;
1235                        atomic64_t pages_1g;
1236                };
1237                atomic64_t pages[KVM_NR_PAGE_SIZES];
1238        };
1239        u64 nx_lpage_splits;
1240        u64 max_mmu_page_hash_collisions;
1241        u64 max_mmu_rmap_size;
1242};
1243
1244struct kvm_vcpu_stat {
1245        struct kvm_vcpu_stat_generic generic;
1246        u64 pf_fixed;
1247        u64 pf_guest;
1248        u64 tlb_flush;
1249        u64 invlpg;
1250
1251        u64 exits;
1252        u64 io_exits;
1253        u64 mmio_exits;
1254        u64 signal_exits;
1255        u64 irq_window_exits;
1256        u64 nmi_window_exits;
1257        u64 l1d_flush;
1258        u64 halt_exits;
1259        u64 request_irq_exits;
1260        u64 irq_exits;
1261        u64 host_state_reload;
1262        u64 fpu_reload;
1263        u64 insn_emulation;
1264        u64 insn_emulation_fail;
1265        u64 hypercalls;
1266        u64 irq_injections;
1267        u64 nmi_injections;
1268        u64 req_event;
1269        u64 nested_run;
1270        u64 directed_yield_attempted;
1271        u64 directed_yield_successful;
1272        u64 guest_mode;
1273};
1274
1275struct x86_instruction_info;
1276
1277struct msr_data {
1278        bool host_initiated;
1279        u32 index;
1280        u64 data;
1281};
1282
1283struct kvm_lapic_irq {
1284        u32 vector;
1285        u16 delivery_mode;
1286        u16 dest_mode;
1287        bool level;
1288        u16 trig_mode;
1289        u32 shorthand;
1290        u32 dest_id;
1291        bool msi_redir_hint;
1292};
1293
1294static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1295{
1296        return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1297}
1298
1299struct kvm_x86_ops {
1300        int (*hardware_enable)(void);
1301        void (*hardware_disable)(void);
1302        void (*hardware_unsetup)(void);
1303        bool (*cpu_has_accelerated_tpr)(void);
1304        bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1305        void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1306
1307        unsigned int vm_size;
1308        int (*vm_init)(struct kvm *kvm);
1309        void (*vm_destroy)(struct kvm *kvm);
1310
1311        /* Create, but do not attach this VCPU */
1312        int (*vcpu_create)(struct kvm_vcpu *vcpu);
1313        void (*vcpu_free)(struct kvm_vcpu *vcpu);
1314        void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1315
1316        void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1317        void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1318        void (*vcpu_put)(struct kvm_vcpu *vcpu);
1319
1320        void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1321        int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1322        int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1323        u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1324        void (*get_segment)(struct kvm_vcpu *vcpu,
1325                            struct kvm_segment *var, int seg);
1326        int (*get_cpl)(struct kvm_vcpu *vcpu);
1327        void (*set_segment)(struct kvm_vcpu *vcpu,
1328                            struct kvm_segment *var, int seg);
1329        void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1330        void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1331        bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1332        void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1333        int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1334        void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1335        void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1336        void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1337        void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1338        void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1339        void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1340        void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1341        unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1342        void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1343
1344        void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1345        void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1346        int  (*tlb_remote_flush)(struct kvm *kvm);
1347        int  (*tlb_remote_flush_with_range)(struct kvm *kvm,
1348                        struct kvm_tlb_range *range);
1349
1350        /*
1351         * Flush any TLB entries associated with the given GVA.
1352         * Does not need to flush GPA->HPA mappings.
1353         * Can potentially get non-canonical addresses through INVLPGs, which
1354         * the implementation may choose to ignore if appropriate.
1355         */
1356        void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1357
1358        /*
1359         * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1360         * does not need to flush GPA->HPA mappings.
1361         */
1362        void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1363
1364        enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1365        int (*handle_exit)(struct kvm_vcpu *vcpu,
1366                enum exit_fastpath_completion exit_fastpath);
1367        int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1368        void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1369        void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1370        u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1371        void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1372                                unsigned char *hypercall_addr);
1373        void (*set_irq)(struct kvm_vcpu *vcpu);
1374        void (*set_nmi)(struct kvm_vcpu *vcpu);
1375        void (*queue_exception)(struct kvm_vcpu *vcpu);
1376        void (*cancel_injection)(struct kvm_vcpu *vcpu);
1377        int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1378        int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1379        bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1380        void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1381        void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1382        void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1383        void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1384        bool (*check_apicv_inhibit_reasons)(ulong bit);
1385        void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1386        void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1387        void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1388        bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1389        void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1390        void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1391        void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1392        int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1393        int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1394        int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1395        int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1396        u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1397
1398        void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1399                             int root_level);
1400
1401        bool (*has_wbinvd_exit)(void);
1402
1403        u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1404        u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1405        void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1406        void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1407
1408        /*
1409         * Retrieve somewhat arbitrary exit information.  Intended to be used
1410         * only from within tracepoints to avoid VMREADs when tracing is off.
1411         */
1412        void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
1413                              u32 *exit_int_info, u32 *exit_int_info_err_code);
1414
1415        int (*check_intercept)(struct kvm_vcpu *vcpu,
1416                               struct x86_instruction_info *info,
1417                               enum x86_intercept_stage stage,
1418                               struct x86_exception *exception);
1419        void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1420
1421        void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1422
1423        void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1424
1425        /*
1426         * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1427         * value indicates CPU dirty logging is unsupported or disabled.
1428         */
1429        int cpu_dirty_log_size;
1430        void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1431
1432        /* pmu operations of sub-arch */
1433        const struct kvm_pmu_ops *pmu_ops;
1434        const struct kvm_x86_nested_ops *nested_ops;
1435
1436        /*
1437         * Architecture specific hooks for vCPU blocking due to
1438         * HLT instruction.
1439         * Returns for .pre_block():
1440         *    - 0 means continue to block the vCPU.
1441         *    - 1 means we cannot block the vCPU since some event
1442         *        happens during this period, such as, 'ON' bit in
1443         *        posted-interrupts descriptor is set.
1444         */
1445        int (*pre_block)(struct kvm_vcpu *vcpu);
1446        void (*post_block)(struct kvm_vcpu *vcpu);
1447
1448        void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1449        void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1450
1451        int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1452                              uint32_t guest_irq, bool set);
1453        void (*start_assignment)(struct kvm *kvm);
1454        void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1455        bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1456
1457        int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1458                            bool *expired);
1459        void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1460
1461        void (*setup_mce)(struct kvm_vcpu *vcpu);
1462
1463        int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1464        int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1465        int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1466        void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1467
1468        int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1469        int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1470        int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1471        int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1472
1473        int (*get_msr_feature)(struct kvm_msr_entry *entry);
1474
1475        bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1476
1477        bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1478        int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1479
1480        void (*migrate_timers)(struct kvm_vcpu *vcpu);
1481        void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1482        int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1483
1484        void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1485};
1486
1487struct kvm_x86_nested_ops {
1488        int (*check_events)(struct kvm_vcpu *vcpu);
1489        bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1490        void (*triple_fault)(struct kvm_vcpu *vcpu);
1491        int (*get_state)(struct kvm_vcpu *vcpu,
1492                         struct kvm_nested_state __user *user_kvm_nested_state,
1493                         unsigned user_data_size);
1494        int (*set_state)(struct kvm_vcpu *vcpu,
1495                         struct kvm_nested_state __user *user_kvm_nested_state,
1496                         struct kvm_nested_state *kvm_state);
1497        bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1498        int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1499
1500        int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1501                            uint16_t *vmcs_version);
1502        uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1503};
1504
1505struct kvm_x86_init_ops {
1506        int (*cpu_has_kvm_support)(void);
1507        int (*disabled_by_bios)(void);
1508        int (*check_processor_compatibility)(void);
1509        int (*hardware_setup)(void);
1510
1511        struct kvm_x86_ops *runtime_ops;
1512};
1513
1514struct kvm_arch_async_pf {
1515        u32 token;
1516        gfn_t gfn;
1517        unsigned long cr3;
1518        bool direct_map;
1519};
1520
1521extern u32 __read_mostly kvm_nr_uret_msrs;
1522extern u64 __read_mostly host_efer;
1523extern bool __read_mostly allow_smaller_maxphyaddr;
1524extern bool __read_mostly enable_apicv;
1525extern struct kvm_x86_ops kvm_x86_ops;
1526
1527#define KVM_X86_OP(func) \
1528        DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1529#define KVM_X86_OP_NULL KVM_X86_OP
1530#include <asm/kvm-x86-ops.h>
1531
1532static inline void kvm_ops_static_call_update(void)
1533{
1534#define KVM_X86_OP(func) \
1535        static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1536#define KVM_X86_OP_NULL KVM_X86_OP
1537#include <asm/kvm-x86-ops.h>
1538}
1539
1540#define __KVM_HAVE_ARCH_VM_ALLOC
1541static inline struct kvm *kvm_arch_alloc_vm(void)
1542{
1543        return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1544}
1545void kvm_arch_free_vm(struct kvm *kvm);
1546
1547#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1548static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1549{
1550        if (kvm_x86_ops.tlb_remote_flush &&
1551            !static_call(kvm_x86_tlb_remote_flush)(kvm))
1552                return 0;
1553        else
1554                return -ENOTSUPP;
1555}
1556
1557int kvm_mmu_module_init(void);
1558void kvm_mmu_module_exit(void);
1559
1560void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1561int kvm_mmu_create(struct kvm_vcpu *vcpu);
1562void kvm_mmu_init_vm(struct kvm *kvm);
1563void kvm_mmu_uninit_vm(struct kvm *kvm);
1564
1565void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1566void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1567void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1568                                      const struct kvm_memory_slot *memslot,
1569                                      int start_level);
1570void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1571                                   const struct kvm_memory_slot *memslot);
1572void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1573                                   const struct kvm_memory_slot *memslot);
1574void kvm_mmu_zap_all(struct kvm *kvm);
1575void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1576unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1577void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1578
1579int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1580
1581int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1582                          const void *val, int bytes);
1583
1584struct kvm_irq_mask_notifier {
1585        void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1586        int irq;
1587        struct hlist_node link;
1588};
1589
1590void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1591                                    struct kvm_irq_mask_notifier *kimn);
1592void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1593                                      struct kvm_irq_mask_notifier *kimn);
1594void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1595                             bool mask);
1596
1597extern bool tdp_enabled;
1598
1599u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1600
1601/* control of guest tsc rate supported? */
1602extern bool kvm_has_tsc_control;
1603/* maximum supported tsc_khz for guests */
1604extern u32  kvm_max_guest_tsc_khz;
1605/* number of bits of the fractional part of the TSC scaling ratio */
1606extern u8   kvm_tsc_scaling_ratio_frac_bits;
1607/* maximum allowed value of TSC scaling ratio */
1608extern u64  kvm_max_tsc_scaling_ratio;
1609/* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1610extern u64  kvm_default_tsc_scaling_ratio;
1611/* bus lock detection supported? */
1612extern bool kvm_has_bus_lock_exit;
1613
1614extern u64 kvm_mce_cap_supported;
1615
1616/*
1617 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1618 *                      userspace I/O) to indicate that the emulation context
1619 *                      should be reused as is, i.e. skip initialization of
1620 *                      emulation context, instruction fetch and decode.
1621 *
1622 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1623 *                    Indicates that only select instructions (tagged with
1624 *                    EmulateOnUD) should be emulated (to minimize the emulator
1625 *                    attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1626 *
1627 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1628 *                 decode the instruction length.  For use *only* by
1629 *                 kvm_x86_ops.skip_emulated_instruction() implementations.
1630 *
1631 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1632 *                           retry native execution under certain conditions,
1633 *                           Can only be set in conjunction with EMULTYPE_PF.
1634 *
1635 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1636 *                           triggered by KVM's magic "force emulation" prefix,
1637 *                           which is opt in via module param (off by default).
1638 *                           Bypasses EmulateOnUD restriction despite emulating
1639 *                           due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1640 *                           Used to test the full emulator from userspace.
1641 *
1642 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1643 *                      backdoor emulation, which is opt in via module param.
1644 *                      VMware backdoor emulation handles select instructions
1645 *                      and reinjects the #GP for all other cases.
1646 *
1647 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1648 *               case the CR2/GPA value pass on the stack is valid.
1649 */
1650#define EMULTYPE_NO_DECODE          (1 << 0)
1651#define EMULTYPE_TRAP_UD            (1 << 1)
1652#define EMULTYPE_SKIP               (1 << 2)
1653#define EMULTYPE_ALLOW_RETRY_PF     (1 << 3)
1654#define EMULTYPE_TRAP_UD_FORCED     (1 << 4)
1655#define EMULTYPE_VMWARE_GP          (1 << 5)
1656#define EMULTYPE_PF                 (1 << 6)
1657
1658int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1659int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1660                                        void *insn, int insn_len);
1661
1662void kvm_enable_efer_bits(u64);
1663bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1664int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1665int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1666int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1667int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1668int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1669int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1670int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1671int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1672int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1673int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1674
1675int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1676int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1677int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1678int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1679int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1680int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1681
1682void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1683int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1684void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1685
1686int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1687                    int reason, bool has_error_code, u32 error_code);
1688
1689void kvm_free_guest_fpu(struct kvm_vcpu *vcpu);
1690
1691void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1692void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1693int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1694int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1695int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1696int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1697int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1698void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1699unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1700void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1701void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1702int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1703
1704int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1705int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1706
1707unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1708void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1709int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1710
1711void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1712void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1713void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1714void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1715void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1716void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1717bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1718                                    struct x86_exception *fault);
1719int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1720                            gfn_t gfn, void *data, int offset, int len,
1721                            u32 access);
1722bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1723bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1724
1725static inline int __kvm_irq_line_state(unsigned long *irq_state,
1726                                       int irq_source_id, int level)
1727{
1728        /* Logical OR for level trig interrupt */
1729        if (level)
1730                __set_bit(irq_source_id, irq_state);
1731        else
1732                __clear_bit(irq_source_id, irq_state);
1733
1734        return !!(*irq_state);
1735}
1736
1737#define KVM_MMU_ROOT_CURRENT            BIT(0)
1738#define KVM_MMU_ROOT_PREVIOUS(i)        BIT(1+i)
1739#define KVM_MMU_ROOTS_ALL               (~0UL)
1740
1741int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1742void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1743
1744void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1745
1746void kvm_update_dr7(struct kvm_vcpu *vcpu);
1747
1748int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1749void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1750void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1751                        ulong roots_to_free);
1752void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1753gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1754                           struct x86_exception *exception);
1755gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1756                              struct x86_exception *exception);
1757gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1758                               struct x86_exception *exception);
1759gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1760                               struct x86_exception *exception);
1761gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1762                                struct x86_exception *exception);
1763
1764bool kvm_apicv_activated(struct kvm *kvm);
1765void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1766void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1767                              unsigned long bit);
1768
1769void __kvm_request_apicv_update(struct kvm *kvm, bool activate,
1770                                unsigned long bit);
1771
1772int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1773
1774int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1775                       void *insn, int insn_len);
1776void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1777void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1778                            gva_t gva, hpa_t root_hpa);
1779void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1780void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1781
1782void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1783                       int tdp_max_root_level, int tdp_huge_page_level);
1784
1785static inline u16 kvm_read_ldt(void)
1786{
1787        u16 ldt;
1788        asm("sldt %0" : "=g"(ldt));
1789        return ldt;
1790}
1791
1792static inline void kvm_load_ldt(u16 sel)
1793{
1794        asm("lldt %0" : : "rm"(sel));
1795}
1796
1797#ifdef CONFIG_X86_64
1798static inline unsigned long read_msr(unsigned long msr)
1799{
1800        u64 value;
1801
1802        rdmsrl(msr, value);
1803        return value;
1804}
1805#endif
1806
1807static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1808{
1809        kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1810}
1811
1812#define TSS_IOPB_BASE_OFFSET 0x66
1813#define TSS_BASE_SIZE 0x68
1814#define TSS_IOPB_SIZE (65536 / 8)
1815#define TSS_REDIRECTION_SIZE (256 / 8)
1816#define RMODE_TSS_SIZE                                                  \
1817        (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1818
1819enum {
1820        TASK_SWITCH_CALL = 0,
1821        TASK_SWITCH_IRET = 1,
1822        TASK_SWITCH_JMP = 2,
1823        TASK_SWITCH_GATE = 3,
1824};
1825
1826#define HF_GIF_MASK             (1 << 0)
1827#define HF_NMI_MASK             (1 << 3)
1828#define HF_IRET_MASK            (1 << 4)
1829#define HF_GUEST_MASK           (1 << 5) /* VCPU is in guest-mode */
1830#define HF_SMM_MASK             (1 << 6)
1831#define HF_SMM_INSIDE_NMI_MASK  (1 << 7)
1832
1833#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1834#define KVM_ADDRESS_SPACE_NUM 2
1835
1836#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1837#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1838
1839#define KVM_ARCH_WANT_MMU_NOTIFIER
1840
1841int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1842int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1843int kvm_cpu_has_extint(struct kvm_vcpu *v);
1844int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1845int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1846void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1847void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1848
1849int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1850                    unsigned long ipi_bitmap_high, u32 min,
1851                    unsigned long icr, int op_64_bit);
1852
1853int kvm_add_user_return_msr(u32 msr);
1854int kvm_find_user_return_msr(u32 msr);
1855int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1856
1857static inline bool kvm_is_supported_user_return_msr(u32 msr)
1858{
1859        return kvm_find_user_return_msr(msr) >= 0;
1860}
1861
1862u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1863u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1864u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1865u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1866
1867unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1868bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1869
1870void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1871void kvm_make_scan_ioapic_request(struct kvm *kvm);
1872void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1873                                       unsigned long *vcpu_bitmap);
1874
1875bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1876                                     struct kvm_async_pf *work);
1877void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1878                                 struct kvm_async_pf *work);
1879void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1880                               struct kvm_async_pf *work);
1881void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1882bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1883extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1884
1885int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1886int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1887void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1888
1889int kvm_is_in_guest(void);
1890
1891void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1892                                     u32 size);
1893bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1894bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1895
1896bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1897                             struct kvm_vcpu **dest_vcpu);
1898
1899void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1900                     struct kvm_lapic_irq *irq);
1901
1902static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1903{
1904        /* We can only post Fixed and LowPrio IRQs */
1905        return (irq->delivery_mode == APIC_DM_FIXED ||
1906                irq->delivery_mode == APIC_DM_LOWEST);
1907}
1908
1909static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1910{
1911        static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1912}
1913
1914static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1915{
1916        static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1917}
1918
1919static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1920
1921static inline int kvm_cpu_get_apicid(int mps_cpu)
1922{
1923#ifdef CONFIG_X86_LOCAL_APIC
1924        return default_cpu_present_to_apicid(mps_cpu);
1925#else
1926        WARN_ON_ONCE(1);
1927        return BAD_APICID;
1928#endif
1929}
1930
1931#define put_smstate(type, buf, offset, val)                      \
1932        *(type *)((buf) + (offset) - 0x7e00) = val
1933
1934#define GET_SMSTATE(type, buf, offset)          \
1935        (*(type *)((buf) + (offset) - 0x7e00))
1936
1937int kvm_cpu_dirty_log_size(void);
1938
1939int alloc_all_memslots_rmaps(struct kvm *kvm);
1940
1941#endif /* _ASM_X86_KVM_HOST_H */
1942