linux/arch/x86/include/asm/uv/uv_hub.h
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * SGI UV architectural definitions
   7 *
   8 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
   9 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
  10 */
  11
  12#ifndef _ASM_X86_UV_UV_HUB_H
  13#define _ASM_X86_UV_UV_HUB_H
  14
  15#ifdef CONFIG_X86_64
  16#include <linux/numa.h>
  17#include <linux/percpu.h>
  18#include <linux/timer.h>
  19#include <linux/io.h>
  20#include <linux/topology.h>
  21#include <asm/types.h>
  22#include <asm/percpu.h>
  23#include <asm/uv/uv.h>
  24#include <asm/uv/uv_mmrs.h>
  25#include <asm/uv/bios.h>
  26#include <asm/irq_vectors.h>
  27#include <asm/io_apic.h>
  28
  29
  30/*
  31 * Addressing Terminology
  32 *
  33 *      M       - The low M bits of a physical address represent the offset
  34 *                into the blade local memory. RAM memory on a blade is physically
  35 *                contiguous (although various IO spaces may punch holes in
  36 *                it)..
  37 *
  38 *      N       - Number of bits in the node portion of a socket physical
  39 *                address.
  40 *
  41 *      NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
  42 *                routers always have low bit of 1, C/MBricks have low bit
  43 *                equal to 0. Most addressing macros that target UV hub chips
  44 *                right shift the NASID by 1 to exclude the always-zero bit.
  45 *                NASIDs contain up to 15 bits.
  46 *
  47 *      GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  48 *                of nasids.
  49 *
  50 *      PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
  51 *                of the nasid for socket usage.
  52 *
  53 *      GPA     - (global physical address) a socket physical address converted
  54 *                so that it can be used by the GRU as a global address. Socket
  55 *                physical addresses 1) need additional NASID (node) bits added
  56 *                to the high end of the address, and 2) unaliased if the
  57 *                partition does not have a physical address 0. In addition, on
  58 *                UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
  59 *
  60 *
  61 *  NumaLink Global Physical Address Format:
  62 *  +--------------------------------+---------------------+
  63 *  |00..000|      GNODE             |      NodeOffset     |
  64 *  +--------------------------------+---------------------+
  65 *          |<-------53 - M bits --->|<--------M bits ----->
  66 *
  67 *      M - number of node offset bits (35 .. 40)
  68 *
  69 *
  70 *  Memory/UV-HUB Processor Socket Address Format:
  71 *  +----------------+---------------+---------------------+
  72 *  |00..000000000000|   PNODE       |      NodeOffset     |
  73 *  +----------------+---------------+---------------------+
  74 *                   <--- N bits --->|<--------M bits ----->
  75 *
  76 *      M - number of node offset bits (35 .. 40)
  77 *      N - number of PNODE bits (0 .. 10)
  78 *
  79 *              Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  80 *              The actual values are configuration dependent and are set at
  81 *              boot time. M & N values are set by the hardware/BIOS at boot.
  82 *
  83 *
  84 * APICID format
  85 *      NOTE!!!!!! This is the current format of the APICID. However, code
  86 *      should assume that this will change in the future. Use functions
  87 *      in this file for all APICID bit manipulations and conversion.
  88 *
  89 *              1111110000000000
  90 *              5432109876543210
  91 *              pppppppppplc0cch        Nehalem-EX (12 bits in hdw reg)
  92 *              ppppppppplcc0cch        Westmere-EX (12 bits in hdw reg)
  93 *              pppppppppppcccch        SandyBridge (15 bits in hdw reg)
  94 *              sssssssssss
  95 *
  96 *                      p  = pnode bits
  97 *                      l =  socket number on board
  98 *                      c  = core
  99 *                      h  = hyperthread
 100 *                      s  = bits that are in the SOCKET_ID CSR
 101 *
 102 *      Note: Processor may support fewer bits in the APICID register. The ACPI
 103 *            tables hold all 16 bits. Software needs to be aware of this.
 104 *
 105 *            Unless otherwise specified, all references to APICID refer to
 106 *            the FULL value contained in ACPI tables, not the subset in the
 107 *            processor APICID register.
 108 */
 109
 110/*
 111 * Maximum number of bricks in all partitions and in all coherency domains.
 112 * This is the total number of bricks accessible in the numalink fabric. It
 113 * includes all C & M bricks. Routers are NOT included.
 114 *
 115 * This value is also the value of the maximum number of non-router NASIDs
 116 * in the numalink fabric.
 117 *
 118 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
 119 */
 120#define UV_MAX_NUMALINK_BLADES  16384
 121
 122/*
 123 * Maximum number of C/Mbricks within a software SSI (hardware may support
 124 * more).
 125 */
 126#define UV_MAX_SSI_BLADES       256
 127
 128/*
 129 * The largest possible NASID of a C or M brick (+ 2)
 130 */
 131#define UV_MAX_NASID_VALUE      (UV_MAX_NUMALINK_BLADES * 2)
 132
 133/* GAM (globally addressed memory) range table */
 134struct uv_gam_range_s {
 135        u32     limit;          /* PA bits 56:26 (GAM_RANGE_SHFT) */
 136        u16     nasid;          /* node's global physical address */
 137        s8      base;           /* entry index of node's base addr */
 138        u8      reserved;
 139};
 140
 141/*
 142 * The following defines attributes of the HUB chip. These attributes are
 143 * frequently referenced and are kept in a common per hub struct.
 144 * After setup, the struct is read only, so it should be readily
 145 * available in the L3 cache on the cpu socket for the node.
 146 */
 147struct uv_hub_info_s {
 148        unsigned int            hub_type;
 149        unsigned char           hub_revision;
 150        unsigned long           global_mmr_base;
 151        unsigned long           global_mmr_shift;
 152        unsigned long           gpa_mask;
 153        unsigned short          *socket_to_node;
 154        unsigned short          *socket_to_pnode;
 155        unsigned short          *pnode_to_socket;
 156        struct uv_gam_range_s   *gr_table;
 157        unsigned short          min_socket;
 158        unsigned short          min_pnode;
 159        unsigned char           m_val;
 160        unsigned char           n_val;
 161        unsigned char           gr_table_len;
 162        unsigned char           apic_pnode_shift;
 163        unsigned char           gpa_shift;
 164        unsigned char           nasid_shift;
 165        unsigned char           m_shift;
 166        unsigned char           n_lshift;
 167        unsigned int            gnode_extra;
 168        unsigned long           gnode_upper;
 169        unsigned long           lowmem_remap_top;
 170        unsigned long           lowmem_remap_base;
 171        unsigned long           global_gru_base;
 172        unsigned long           global_gru_shift;
 173        unsigned short          pnode;
 174        unsigned short          pnode_mask;
 175        unsigned short          coherency_domain_number;
 176        unsigned short          numa_blade_id;
 177        unsigned short          nr_possible_cpus;
 178        unsigned short          nr_online_cpus;
 179        short                   memory_nid;
 180};
 181
 182/* CPU specific info with a pointer to the hub common info struct */
 183struct uv_cpu_info_s {
 184        void                    *p_uv_hub_info;
 185        unsigned char           blade_cpu_id;
 186        void                    *reserved;
 187};
 188DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
 189
 190#define uv_cpu_info             this_cpu_ptr(&__uv_cpu_info)
 191#define uv_cpu_info_per(cpu)    (&per_cpu(__uv_cpu_info, cpu))
 192
 193/* Node specific hub common info struct */
 194extern void **__uv_hub_info_list;
 195static inline struct uv_hub_info_s *uv_hub_info_list(int node)
 196{
 197        return (struct uv_hub_info_s *)__uv_hub_info_list[node];
 198}
 199
 200static inline struct uv_hub_info_s *_uv_hub_info(void)
 201{
 202        return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
 203}
 204#define uv_hub_info     _uv_hub_info()
 205
 206static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
 207{
 208        return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
 209}
 210
 211static inline int uv_hub_type(void)
 212{
 213        return uv_hub_info->hub_type;
 214}
 215
 216static inline __init void uv_hub_type_set(int uvmask)
 217{
 218        uv_hub_info->hub_type = uvmask;
 219}
 220
 221
 222/*
 223 * HUB revision ranges for each UV HUB architecture.
 224 * This is a software convention - NOT the hardware revision numbers in
 225 * the hub chip.
 226 */
 227#define UV2_HUB_REVISION_BASE           3
 228#define UV3_HUB_REVISION_BASE           5
 229#define UV4_HUB_REVISION_BASE           7
 230#define UV4A_HUB_REVISION_BASE          8       /* UV4 (fixed) rev 2 */
 231#define UV5_HUB_REVISION_BASE           9
 232
 233static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
 234static inline int is_uv1_hub(void) { return 0; }
 235static inline int is_uv2_hub(void) { return is_uv(UV2); }
 236static inline int is_uv3_hub(void) { return is_uv(UV3); }
 237static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
 238static inline int is_uv4_hub(void) { return is_uv(UV4); }
 239static inline int is_uv5_hub(void) { return is_uv(UV5); }
 240
 241/*
 242 * UV4A is a revision of UV4.  So on UV4A, both is_uv4_hub() and
 243 * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
 244 * returns true.  So to get true results, first test if is UV4A,
 245 * then test if is UV4.
 246 */
 247
 248/* UVX class: UV2,3,4 */
 249static inline int is_uvx_hub(void) { return is_uv(UVX); }
 250
 251/* UVY class: UV5,..? */
 252static inline int is_uvy_hub(void) { return is_uv(UVY); }
 253
 254/* Any UV Hubbed System */
 255static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
 256
 257union uvh_apicid {
 258    unsigned long       v;
 259    struct uvh_apicid_s {
 260        unsigned long   local_apic_mask  : 24;
 261        unsigned long   local_apic_shift :  5;
 262        unsigned long   unused1          :  3;
 263        unsigned long   pnode_mask       : 24;
 264        unsigned long   pnode_shift      :  5;
 265        unsigned long   unused2          :  3;
 266    } s;
 267};
 268
 269/*
 270 * Local & Global MMR space macros.
 271 *      Note: macros are intended to be used ONLY by inline functions
 272 *      in this file - not by other kernel code.
 273 *              n -  NASID (full 15-bit global nasid)
 274 *              g -  GNODE (full 15-bit global nasid, right shifted 1)
 275 *              p -  PNODE (local part of nsids, right shifted 1)
 276 */
 277#define UV_NASID_TO_PNODE(n)            \
 278                (((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
 279#define UV_PNODE_TO_GNODE(p)            ((p) |uv_hub_info->gnode_extra)
 280#define UV_PNODE_TO_NASID(p)            \
 281                (UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
 282
 283#define UV2_LOCAL_MMR_BASE              0xfa000000UL
 284#define UV2_GLOBAL_MMR32_BASE           0xfc000000UL
 285#define UV2_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 286#define UV2_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 287
 288#define UV3_LOCAL_MMR_BASE              0xfa000000UL
 289#define UV3_GLOBAL_MMR32_BASE           0xfc000000UL
 290#define UV3_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 291#define UV3_GLOBAL_MMR32_SIZE           (32UL * 1024 * 1024)
 292
 293#define UV4_LOCAL_MMR_BASE              0xfa000000UL
 294#define UV4_GLOBAL_MMR32_BASE           0
 295#define UV4_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 296#define UV4_GLOBAL_MMR32_SIZE           0
 297
 298#define UV5_LOCAL_MMR_BASE              0xfa000000UL
 299#define UV5_GLOBAL_MMR32_BASE           0
 300#define UV5_LOCAL_MMR_SIZE              (32UL * 1024 * 1024)
 301#define UV5_GLOBAL_MMR32_SIZE           0
 302
 303#define UV_LOCAL_MMR_BASE               (                               \
 304                                        is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
 305                                        is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
 306                                        is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
 307                                        is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
 308                                        0)
 309
 310#define UV_GLOBAL_MMR32_BASE            (                               \
 311                                        is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
 312                                        is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
 313                                        is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
 314                                        is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
 315                                        0)
 316
 317#define UV_LOCAL_MMR_SIZE               (                               \
 318                                        is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
 319                                        is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
 320                                        is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
 321                                        is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
 322                                        0)
 323
 324#define UV_GLOBAL_MMR32_SIZE            (                               \
 325                                        is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
 326                                        is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
 327                                        is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
 328                                        is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
 329                                        0)
 330
 331#define UV_GLOBAL_MMR64_BASE            (uv_hub_info->global_mmr_base)
 332
 333#define UV_GLOBAL_GRU_MMR_BASE          0x4000000
 334
 335#define UV_GLOBAL_MMR32_PNODE_SHIFT     15
 336#define _UV_GLOBAL_MMR64_PNODE_SHIFT    26
 337#define UV_GLOBAL_MMR64_PNODE_SHIFT     (uv_hub_info->global_mmr_shift)
 338
 339#define UV_GLOBAL_MMR32_PNODE_BITS(p)   ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
 340
 341#define UV_GLOBAL_MMR64_PNODE_BITS(p)                                   \
 342        (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
 343
 344#define UVH_APICID              0x002D0E00L
 345#define UV_APIC_PNODE_SHIFT     6
 346
 347/* Local Bus from cpu's perspective */
 348#define LOCAL_BUS_BASE          0x1c00000
 349#define LOCAL_BUS_SIZE          (4 * 1024 * 1024)
 350
 351/*
 352 * System Controller Interface Reg
 353 *
 354 * Note there are NO leds on a UV system.  This register is only
 355 * used by the system controller to monitor system-wide operation.
 356 * There are 64 regs per node.  With Nehalem cpus (2 cores per node,
 357 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
 358 * a node.
 359 *
 360 * The window is located at top of ACPI MMR space
 361 */
 362#define SCIR_WINDOW_COUNT       64
 363#define SCIR_LOCAL_MMR_BASE     (LOCAL_BUS_BASE + \
 364                                 LOCAL_BUS_SIZE - \
 365                                 SCIR_WINDOW_COUNT)
 366
 367#define SCIR_CPU_HEARTBEAT      0x01    /* timer interrupt */
 368#define SCIR_CPU_ACTIVITY       0x02    /* not idle */
 369#define SCIR_CPU_HB_INTERVAL    (HZ)    /* once per second */
 370
 371/* Loop through all installed blades */
 372#define for_each_possible_blade(bid)            \
 373        for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
 374
 375/*
 376 * Macros for converting between kernel virtual addresses, socket local physical
 377 * addresses, and UV global physical addresses.
 378 *      Note: use the standard __pa() & __va() macros for converting
 379 *            between socket virtual and socket physical addresses.
 380 */
 381
 382/* global bits offset - number of local address bits in gpa for this UV arch */
 383static inline unsigned int uv_gpa_shift(void)
 384{
 385        return uv_hub_info->gpa_shift;
 386}
 387#define _uv_gpa_shift
 388
 389/* Find node that has the address range that contains global address  */
 390static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
 391{
 392        struct uv_gam_range_s *gr = uv_hub_info->gr_table;
 393        unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
 394        int i, num = uv_hub_info->gr_table_len;
 395
 396        if (gr) {
 397                for (i = 0; i < num; i++, gr++) {
 398                        if (pal < gr->limit)
 399                                return gr;
 400                }
 401        }
 402        pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
 403        BUG();
 404}
 405
 406/* Return base address of node that contains global address  */
 407static inline unsigned long uv_gam_range_base(unsigned long pa)
 408{
 409        struct uv_gam_range_s *gr = uv_gam_range(pa);
 410        int base = gr->base;
 411
 412        if (base < 0)
 413                return 0UL;
 414
 415        return uv_hub_info->gr_table[base].limit;
 416}
 417
 418/* socket phys RAM --> UV global NASID (UV4+) */
 419static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
 420{
 421        return uv_gam_range(paddr)->nasid;
 422}
 423#define _uv_soc_phys_ram_to_nasid
 424
 425/* socket virtual --> UV global NASID (UV4+) */
 426static inline unsigned long uv_gpa_nasid(void *v)
 427{
 428        return uv_soc_phys_ram_to_nasid(__pa(v));
 429}
 430
 431/* socket phys RAM --> UV global physical address */
 432static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
 433{
 434        unsigned int m_val = uv_hub_info->m_val;
 435
 436        if (paddr < uv_hub_info->lowmem_remap_top)
 437                paddr |= uv_hub_info->lowmem_remap_base;
 438
 439        if (m_val) {
 440                paddr |= uv_hub_info->gnode_upper;
 441                paddr = ((paddr << uv_hub_info->m_shift)
 442                                                >> uv_hub_info->m_shift) |
 443                        ((paddr >> uv_hub_info->m_val)
 444                                                << uv_hub_info->n_lshift);
 445        } else {
 446                paddr |= uv_soc_phys_ram_to_nasid(paddr)
 447                                                << uv_hub_info->gpa_shift;
 448        }
 449        return paddr;
 450}
 451
 452/* socket virtual --> UV global physical address */
 453static inline unsigned long uv_gpa(void *v)
 454{
 455        return uv_soc_phys_ram_to_gpa(__pa(v));
 456}
 457
 458/* Top two bits indicate the requested address is in MMR space.  */
 459static inline int
 460uv_gpa_in_mmr_space(unsigned long gpa)
 461{
 462        return (gpa >> 62) == 0x3UL;
 463}
 464
 465/* UV global physical address --> socket phys RAM */
 466static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
 467{
 468        unsigned long paddr;
 469        unsigned long remap_base = uv_hub_info->lowmem_remap_base;
 470        unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
 471        unsigned int m_val = uv_hub_info->m_val;
 472
 473        if (m_val)
 474                gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
 475                        ((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
 476
 477        paddr = gpa & uv_hub_info->gpa_mask;
 478        if (paddr >= remap_base && paddr < remap_base + remap_top)
 479                paddr -= remap_base;
 480        return paddr;
 481}
 482
 483/* gpa -> gnode */
 484static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
 485{
 486        unsigned int n_lshift = uv_hub_info->n_lshift;
 487
 488        if (n_lshift)
 489                return gpa >> n_lshift;
 490
 491        return uv_gam_range(gpa)->nasid >> 1;
 492}
 493
 494/* gpa -> pnode */
 495static inline int uv_gpa_to_pnode(unsigned long gpa)
 496{
 497        return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
 498}
 499
 500/* gpa -> node offset */
 501static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
 502{
 503        unsigned int m_shift = uv_hub_info->m_shift;
 504
 505        if (m_shift)
 506                return (gpa << m_shift) >> m_shift;
 507
 508        return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
 509}
 510
 511/* Convert socket to node */
 512static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
 513{
 514        return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
 515}
 516
 517static inline int uv_socket_to_node(int socket)
 518{
 519        return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
 520}
 521
 522/* pnode, offset --> socket virtual */
 523static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
 524{
 525        unsigned int m_val = uv_hub_info->m_val;
 526        unsigned long base;
 527        unsigned short sockid, node, *p2s;
 528
 529        if (m_val)
 530                return __va(((unsigned long)pnode << m_val) | offset);
 531
 532        p2s = uv_hub_info->pnode_to_socket;
 533        sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
 534        node = uv_socket_to_node(sockid);
 535
 536        /* limit address of previous socket is our base, except node 0 is 0 */
 537        if (!node)
 538                return __va((unsigned long)offset);
 539
 540        base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
 541        return __va(base << UV_GAM_RANGE_SHFT | offset);
 542}
 543
 544/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
 545static inline int uv_apicid_to_pnode(int apicid)
 546{
 547        int pnode = apicid >> uv_hub_info->apic_pnode_shift;
 548        unsigned short *s2pn = uv_hub_info->socket_to_pnode;
 549
 550        return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
 551}
 552
 553/*
 554 * Access global MMRs using the low memory MMR32 space. This region supports
 555 * faster MMR access but not all MMRs are accessible in this space.
 556 */
 557static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
 558{
 559        return __va(UV_GLOBAL_MMR32_BASE |
 560                       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
 561}
 562
 563static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
 564{
 565        writeq(val, uv_global_mmr32_address(pnode, offset));
 566}
 567
 568static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
 569{
 570        return readq(uv_global_mmr32_address(pnode, offset));
 571}
 572
 573/*
 574 * Access Global MMR space using the MMR space located at the top of physical
 575 * memory.
 576 */
 577static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
 578{
 579        return __va(UV_GLOBAL_MMR64_BASE |
 580                    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
 581}
 582
 583static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
 584{
 585        writeq(val, uv_global_mmr64_address(pnode, offset));
 586}
 587
 588static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
 589{
 590        return readq(uv_global_mmr64_address(pnode, offset));
 591}
 592
 593static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
 594{
 595        writeb(val, uv_global_mmr64_address(pnode, offset));
 596}
 597
 598static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
 599{
 600        return readb(uv_global_mmr64_address(pnode, offset));
 601}
 602
 603/*
 604 * Access hub local MMRs. Faster than using global space but only local MMRs
 605 * are accessible.
 606 */
 607static inline unsigned long *uv_local_mmr_address(unsigned long offset)
 608{
 609        return __va(UV_LOCAL_MMR_BASE | offset);
 610}
 611
 612static inline unsigned long uv_read_local_mmr(unsigned long offset)
 613{
 614        return readq(uv_local_mmr_address(offset));
 615}
 616
 617static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
 618{
 619        writeq(val, uv_local_mmr_address(offset));
 620}
 621
 622static inline unsigned char uv_read_local_mmr8(unsigned long offset)
 623{
 624        return readb(uv_local_mmr_address(offset));
 625}
 626
 627static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
 628{
 629        writeb(val, uv_local_mmr_address(offset));
 630}
 631
 632/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
 633static inline int uv_blade_processor_id(void)
 634{
 635        return uv_cpu_info->blade_cpu_id;
 636}
 637
 638/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
 639static inline int uv_cpu_blade_processor_id(int cpu)
 640{
 641        return uv_cpu_info_per(cpu)->blade_cpu_id;
 642}
 643
 644/* Blade number to Node number (UV2..UV4 is 1:1) */
 645static inline int uv_blade_to_node(int blade)
 646{
 647        return blade;
 648}
 649
 650/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
 651static inline int uv_numa_blade_id(void)
 652{
 653        return uv_hub_info->numa_blade_id;
 654}
 655
 656/*
 657 * Convert linux node number to the UV blade number.
 658 * .. Currently for UV2 thru UV4 the node and the blade are identical.
 659 * .. If this changes then you MUST check references to this function!
 660 */
 661static inline int uv_node_to_blade_id(int nid)
 662{
 663        return nid;
 664}
 665
 666/* Convert a CPU number to the UV blade number */
 667static inline int uv_cpu_to_blade_id(int cpu)
 668{
 669        return uv_node_to_blade_id(cpu_to_node(cpu));
 670}
 671
 672/* Convert a blade id to the PNODE of the blade */
 673static inline int uv_blade_to_pnode(int bid)
 674{
 675        return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
 676}
 677
 678/* Nid of memory node on blade. -1 if no blade-local memory */
 679static inline int uv_blade_to_memory_nid(int bid)
 680{
 681        return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
 682}
 683
 684/* Determine the number of possible cpus on a blade */
 685static inline int uv_blade_nr_possible_cpus(int bid)
 686{
 687        return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
 688}
 689
 690/* Determine the number of online cpus on a blade */
 691static inline int uv_blade_nr_online_cpus(int bid)
 692{
 693        return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
 694}
 695
 696/* Convert a cpu id to the PNODE of the blade containing the cpu */
 697static inline int uv_cpu_to_pnode(int cpu)
 698{
 699        return uv_cpu_hub_info(cpu)->pnode;
 700}
 701
 702/* Convert a linux node number to the PNODE of the blade */
 703static inline int uv_node_to_pnode(int nid)
 704{
 705        return uv_hub_info_list(nid)->pnode;
 706}
 707
 708/* Maximum possible number of blades */
 709extern short uv_possible_blades;
 710static inline int uv_num_possible_blades(void)
 711{
 712        return uv_possible_blades;
 713}
 714
 715/* Per Hub NMI support */
 716extern void uv_nmi_setup(void);
 717extern void uv_nmi_setup_hubless(void);
 718
 719/* BIOS/Kernel flags exchange MMR */
 720#define UVH_BIOS_KERNEL_MMR             UVH_SCRATCH5
 721#define UVH_BIOS_KERNEL_MMR_ALIAS       UVH_SCRATCH5_ALIAS
 722#define UVH_BIOS_KERNEL_MMR_ALIAS_2     UVH_SCRATCH5_ALIAS_2
 723
 724/* TSC sync valid, set by BIOS */
 725#define UVH_TSC_SYNC_MMR        UVH_BIOS_KERNEL_MMR
 726#define UVH_TSC_SYNC_SHIFT      10
 727#define UVH_TSC_SYNC_SHIFT_UV2K 16      /* UV2/3k have different bits */
 728#define UVH_TSC_SYNC_MASK       3       /* 0011 */
 729#define UVH_TSC_SYNC_VALID      3       /* 0011 */
 730#define UVH_TSC_SYNC_UNKNOWN    0       /* 0000 */
 731
 732/* BMC sets a bit this MMR non-zero before sending an NMI */
 733#define UVH_NMI_MMR             UVH_BIOS_KERNEL_MMR
 734#define UVH_NMI_MMR_CLEAR       UVH_BIOS_KERNEL_MMR_ALIAS
 735#define UVH_NMI_MMR_SHIFT       63
 736#define UVH_NMI_MMR_TYPE        "SCRATCH5"
 737
 738struct uv_hub_nmi_s {
 739        raw_spinlock_t  nmi_lock;
 740        atomic_t        in_nmi;         /* flag this node in UV NMI IRQ */
 741        atomic_t        cpu_owner;      /* last locker of this struct */
 742        atomic_t        read_mmr_count; /* count of MMR reads */
 743        atomic_t        nmi_count;      /* count of true UV NMIs */
 744        unsigned long   nmi_value;      /* last value read from NMI MMR */
 745        bool            hub_present;    /* false means UV hubless system */
 746        bool            pch_owner;      /* indicates this hub owns PCH */
 747};
 748
 749struct uv_cpu_nmi_s {
 750        struct uv_hub_nmi_s     *hub;
 751        int                     state;
 752        int                     pinging;
 753        int                     queries;
 754        int                     pings;
 755};
 756
 757DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
 758
 759#define uv_hub_nmi                      this_cpu_read(uv_cpu_nmi.hub)
 760#define uv_cpu_nmi_per(cpu)             (per_cpu(uv_cpu_nmi, cpu))
 761#define uv_hub_nmi_per(cpu)             (uv_cpu_nmi_per(cpu).hub)
 762
 763/* uv_cpu_nmi_states */
 764#define UV_NMI_STATE_OUT                0
 765#define UV_NMI_STATE_IN                 1
 766#define UV_NMI_STATE_DUMP               2
 767#define UV_NMI_STATE_DUMP_DONE          3
 768
 769/*
 770 * Get the minimum revision number of the hub chips within the partition.
 771 * (See UVx_HUB_REVISION_BASE above for specific values.)
 772 */
 773static inline int uv_get_min_hub_revision_id(void)
 774{
 775        return uv_hub_info->hub_revision;
 776}
 777
 778#endif /* CONFIG_X86_64 */
 779#endif /* _ASM_X86_UV_UV_HUB_H */
 780