linux/arch/x86/kernel/apic/msi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Support of MSI, HPET and DMAR interrupts.
   4 *
   5 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
   6 *      Moved from arch/x86/kernel/apic/io_apic.c.
   7 * Jiang Liu <jiang.liu@linux.intel.com>
   8 *      Convert to hierarchical irqdomain
   9 */
  10#include <linux/mm.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/pci.h>
  14#include <linux/dmar.h>
  15#include <linux/hpet.h>
  16#include <linux/msi.h>
  17#include <asm/irqdomain.h>
  18#include <asm/hpet.h>
  19#include <asm/hw_irq.h>
  20#include <asm/apic.h>
  21#include <asm/irq_remapping.h>
  22
  23struct irq_domain *x86_pci_msi_default_domain __ro_after_init;
  24
  25static void irq_msi_update_msg(struct irq_data *irqd, struct irq_cfg *cfg)
  26{
  27        struct msi_msg msg[2] = { [1] = { }, };
  28
  29        __irq_msi_compose_msg(cfg, msg, false);
  30        irq_data_get_irq_chip(irqd)->irq_write_msi_msg(irqd, msg);
  31}
  32
  33static int
  34msi_set_affinity(struct irq_data *irqd, const struct cpumask *mask, bool force)
  35{
  36        struct irq_cfg old_cfg, *cfg = irqd_cfg(irqd);
  37        struct irq_data *parent = irqd->parent_data;
  38        unsigned int cpu;
  39        int ret;
  40
  41        /* Save the current configuration */
  42        cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
  43        old_cfg = *cfg;
  44
  45        /* Allocate a new target vector */
  46        ret = parent->chip->irq_set_affinity(parent, mask, force);
  47        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
  48                return ret;
  49
  50        /*
  51         * For non-maskable and non-remapped MSI interrupts the migration
  52         * to a different destination CPU and a different vector has to be
  53         * done careful to handle the possible stray interrupt which can be
  54         * caused by the non-atomic update of the address/data pair.
  55         *
  56         * Direct update is possible when:
  57         * - The MSI is maskable (remapped MSI does not use this code path)).
  58         *   The quirk bit is not set in this case.
  59         * - The new vector is the same as the old vector
  60         * - The old vector is MANAGED_IRQ_SHUTDOWN_VECTOR (interrupt starts up)
  61         * - The interrupt is not yet started up
  62         * - The new destination CPU is the same as the old destination CPU
  63         */
  64        if (!irqd_msi_nomask_quirk(irqd) ||
  65            cfg->vector == old_cfg.vector ||
  66            old_cfg.vector == MANAGED_IRQ_SHUTDOWN_VECTOR ||
  67            !irqd_is_started(irqd) ||
  68            cfg->dest_apicid == old_cfg.dest_apicid) {
  69                irq_msi_update_msg(irqd, cfg);
  70                return ret;
  71        }
  72
  73        /*
  74         * Paranoia: Validate that the interrupt target is the local
  75         * CPU.
  76         */
  77        if (WARN_ON_ONCE(cpu != smp_processor_id())) {
  78                irq_msi_update_msg(irqd, cfg);
  79                return ret;
  80        }
  81
  82        /*
  83         * Redirect the interrupt to the new vector on the current CPU
  84         * first. This might cause a spurious interrupt on this vector if
  85         * the device raises an interrupt right between this update and the
  86         * update to the final destination CPU.
  87         *
  88         * If the vector is in use then the installed device handler will
  89         * denote it as spurious which is no harm as this is a rare event
  90         * and interrupt handlers have to cope with spurious interrupts
  91         * anyway. If the vector is unused, then it is marked so it won't
  92         * trigger the 'No irq handler for vector' warning in
  93         * common_interrupt().
  94         *
  95         * This requires to hold vector lock to prevent concurrent updates to
  96         * the affected vector.
  97         */
  98        lock_vector_lock();
  99
 100        /*
 101         * Mark the new target vector on the local CPU if it is currently
 102         * unused. Reuse the VECTOR_RETRIGGERED state which is also used in
 103         * the CPU hotplug path for a similar purpose. This cannot be
 104         * undone here as the current CPU has interrupts disabled and
 105         * cannot handle the interrupt before the whole set_affinity()
 106         * section is done. In the CPU unplug case, the current CPU is
 107         * about to vanish and will not handle any interrupts anymore. The
 108         * vector is cleaned up when the CPU comes online again.
 109         */
 110        if (IS_ERR_OR_NULL(this_cpu_read(vector_irq[cfg->vector])))
 111                this_cpu_write(vector_irq[cfg->vector], VECTOR_RETRIGGERED);
 112
 113        /* Redirect it to the new vector on the local CPU temporarily */
 114        old_cfg.vector = cfg->vector;
 115        irq_msi_update_msg(irqd, &old_cfg);
 116
 117        /* Now transition it to the target CPU */
 118        irq_msi_update_msg(irqd, cfg);
 119
 120        /*
 121         * All interrupts after this point are now targeted at the new
 122         * vector/CPU.
 123         *
 124         * Drop vector lock before testing whether the temporary assignment
 125         * to the local CPU was hit by an interrupt raised in the device,
 126         * because the retrigger function acquires vector lock again.
 127         */
 128        unlock_vector_lock();
 129
 130        /*
 131         * Check whether the transition raced with a device interrupt and
 132         * is pending in the local APICs IRR. It is safe to do this outside
 133         * of vector lock as the irq_desc::lock of this interrupt is still
 134         * held and interrupts are disabled: The check is not accessing the
 135         * underlying vector store. It's just checking the local APIC's
 136         * IRR.
 137         */
 138        if (lapic_vector_set_in_irr(cfg->vector))
 139                irq_data_get_irq_chip(irqd)->irq_retrigger(irqd);
 140
 141        return ret;
 142}
 143
 144/*
 145 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
 146 * which implement the MSI or MSI-X Capability Structure.
 147 */
 148static struct irq_chip pci_msi_controller = {
 149        .name                   = "PCI-MSI",
 150        .irq_unmask             = pci_msi_unmask_irq,
 151        .irq_mask               = pci_msi_mask_irq,
 152        .irq_ack                = irq_chip_ack_parent,
 153        .irq_retrigger          = irq_chip_retrigger_hierarchy,
 154        .irq_set_affinity       = msi_set_affinity,
 155        .flags                  = IRQCHIP_SKIP_SET_WAKE |
 156                                  IRQCHIP_AFFINITY_PRE_STARTUP,
 157};
 158
 159int pci_msi_prepare(struct irq_domain *domain, struct device *dev, int nvec,
 160                    msi_alloc_info_t *arg)
 161{
 162        struct pci_dev *pdev = to_pci_dev(dev);
 163        struct msi_desc *desc = first_pci_msi_entry(pdev);
 164
 165        init_irq_alloc_info(arg, NULL);
 166        if (desc->msi_attrib.is_msix) {
 167                arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSIX;
 168        } else {
 169                arg->type = X86_IRQ_ALLOC_TYPE_PCI_MSI;
 170                arg->flags |= X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
 171        }
 172
 173        return 0;
 174}
 175EXPORT_SYMBOL_GPL(pci_msi_prepare);
 176
 177static struct msi_domain_ops pci_msi_domain_ops = {
 178        .msi_prepare    = pci_msi_prepare,
 179};
 180
 181static struct msi_domain_info pci_msi_domain_info = {
 182        .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 183                          MSI_FLAG_PCI_MSIX,
 184        .ops            = &pci_msi_domain_ops,
 185        .chip           = &pci_msi_controller,
 186        .handler        = handle_edge_irq,
 187        .handler_name   = "edge",
 188};
 189
 190struct irq_domain * __init native_create_pci_msi_domain(void)
 191{
 192        struct fwnode_handle *fn;
 193        struct irq_domain *d;
 194
 195        if (disable_apic)
 196                return NULL;
 197
 198        fn = irq_domain_alloc_named_fwnode("PCI-MSI");
 199        if (!fn)
 200                return NULL;
 201
 202        d = pci_msi_create_irq_domain(fn, &pci_msi_domain_info,
 203                                      x86_vector_domain);
 204        if (!d) {
 205                irq_domain_free_fwnode(fn);
 206                pr_warn("Failed to initialize PCI-MSI irqdomain.\n");
 207        } else {
 208                d->flags |= IRQ_DOMAIN_MSI_NOMASK_QUIRK;
 209        }
 210        return d;
 211}
 212
 213void __init x86_create_pci_msi_domain(void)
 214{
 215        x86_pci_msi_default_domain = x86_init.irqs.create_pci_msi_domain();
 216}
 217
 218#ifdef CONFIG_IRQ_REMAP
 219static struct irq_chip pci_msi_ir_controller = {
 220        .name                   = "IR-PCI-MSI",
 221        .irq_unmask             = pci_msi_unmask_irq,
 222        .irq_mask               = pci_msi_mask_irq,
 223        .irq_ack                = irq_chip_ack_parent,
 224        .irq_retrigger          = irq_chip_retrigger_hierarchy,
 225        .flags                  = IRQCHIP_SKIP_SET_WAKE |
 226                                  IRQCHIP_AFFINITY_PRE_STARTUP,
 227};
 228
 229static struct msi_domain_info pci_msi_ir_domain_info = {
 230        .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 231                          MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX,
 232        .ops            = &pci_msi_domain_ops,
 233        .chip           = &pci_msi_ir_controller,
 234        .handler        = handle_edge_irq,
 235        .handler_name   = "edge",
 236};
 237
 238struct irq_domain *arch_create_remap_msi_irq_domain(struct irq_domain *parent,
 239                                                    const char *name, int id)
 240{
 241        struct fwnode_handle *fn;
 242        struct irq_domain *d;
 243
 244        fn = irq_domain_alloc_named_id_fwnode(name, id);
 245        if (!fn)
 246                return NULL;
 247        d = pci_msi_create_irq_domain(fn, &pci_msi_ir_domain_info, parent);
 248        if (!d)
 249                irq_domain_free_fwnode(fn);
 250        return d;
 251}
 252#endif
 253
 254#ifdef CONFIG_DMAR_TABLE
 255/*
 256 * The Intel IOMMU (ab)uses the high bits of the MSI address to contain the
 257 * high bits of the destination APIC ID. This can't be done in the general
 258 * case for MSIs as it would be targeting real memory above 4GiB not the
 259 * APIC.
 260 */
 261static void dmar_msi_compose_msg(struct irq_data *data, struct msi_msg *msg)
 262{
 263        __irq_msi_compose_msg(irqd_cfg(data), msg, true);
 264}
 265
 266static void dmar_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
 267{
 268        dmar_msi_write(data->irq, msg);
 269}
 270
 271static struct irq_chip dmar_msi_controller = {
 272        .name                   = "DMAR-MSI",
 273        .irq_unmask             = dmar_msi_unmask,
 274        .irq_mask               = dmar_msi_mask,
 275        .irq_ack                = irq_chip_ack_parent,
 276        .irq_set_affinity       = msi_domain_set_affinity,
 277        .irq_retrigger          = irq_chip_retrigger_hierarchy,
 278        .irq_compose_msi_msg    = dmar_msi_compose_msg,
 279        .irq_write_msi_msg      = dmar_msi_write_msg,
 280        .flags                  = IRQCHIP_SKIP_SET_WAKE |
 281                                  IRQCHIP_AFFINITY_PRE_STARTUP,
 282};
 283
 284static int dmar_msi_init(struct irq_domain *domain,
 285                         struct msi_domain_info *info, unsigned int virq,
 286                         irq_hw_number_t hwirq, msi_alloc_info_t *arg)
 287{
 288        irq_domain_set_info(domain, virq, arg->devid, info->chip, NULL,
 289                            handle_edge_irq, arg->data, "edge");
 290
 291        return 0;
 292}
 293
 294static struct msi_domain_ops dmar_msi_domain_ops = {
 295        .msi_init       = dmar_msi_init,
 296};
 297
 298static struct msi_domain_info dmar_msi_domain_info = {
 299        .ops            = &dmar_msi_domain_ops,
 300        .chip           = &dmar_msi_controller,
 301        .flags          = MSI_FLAG_USE_DEF_DOM_OPS,
 302};
 303
 304static struct irq_domain *dmar_get_irq_domain(void)
 305{
 306        static struct irq_domain *dmar_domain;
 307        static DEFINE_MUTEX(dmar_lock);
 308        struct fwnode_handle *fn;
 309
 310        mutex_lock(&dmar_lock);
 311        if (dmar_domain)
 312                goto out;
 313
 314        fn = irq_domain_alloc_named_fwnode("DMAR-MSI");
 315        if (fn) {
 316                dmar_domain = msi_create_irq_domain(fn, &dmar_msi_domain_info,
 317                                                    x86_vector_domain);
 318                if (!dmar_domain)
 319                        irq_domain_free_fwnode(fn);
 320        }
 321out:
 322        mutex_unlock(&dmar_lock);
 323        return dmar_domain;
 324}
 325
 326int dmar_alloc_hwirq(int id, int node, void *arg)
 327{
 328        struct irq_domain *domain = dmar_get_irq_domain();
 329        struct irq_alloc_info info;
 330
 331        if (!domain)
 332                return -1;
 333
 334        init_irq_alloc_info(&info, NULL);
 335        info.type = X86_IRQ_ALLOC_TYPE_DMAR;
 336        info.devid = id;
 337        info.hwirq = id;
 338        info.data = arg;
 339
 340        return irq_domain_alloc_irqs(domain, 1, node, &info);
 341}
 342
 343void dmar_free_hwirq(int irq)
 344{
 345        irq_domain_free_irqs(irq, 1);
 346}
 347#endif
 348