linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* cpu_feature_enabled() cannot be used this early */
   3#define USE_EARLY_PGTABLE_L5
   4
   5#include <linux/memblock.h>
   6#include <linux/linkage.h>
   7#include <linux/bitops.h>
   8#include <linux/kernel.h>
   9#include <linux/export.h>
  10#include <linux/percpu.h>
  11#include <linux/string.h>
  12#include <linux/ctype.h>
  13#include <linux/delay.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/clock.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/smt.h>
  18#include <linux/init.h>
  19#include <linux/kprobes.h>
  20#include <linux/kgdb.h>
  21#include <linux/smp.h>
  22#include <linux/io.h>
  23#include <linux/syscore_ops.h>
  24#include <linux/pgtable.h>
  25
  26#include <asm/cmdline.h>
  27#include <asm/stackprotector.h>
  28#include <asm/perf_event.h>
  29#include <asm/mmu_context.h>
  30#include <asm/doublefault.h>
  31#include <asm/archrandom.h>
  32#include <asm/hypervisor.h>
  33#include <asm/processor.h>
  34#include <asm/tlbflush.h>
  35#include <asm/debugreg.h>
  36#include <asm/sections.h>
  37#include <asm/vsyscall.h>
  38#include <linux/topology.h>
  39#include <linux/cpumask.h>
  40#include <linux/atomic.h>
  41#include <asm/proto.h>
  42#include <asm/setup.h>
  43#include <asm/apic.h>
  44#include <asm/desc.h>
  45#include <asm/fpu/internal.h>
  46#include <asm/mtrr.h>
  47#include <asm/hwcap2.h>
  48#include <linux/numa.h>
  49#include <asm/numa.h>
  50#include <asm/asm.h>
  51#include <asm/bugs.h>
  52#include <asm/cpu.h>
  53#include <asm/mce.h>
  54#include <asm/msr.h>
  55#include <asm/memtype.h>
  56#include <asm/microcode.h>
  57#include <asm/microcode_intel.h>
  58#include <asm/intel-family.h>
  59#include <asm/cpu_device_id.h>
  60#include <asm/uv/uv.h>
  61#include <asm/sigframe.h>
  62
  63#include "cpu.h"
  64
  65u32 elf_hwcap2 __read_mostly;
  66
  67/* all of these masks are initialized in setup_cpu_local_masks() */
  68cpumask_var_t cpu_initialized_mask;
  69cpumask_var_t cpu_callout_mask;
  70cpumask_var_t cpu_callin_mask;
  71
  72/* representing cpus for which sibling maps can be computed */
  73cpumask_var_t cpu_sibling_setup_mask;
  74
  75/* Number of siblings per CPU package */
  76int smp_num_siblings = 1;
  77EXPORT_SYMBOL(smp_num_siblings);
  78
  79/* Last level cache ID of each logical CPU */
  80DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  81
  82u16 get_llc_id(unsigned int cpu)
  83{
  84        return per_cpu(cpu_llc_id, cpu);
  85}
  86EXPORT_SYMBOL_GPL(get_llc_id);
  87
  88/* correctly size the local cpu masks */
  89void __init setup_cpu_local_masks(void)
  90{
  91        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  92        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  93        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  94        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  95}
  96
  97static void default_init(struct cpuinfo_x86 *c)
  98{
  99#ifdef CONFIG_X86_64
 100        cpu_detect_cache_sizes(c);
 101#else
 102        /* Not much we can do here... */
 103        /* Check if at least it has cpuid */
 104        if (c->cpuid_level == -1) {
 105                /* No cpuid. It must be an ancient CPU */
 106                if (c->x86 == 4)
 107                        strcpy(c->x86_model_id, "486");
 108                else if (c->x86 == 3)
 109                        strcpy(c->x86_model_id, "386");
 110        }
 111#endif
 112}
 113
 114static const struct cpu_dev default_cpu = {
 115        .c_init         = default_init,
 116        .c_vendor       = "Unknown",
 117        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
 118};
 119
 120static const struct cpu_dev *this_cpu = &default_cpu;
 121
 122DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 123#ifdef CONFIG_X86_64
 124        /*
 125         * We need valid kernel segments for data and code in long mode too
 126         * IRET will check the segment types  kkeil 2000/10/28
 127         * Also sysret mandates a special GDT layout
 128         *
 129         * TLS descriptors are currently at a different place compared to i386.
 130         * Hopefully nobody expects them at a fixed place (Wine?)
 131         */
 132        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 133        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 134        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 135        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 136        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 137        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 138#else
 139        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 140        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 141        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 142        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 143        /*
 144         * Segments used for calling PnP BIOS have byte granularity.
 145         * They code segments and data segments have fixed 64k limits,
 146         * the transfer segment sizes are set at run time.
 147         */
 148        /* 32-bit code */
 149        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 150        /* 16-bit code */
 151        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 152        /* 16-bit data */
 153        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 154        /* 16-bit data */
 155        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 156        /* 16-bit data */
 157        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 158        /*
 159         * The APM segments have byte granularity and their bases
 160         * are set at run time.  All have 64k limits.
 161         */
 162        /* 32-bit code */
 163        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 164        /* 16-bit code */
 165        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 166        /* data */
 167        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 168
 169        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 170        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 171#endif
 172} };
 173EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 174
 175#ifdef CONFIG_X86_64
 176static int __init x86_nopcid_setup(char *s)
 177{
 178        /* nopcid doesn't accept parameters */
 179        if (s)
 180                return -EINVAL;
 181
 182        /* do not emit a message if the feature is not present */
 183        if (!boot_cpu_has(X86_FEATURE_PCID))
 184                return 0;
 185
 186        setup_clear_cpu_cap(X86_FEATURE_PCID);
 187        pr_info("nopcid: PCID feature disabled\n");
 188        return 0;
 189}
 190early_param("nopcid", x86_nopcid_setup);
 191#endif
 192
 193static int __init x86_noinvpcid_setup(char *s)
 194{
 195        /* noinvpcid doesn't accept parameters */
 196        if (s)
 197                return -EINVAL;
 198
 199        /* do not emit a message if the feature is not present */
 200        if (!boot_cpu_has(X86_FEATURE_INVPCID))
 201                return 0;
 202
 203        setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 204        pr_info("noinvpcid: INVPCID feature disabled\n");
 205        return 0;
 206}
 207early_param("noinvpcid", x86_noinvpcid_setup);
 208
 209#ifdef CONFIG_X86_32
 210static int cachesize_override = -1;
 211static int disable_x86_serial_nr = 1;
 212
 213static int __init cachesize_setup(char *str)
 214{
 215        get_option(&str, &cachesize_override);
 216        return 1;
 217}
 218__setup("cachesize=", cachesize_setup);
 219
 220static int __init x86_sep_setup(char *s)
 221{
 222        setup_clear_cpu_cap(X86_FEATURE_SEP);
 223        return 1;
 224}
 225__setup("nosep", x86_sep_setup);
 226
 227/* Standard macro to see if a specific flag is changeable */
 228static inline int flag_is_changeable_p(u32 flag)
 229{
 230        u32 f1, f2;
 231
 232        /*
 233         * Cyrix and IDT cpus allow disabling of CPUID
 234         * so the code below may return different results
 235         * when it is executed before and after enabling
 236         * the CPUID. Add "volatile" to not allow gcc to
 237         * optimize the subsequent calls to this function.
 238         */
 239        asm volatile ("pushfl           \n\t"
 240                      "pushfl           \n\t"
 241                      "popl %0          \n\t"
 242                      "movl %0, %1      \n\t"
 243                      "xorl %2, %0      \n\t"
 244                      "pushl %0         \n\t"
 245                      "popfl            \n\t"
 246                      "pushfl           \n\t"
 247                      "popl %0          \n\t"
 248                      "popfl            \n\t"
 249
 250                      : "=&r" (f1), "=&r" (f2)
 251                      : "ir" (flag));
 252
 253        return ((f1^f2) & flag) != 0;
 254}
 255
 256/* Probe for the CPUID instruction */
 257int have_cpuid_p(void)
 258{
 259        return flag_is_changeable_p(X86_EFLAGS_ID);
 260}
 261
 262static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 263{
 264        unsigned long lo, hi;
 265
 266        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 267                return;
 268
 269        /* Disable processor serial number: */
 270
 271        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 272        lo |= 0x200000;
 273        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 274
 275        pr_notice("CPU serial number disabled.\n");
 276        clear_cpu_cap(c, X86_FEATURE_PN);
 277
 278        /* Disabling the serial number may affect the cpuid level */
 279        c->cpuid_level = cpuid_eax(0);
 280}
 281
 282static int __init x86_serial_nr_setup(char *s)
 283{
 284        disable_x86_serial_nr = 0;
 285        return 1;
 286}
 287__setup("serialnumber", x86_serial_nr_setup);
 288#else
 289static inline int flag_is_changeable_p(u32 flag)
 290{
 291        return 1;
 292}
 293static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 294{
 295}
 296#endif
 297
 298static __init int setup_disable_smep(char *arg)
 299{
 300        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 301        return 1;
 302}
 303__setup("nosmep", setup_disable_smep);
 304
 305static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 306{
 307        if (cpu_has(c, X86_FEATURE_SMEP))
 308                cr4_set_bits(X86_CR4_SMEP);
 309}
 310
 311static __init int setup_disable_smap(char *arg)
 312{
 313        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 314        return 1;
 315}
 316__setup("nosmap", setup_disable_smap);
 317
 318static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 319{
 320        unsigned long eflags = native_save_fl();
 321
 322        /* This should have been cleared long ago */
 323        BUG_ON(eflags & X86_EFLAGS_AC);
 324
 325        if (cpu_has(c, X86_FEATURE_SMAP)) {
 326#ifdef CONFIG_X86_SMAP
 327                cr4_set_bits(X86_CR4_SMAP);
 328#else
 329                clear_cpu_cap(c, X86_FEATURE_SMAP);
 330                cr4_clear_bits(X86_CR4_SMAP);
 331#endif
 332        }
 333}
 334
 335static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 336{
 337        /* Check the boot processor, plus build option for UMIP. */
 338        if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 339                goto out;
 340
 341        /* Check the current processor's cpuid bits. */
 342        if (!cpu_has(c, X86_FEATURE_UMIP))
 343                goto out;
 344
 345        cr4_set_bits(X86_CR4_UMIP);
 346
 347        pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 348
 349        return;
 350
 351out:
 352        /*
 353         * Make sure UMIP is disabled in case it was enabled in a
 354         * previous boot (e.g., via kexec).
 355         */
 356        cr4_clear_bits(X86_CR4_UMIP);
 357}
 358
 359/* These bits should not change their value after CPU init is finished. */
 360static const unsigned long cr4_pinned_mask =
 361        X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
 362static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
 363static unsigned long cr4_pinned_bits __ro_after_init;
 364
 365void native_write_cr0(unsigned long val)
 366{
 367        unsigned long bits_missing = 0;
 368
 369set_register:
 370        asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
 371
 372        if (static_branch_likely(&cr_pinning)) {
 373                if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
 374                        bits_missing = X86_CR0_WP;
 375                        val |= bits_missing;
 376                        goto set_register;
 377                }
 378                /* Warn after we've set the missing bits. */
 379                WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
 380        }
 381}
 382EXPORT_SYMBOL(native_write_cr0);
 383
 384void native_write_cr4(unsigned long val)
 385{
 386        unsigned long bits_changed = 0;
 387
 388set_register:
 389        asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
 390
 391        if (static_branch_likely(&cr_pinning)) {
 392                if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
 393                        bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
 394                        val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
 395                        goto set_register;
 396                }
 397                /* Warn after we've corrected the changed bits. */
 398                WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
 399                          bits_changed);
 400        }
 401}
 402#if IS_MODULE(CONFIG_LKDTM)
 403EXPORT_SYMBOL_GPL(native_write_cr4);
 404#endif
 405
 406void cr4_update_irqsoff(unsigned long set, unsigned long clear)
 407{
 408        unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
 409
 410        lockdep_assert_irqs_disabled();
 411
 412        newval = (cr4 & ~clear) | set;
 413        if (newval != cr4) {
 414                this_cpu_write(cpu_tlbstate.cr4, newval);
 415                __write_cr4(newval);
 416        }
 417}
 418EXPORT_SYMBOL(cr4_update_irqsoff);
 419
 420/* Read the CR4 shadow. */
 421unsigned long cr4_read_shadow(void)
 422{
 423        return this_cpu_read(cpu_tlbstate.cr4);
 424}
 425EXPORT_SYMBOL_GPL(cr4_read_shadow);
 426
 427void cr4_init(void)
 428{
 429        unsigned long cr4 = __read_cr4();
 430
 431        if (boot_cpu_has(X86_FEATURE_PCID))
 432                cr4 |= X86_CR4_PCIDE;
 433        if (static_branch_likely(&cr_pinning))
 434                cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
 435
 436        __write_cr4(cr4);
 437
 438        /* Initialize cr4 shadow for this CPU. */
 439        this_cpu_write(cpu_tlbstate.cr4, cr4);
 440}
 441
 442/*
 443 * Once CPU feature detection is finished (and boot params have been
 444 * parsed), record any of the sensitive CR bits that are set, and
 445 * enable CR pinning.
 446 */
 447static void __init setup_cr_pinning(void)
 448{
 449        cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
 450        static_key_enable(&cr_pinning.key);
 451}
 452
 453static __init int x86_nofsgsbase_setup(char *arg)
 454{
 455        /* Require an exact match without trailing characters. */
 456        if (strlen(arg))
 457                return 0;
 458
 459        /* Do not emit a message if the feature is not present. */
 460        if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
 461                return 1;
 462
 463        setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
 464        pr_info("FSGSBASE disabled via kernel command line\n");
 465        return 1;
 466}
 467__setup("nofsgsbase", x86_nofsgsbase_setup);
 468
 469/*
 470 * Protection Keys are not available in 32-bit mode.
 471 */
 472static bool pku_disabled;
 473
 474static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 475{
 476        if (c == &boot_cpu_data) {
 477                if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
 478                        return;
 479                /*
 480                 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
 481                 * bit to be set.  Enforce it.
 482                 */
 483                setup_force_cpu_cap(X86_FEATURE_OSPKE);
 484
 485        } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
 486                return;
 487        }
 488
 489        cr4_set_bits(X86_CR4_PKE);
 490        /* Load the default PKRU value */
 491        pkru_write_default();
 492}
 493
 494#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 495static __init int setup_disable_pku(char *arg)
 496{
 497        /*
 498         * Do not clear the X86_FEATURE_PKU bit.  All of the
 499         * runtime checks are against OSPKE so clearing the
 500         * bit does nothing.
 501         *
 502         * This way, we will see "pku" in cpuinfo, but not
 503         * "ospke", which is exactly what we want.  It shows
 504         * that the CPU has PKU, but the OS has not enabled it.
 505         * This happens to be exactly how a system would look
 506         * if we disabled the config option.
 507         */
 508        pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 509        pku_disabled = true;
 510        return 1;
 511}
 512__setup("nopku", setup_disable_pku);
 513#endif /* CONFIG_X86_64 */
 514
 515/*
 516 * Some CPU features depend on higher CPUID levels, which may not always
 517 * be available due to CPUID level capping or broken virtualization
 518 * software.  Add those features to this table to auto-disable them.
 519 */
 520struct cpuid_dependent_feature {
 521        u32 feature;
 522        u32 level;
 523};
 524
 525static const struct cpuid_dependent_feature
 526cpuid_dependent_features[] = {
 527        { X86_FEATURE_MWAIT,            0x00000005 },
 528        { X86_FEATURE_DCA,              0x00000009 },
 529        { X86_FEATURE_XSAVE,            0x0000000d },
 530        { 0, 0 }
 531};
 532
 533static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 534{
 535        const struct cpuid_dependent_feature *df;
 536
 537        for (df = cpuid_dependent_features; df->feature; df++) {
 538
 539                if (!cpu_has(c, df->feature))
 540                        continue;
 541                /*
 542                 * Note: cpuid_level is set to -1 if unavailable, but
 543                 * extended_extended_level is set to 0 if unavailable
 544                 * and the legitimate extended levels are all negative
 545                 * when signed; hence the weird messing around with
 546                 * signs here...
 547                 */
 548                if (!((s32)df->level < 0 ?
 549                     (u32)df->level > (u32)c->extended_cpuid_level :
 550                     (s32)df->level > (s32)c->cpuid_level))
 551                        continue;
 552
 553                clear_cpu_cap(c, df->feature);
 554                if (!warn)
 555                        continue;
 556
 557                pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 558                        x86_cap_flag(df->feature), df->level);
 559        }
 560}
 561
 562/*
 563 * Naming convention should be: <Name> [(<Codename>)]
 564 * This table only is used unless init_<vendor>() below doesn't set it;
 565 * in particular, if CPUID levels 0x80000002..4 are supported, this
 566 * isn't used
 567 */
 568
 569/* Look up CPU names by table lookup. */
 570static const char *table_lookup_model(struct cpuinfo_x86 *c)
 571{
 572#ifdef CONFIG_X86_32
 573        const struct legacy_cpu_model_info *info;
 574
 575        if (c->x86_model >= 16)
 576                return NULL;    /* Range check */
 577
 578        if (!this_cpu)
 579                return NULL;
 580
 581        info = this_cpu->legacy_models;
 582
 583        while (info->family) {
 584                if (info->family == c->x86)
 585                        return info->model_names[c->x86_model];
 586                info++;
 587        }
 588#endif
 589        return NULL;            /* Not found */
 590}
 591
 592/* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
 593__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 594__u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
 595
 596void load_percpu_segment(int cpu)
 597{
 598#ifdef CONFIG_X86_32
 599        loadsegment(fs, __KERNEL_PERCPU);
 600#else
 601        __loadsegment_simple(gs, 0);
 602        wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 603#endif
 604}
 605
 606#ifdef CONFIG_X86_32
 607/* The 32-bit entry code needs to find cpu_entry_area. */
 608DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 609#endif
 610
 611/* Load the original GDT from the per-cpu structure */
 612void load_direct_gdt(int cpu)
 613{
 614        struct desc_ptr gdt_descr;
 615
 616        gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 617        gdt_descr.size = GDT_SIZE - 1;
 618        load_gdt(&gdt_descr);
 619}
 620EXPORT_SYMBOL_GPL(load_direct_gdt);
 621
 622/* Load a fixmap remapping of the per-cpu GDT */
 623void load_fixmap_gdt(int cpu)
 624{
 625        struct desc_ptr gdt_descr;
 626
 627        gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 628        gdt_descr.size = GDT_SIZE - 1;
 629        load_gdt(&gdt_descr);
 630}
 631EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 632
 633/*
 634 * Current gdt points %fs at the "master" per-cpu area: after this,
 635 * it's on the real one.
 636 */
 637void switch_to_new_gdt(int cpu)
 638{
 639        /* Load the original GDT */
 640        load_direct_gdt(cpu);
 641        /* Reload the per-cpu base */
 642        load_percpu_segment(cpu);
 643}
 644
 645static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 646
 647static void get_model_name(struct cpuinfo_x86 *c)
 648{
 649        unsigned int *v;
 650        char *p, *q, *s;
 651
 652        if (c->extended_cpuid_level < 0x80000004)
 653                return;
 654
 655        v = (unsigned int *)c->x86_model_id;
 656        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 657        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 658        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 659        c->x86_model_id[48] = 0;
 660
 661        /* Trim whitespace */
 662        p = q = s = &c->x86_model_id[0];
 663
 664        while (*p == ' ')
 665                p++;
 666
 667        while (*p) {
 668                /* Note the last non-whitespace index */
 669                if (!isspace(*p))
 670                        s = q;
 671
 672                *q++ = *p++;
 673        }
 674
 675        *(s + 1) = '\0';
 676}
 677
 678void detect_num_cpu_cores(struct cpuinfo_x86 *c)
 679{
 680        unsigned int eax, ebx, ecx, edx;
 681
 682        c->x86_max_cores = 1;
 683        if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 684                return;
 685
 686        cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 687        if (eax & 0x1f)
 688                c->x86_max_cores = (eax >> 26) + 1;
 689}
 690
 691void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 692{
 693        unsigned int n, dummy, ebx, ecx, edx, l2size;
 694
 695        n = c->extended_cpuid_level;
 696
 697        if (n >= 0x80000005) {
 698                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 699                c->x86_cache_size = (ecx>>24) + (edx>>24);
 700#ifdef CONFIG_X86_64
 701                /* On K8 L1 TLB is inclusive, so don't count it */
 702                c->x86_tlbsize = 0;
 703#endif
 704        }
 705
 706        if (n < 0x80000006)     /* Some chips just has a large L1. */
 707                return;
 708
 709        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 710        l2size = ecx >> 16;
 711
 712#ifdef CONFIG_X86_64
 713        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 714#else
 715        /* do processor-specific cache resizing */
 716        if (this_cpu->legacy_cache_size)
 717                l2size = this_cpu->legacy_cache_size(c, l2size);
 718
 719        /* Allow user to override all this if necessary. */
 720        if (cachesize_override != -1)
 721                l2size = cachesize_override;
 722
 723        if (l2size == 0)
 724                return;         /* Again, no L2 cache is possible */
 725#endif
 726
 727        c->x86_cache_size = l2size;
 728}
 729
 730u16 __read_mostly tlb_lli_4k[NR_INFO];
 731u16 __read_mostly tlb_lli_2m[NR_INFO];
 732u16 __read_mostly tlb_lli_4m[NR_INFO];
 733u16 __read_mostly tlb_lld_4k[NR_INFO];
 734u16 __read_mostly tlb_lld_2m[NR_INFO];
 735u16 __read_mostly tlb_lld_4m[NR_INFO];
 736u16 __read_mostly tlb_lld_1g[NR_INFO];
 737
 738static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 739{
 740        if (this_cpu->c_detect_tlb)
 741                this_cpu->c_detect_tlb(c);
 742
 743        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 744                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 745                tlb_lli_4m[ENTRIES]);
 746
 747        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 748                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 749                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 750}
 751
 752int detect_ht_early(struct cpuinfo_x86 *c)
 753{
 754#ifdef CONFIG_SMP
 755        u32 eax, ebx, ecx, edx;
 756
 757        if (!cpu_has(c, X86_FEATURE_HT))
 758                return -1;
 759
 760        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 761                return -1;
 762
 763        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 764                return -1;
 765
 766        cpuid(1, &eax, &ebx, &ecx, &edx);
 767
 768        smp_num_siblings = (ebx & 0xff0000) >> 16;
 769        if (smp_num_siblings == 1)
 770                pr_info_once("CPU0: Hyper-Threading is disabled\n");
 771#endif
 772        return 0;
 773}
 774
 775void detect_ht(struct cpuinfo_x86 *c)
 776{
 777#ifdef CONFIG_SMP
 778        int index_msb, core_bits;
 779
 780        if (detect_ht_early(c) < 0)
 781                return;
 782
 783        index_msb = get_count_order(smp_num_siblings);
 784        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 785
 786        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 787
 788        index_msb = get_count_order(smp_num_siblings);
 789
 790        core_bits = get_count_order(c->x86_max_cores);
 791
 792        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 793                                       ((1 << core_bits) - 1);
 794#endif
 795}
 796
 797static void get_cpu_vendor(struct cpuinfo_x86 *c)
 798{
 799        char *v = c->x86_vendor_id;
 800        int i;
 801
 802        for (i = 0; i < X86_VENDOR_NUM; i++) {
 803                if (!cpu_devs[i])
 804                        break;
 805
 806                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 807                    (cpu_devs[i]->c_ident[1] &&
 808                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 809
 810                        this_cpu = cpu_devs[i];
 811                        c->x86_vendor = this_cpu->c_x86_vendor;
 812                        return;
 813                }
 814        }
 815
 816        pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 817                    "CPU: Your system may be unstable.\n", v);
 818
 819        c->x86_vendor = X86_VENDOR_UNKNOWN;
 820        this_cpu = &default_cpu;
 821}
 822
 823void cpu_detect(struct cpuinfo_x86 *c)
 824{
 825        /* Get vendor name */
 826        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 827              (unsigned int *)&c->x86_vendor_id[0],
 828              (unsigned int *)&c->x86_vendor_id[8],
 829              (unsigned int *)&c->x86_vendor_id[4]);
 830
 831        c->x86 = 4;
 832        /* Intel-defined flags: level 0x00000001 */
 833        if (c->cpuid_level >= 0x00000001) {
 834                u32 junk, tfms, cap0, misc;
 835
 836                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 837                c->x86          = x86_family(tfms);
 838                c->x86_model    = x86_model(tfms);
 839                c->x86_stepping = x86_stepping(tfms);
 840
 841                if (cap0 & (1<<19)) {
 842                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 843                        c->x86_cache_alignment = c->x86_clflush_size;
 844                }
 845        }
 846}
 847
 848static void apply_forced_caps(struct cpuinfo_x86 *c)
 849{
 850        int i;
 851
 852        for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 853                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 854                c->x86_capability[i] |= cpu_caps_set[i];
 855        }
 856}
 857
 858static void init_speculation_control(struct cpuinfo_x86 *c)
 859{
 860        /*
 861         * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 862         * and they also have a different bit for STIBP support. Also,
 863         * a hypervisor might have set the individual AMD bits even on
 864         * Intel CPUs, for finer-grained selection of what's available.
 865         */
 866        if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 867                set_cpu_cap(c, X86_FEATURE_IBRS);
 868                set_cpu_cap(c, X86_FEATURE_IBPB);
 869                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 870        }
 871
 872        if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 873                set_cpu_cap(c, X86_FEATURE_STIBP);
 874
 875        if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 876            cpu_has(c, X86_FEATURE_VIRT_SSBD))
 877                set_cpu_cap(c, X86_FEATURE_SSBD);
 878
 879        if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 880                set_cpu_cap(c, X86_FEATURE_IBRS);
 881                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 882        }
 883
 884        if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 885                set_cpu_cap(c, X86_FEATURE_IBPB);
 886
 887        if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 888                set_cpu_cap(c, X86_FEATURE_STIBP);
 889                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 890        }
 891
 892        if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 893                set_cpu_cap(c, X86_FEATURE_SSBD);
 894                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 895                clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 896        }
 897}
 898
 899void get_cpu_cap(struct cpuinfo_x86 *c)
 900{
 901        u32 eax, ebx, ecx, edx;
 902
 903        /* Intel-defined flags: level 0x00000001 */
 904        if (c->cpuid_level >= 0x00000001) {
 905                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 906
 907                c->x86_capability[CPUID_1_ECX] = ecx;
 908                c->x86_capability[CPUID_1_EDX] = edx;
 909        }
 910
 911        /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 912        if (c->cpuid_level >= 0x00000006)
 913                c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 914
 915        /* Additional Intel-defined flags: level 0x00000007 */
 916        if (c->cpuid_level >= 0x00000007) {
 917                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 918                c->x86_capability[CPUID_7_0_EBX] = ebx;
 919                c->x86_capability[CPUID_7_ECX] = ecx;
 920                c->x86_capability[CPUID_7_EDX] = edx;
 921
 922                /* Check valid sub-leaf index before accessing it */
 923                if (eax >= 1) {
 924                        cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 925                        c->x86_capability[CPUID_7_1_EAX] = eax;
 926                }
 927        }
 928
 929        /* Extended state features: level 0x0000000d */
 930        if (c->cpuid_level >= 0x0000000d) {
 931                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 932
 933                c->x86_capability[CPUID_D_1_EAX] = eax;
 934        }
 935
 936        /* AMD-defined flags: level 0x80000001 */
 937        eax = cpuid_eax(0x80000000);
 938        c->extended_cpuid_level = eax;
 939
 940        if ((eax & 0xffff0000) == 0x80000000) {
 941                if (eax >= 0x80000001) {
 942                        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 943
 944                        c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 945                        c->x86_capability[CPUID_8000_0001_EDX] = edx;
 946                }
 947        }
 948
 949        if (c->extended_cpuid_level >= 0x80000007) {
 950                cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 951
 952                c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 953                c->x86_power = edx;
 954        }
 955
 956        if (c->extended_cpuid_level >= 0x80000008) {
 957                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 958                c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 959        }
 960
 961        if (c->extended_cpuid_level >= 0x8000000a)
 962                c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 963
 964        if (c->extended_cpuid_level >= 0x8000001f)
 965                c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
 966
 967        init_scattered_cpuid_features(c);
 968        init_speculation_control(c);
 969
 970        /*
 971         * Clear/Set all flags overridden by options, after probe.
 972         * This needs to happen each time we re-probe, which may happen
 973         * several times during CPU initialization.
 974         */
 975        apply_forced_caps(c);
 976}
 977
 978void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 979{
 980        u32 eax, ebx, ecx, edx;
 981
 982        if (c->extended_cpuid_level >= 0x80000008) {
 983                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 984
 985                c->x86_virt_bits = (eax >> 8) & 0xff;
 986                c->x86_phys_bits = eax & 0xff;
 987        }
 988#ifdef CONFIG_X86_32
 989        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 990                c->x86_phys_bits = 36;
 991#endif
 992        c->x86_cache_bits = c->x86_phys_bits;
 993}
 994
 995static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 996{
 997#ifdef CONFIG_X86_32
 998        int i;
 999
1000        /*
1001         * First of all, decide if this is a 486 or higher
1002         * It's a 486 if we can modify the AC flag
1003         */
1004        if (flag_is_changeable_p(X86_EFLAGS_AC))
1005                c->x86 = 4;
1006        else
1007                c->x86 = 3;
1008
1009        for (i = 0; i < X86_VENDOR_NUM; i++)
1010                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1011                        c->x86_vendor_id[0] = 0;
1012                        cpu_devs[i]->c_identify(c);
1013                        if (c->x86_vendor_id[0]) {
1014                                get_cpu_vendor(c);
1015                                break;
1016                        }
1017                }
1018#endif
1019}
1020
1021#define NO_SPECULATION          BIT(0)
1022#define NO_MELTDOWN             BIT(1)
1023#define NO_SSB                  BIT(2)
1024#define NO_L1TF                 BIT(3)
1025#define NO_MDS                  BIT(4)
1026#define MSBDS_ONLY              BIT(5)
1027#define NO_SWAPGS               BIT(6)
1028#define NO_ITLB_MULTIHIT        BIT(7)
1029#define NO_SPECTRE_V2           BIT(8)
1030
1031#define VULNWL(vendor, family, model, whitelist)        \
1032        X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1033
1034#define VULNWL_INTEL(model, whitelist)          \
1035        VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1036
1037#define VULNWL_AMD(family, whitelist)           \
1038        VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1039
1040#define VULNWL_HYGON(family, whitelist)         \
1041        VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1042
1043static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1044        VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1045        VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1046        VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1047        VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1048
1049        /* Intel Family 6 */
1050        VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1051        VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1052        VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1053        VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1054        VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1055
1056        VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057        VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058        VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059        VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1060        VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1061        VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062
1063        VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1064
1065        VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066        VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068        VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1069        VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070        VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071
1072        /*
1073         * Technically, swapgs isn't serializing on AMD (despite it previously
1074         * being documented as such in the APM).  But according to AMD, %gs is
1075         * updated non-speculatively, and the issuing of %gs-relative memory
1076         * operands will be blocked until the %gs update completes, which is
1077         * good enough for our purposes.
1078         */
1079
1080        VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1081
1082        /* AMD Family 0xf - 0x12 */
1083        VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084        VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1085        VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086        VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087
1088        /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1089        VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1090        VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1091
1092        /* Zhaoxin Family 7 */
1093        VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1094        VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1095        {}
1096};
1097
1098#define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1099        X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1100                                            INTEL_FAM6_##model, steppings, \
1101                                            X86_FEATURE_ANY, issues)
1102
1103#define SRBDS           BIT(0)
1104
1105static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1106        VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1107        VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1108        VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1109        VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1110        VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1111        VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1112        VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1113        VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1114        VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1115        VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1116        {}
1117};
1118
1119static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1120{
1121        const struct x86_cpu_id *m = x86_match_cpu(table);
1122
1123        return m && !!(m->driver_data & which);
1124}
1125
1126u64 x86_read_arch_cap_msr(void)
1127{
1128        u64 ia32_cap = 0;
1129
1130        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1131                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1132
1133        return ia32_cap;
1134}
1135
1136static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1137{
1138        u64 ia32_cap = x86_read_arch_cap_msr();
1139
1140        /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1141        if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1142            !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1143                setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1144
1145        if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1146                return;
1147
1148        setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1149
1150        if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1151                setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1152
1153        if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1154            !(ia32_cap & ARCH_CAP_SSB_NO) &&
1155           !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1156                setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1157
1158        if (ia32_cap & ARCH_CAP_IBRS_ALL)
1159                setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1160
1161        if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1162            !(ia32_cap & ARCH_CAP_MDS_NO)) {
1163                setup_force_cpu_bug(X86_BUG_MDS);
1164                if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1165                        setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1166        }
1167
1168        if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1169                setup_force_cpu_bug(X86_BUG_SWAPGS);
1170
1171        /*
1172         * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1173         *      - TSX is supported or
1174         *      - TSX_CTRL is present
1175         *
1176         * TSX_CTRL check is needed for cases when TSX could be disabled before
1177         * the kernel boot e.g. kexec.
1178         * TSX_CTRL check alone is not sufficient for cases when the microcode
1179         * update is not present or running as guest that don't get TSX_CTRL.
1180         */
1181        if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1182            (cpu_has(c, X86_FEATURE_RTM) ||
1183             (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1184                setup_force_cpu_bug(X86_BUG_TAA);
1185
1186        /*
1187         * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1188         * in the vulnerability blacklist.
1189         */
1190        if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1191             cpu_has(c, X86_FEATURE_RDSEED)) &&
1192            cpu_matches(cpu_vuln_blacklist, SRBDS))
1193                    setup_force_cpu_bug(X86_BUG_SRBDS);
1194
1195        if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1196                return;
1197
1198        /* Rogue Data Cache Load? No! */
1199        if (ia32_cap & ARCH_CAP_RDCL_NO)
1200                return;
1201
1202        setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1203
1204        if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1205                return;
1206
1207        setup_force_cpu_bug(X86_BUG_L1TF);
1208}
1209
1210/*
1211 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1212 * unfortunately, that's not true in practice because of early VIA
1213 * chips and (more importantly) broken virtualizers that are not easy
1214 * to detect. In the latter case it doesn't even *fail* reliably, so
1215 * probing for it doesn't even work. Disable it completely on 32-bit
1216 * unless we can find a reliable way to detect all the broken cases.
1217 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1218 */
1219static void detect_nopl(void)
1220{
1221#ifdef CONFIG_X86_32
1222        setup_clear_cpu_cap(X86_FEATURE_NOPL);
1223#else
1224        setup_force_cpu_cap(X86_FEATURE_NOPL);
1225#endif
1226}
1227
1228/*
1229 * We parse cpu parameters early because fpu__init_system() is executed
1230 * before parse_early_param().
1231 */
1232static void __init cpu_parse_early_param(void)
1233{
1234        char arg[128];
1235        char *argptr = arg;
1236        int arglen, res, bit;
1237
1238#ifdef CONFIG_X86_32
1239        if (cmdline_find_option_bool(boot_command_line, "no387"))
1240#ifdef CONFIG_MATH_EMULATION
1241                setup_clear_cpu_cap(X86_FEATURE_FPU);
1242#else
1243                pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1244#endif
1245
1246        if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1247                setup_clear_cpu_cap(X86_FEATURE_FXSR);
1248#endif
1249
1250        if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1251                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1252
1253        if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1254                setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1255
1256        if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1257                setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1258
1259        arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1260        if (arglen <= 0)
1261                return;
1262
1263        pr_info("Clearing CPUID bits:");
1264        do {
1265                res = get_option(&argptr, &bit);
1266                if (res == 0 || res == 3)
1267                        break;
1268
1269                /* If the argument was too long, the last bit may be cut off */
1270                if (res == 1 && arglen >= sizeof(arg))
1271                        break;
1272
1273                if (bit >= 0 && bit < NCAPINTS * 32) {
1274                        pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1275                        setup_clear_cpu_cap(bit);
1276                }
1277        } while (res == 2);
1278        pr_cont("\n");
1279}
1280
1281/*
1282 * Do minimum CPU detection early.
1283 * Fields really needed: vendor, cpuid_level, family, model, mask,
1284 * cache alignment.
1285 * The others are not touched to avoid unwanted side effects.
1286 *
1287 * WARNING: this function is only called on the boot CPU.  Don't add code
1288 * here that is supposed to run on all CPUs.
1289 */
1290static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1291{
1292#ifdef CONFIG_X86_64
1293        c->x86_clflush_size = 64;
1294        c->x86_phys_bits = 36;
1295        c->x86_virt_bits = 48;
1296#else
1297        c->x86_clflush_size = 32;
1298        c->x86_phys_bits = 32;
1299        c->x86_virt_bits = 32;
1300#endif
1301        c->x86_cache_alignment = c->x86_clflush_size;
1302
1303        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1304        c->extended_cpuid_level = 0;
1305
1306        if (!have_cpuid_p())
1307                identify_cpu_without_cpuid(c);
1308
1309        /* cyrix could have cpuid enabled via c_identify()*/
1310        if (have_cpuid_p()) {
1311                cpu_detect(c);
1312                get_cpu_vendor(c);
1313                get_cpu_cap(c);
1314                get_cpu_address_sizes(c);
1315                setup_force_cpu_cap(X86_FEATURE_CPUID);
1316                cpu_parse_early_param();
1317
1318                if (this_cpu->c_early_init)
1319                        this_cpu->c_early_init(c);
1320
1321                c->cpu_index = 0;
1322                filter_cpuid_features(c, false);
1323
1324                if (this_cpu->c_bsp_init)
1325                        this_cpu->c_bsp_init(c);
1326        } else {
1327                setup_clear_cpu_cap(X86_FEATURE_CPUID);
1328        }
1329
1330        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1331
1332        cpu_set_bug_bits(c);
1333
1334        sld_setup(c);
1335
1336        fpu__init_system(c);
1337
1338        init_sigframe_size();
1339
1340#ifdef CONFIG_X86_32
1341        /*
1342         * Regardless of whether PCID is enumerated, the SDM says
1343         * that it can't be enabled in 32-bit mode.
1344         */
1345        setup_clear_cpu_cap(X86_FEATURE_PCID);
1346#endif
1347
1348        /*
1349         * Later in the boot process pgtable_l5_enabled() relies on
1350         * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1351         * enabled by this point we need to clear the feature bit to avoid
1352         * false-positives at the later stage.
1353         *
1354         * pgtable_l5_enabled() can be false here for several reasons:
1355         *  - 5-level paging is disabled compile-time;
1356         *  - it's 32-bit kernel;
1357         *  - machine doesn't support 5-level paging;
1358         *  - user specified 'no5lvl' in kernel command line.
1359         */
1360        if (!pgtable_l5_enabled())
1361                setup_clear_cpu_cap(X86_FEATURE_LA57);
1362
1363        detect_nopl();
1364}
1365
1366void __init early_cpu_init(void)
1367{
1368        const struct cpu_dev *const *cdev;
1369        int count = 0;
1370
1371#ifdef CONFIG_PROCESSOR_SELECT
1372        pr_info("KERNEL supported cpus:\n");
1373#endif
1374
1375        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1376                const struct cpu_dev *cpudev = *cdev;
1377
1378                if (count >= X86_VENDOR_NUM)
1379                        break;
1380                cpu_devs[count] = cpudev;
1381                count++;
1382
1383#ifdef CONFIG_PROCESSOR_SELECT
1384                {
1385                        unsigned int j;
1386
1387                        for (j = 0; j < 2; j++) {
1388                                if (!cpudev->c_ident[j])
1389                                        continue;
1390                                pr_info("  %s %s\n", cpudev->c_vendor,
1391                                        cpudev->c_ident[j]);
1392                        }
1393                }
1394#endif
1395        }
1396        early_identify_cpu(&boot_cpu_data);
1397}
1398
1399static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1400{
1401#ifdef CONFIG_X86_64
1402        /*
1403         * Empirically, writing zero to a segment selector on AMD does
1404         * not clear the base, whereas writing zero to a segment
1405         * selector on Intel does clear the base.  Intel's behavior
1406         * allows slightly faster context switches in the common case
1407         * where GS is unused by the prev and next threads.
1408         *
1409         * Since neither vendor documents this anywhere that I can see,
1410         * detect it directly instead of hard-coding the choice by
1411         * vendor.
1412         *
1413         * I've designated AMD's behavior as the "bug" because it's
1414         * counterintuitive and less friendly.
1415         */
1416
1417        unsigned long old_base, tmp;
1418        rdmsrl(MSR_FS_BASE, old_base);
1419        wrmsrl(MSR_FS_BASE, 1);
1420        loadsegment(fs, 0);
1421        rdmsrl(MSR_FS_BASE, tmp);
1422        if (tmp != 0)
1423                set_cpu_bug(c, X86_BUG_NULL_SEG);
1424        wrmsrl(MSR_FS_BASE, old_base);
1425#endif
1426}
1427
1428static void generic_identify(struct cpuinfo_x86 *c)
1429{
1430        c->extended_cpuid_level = 0;
1431
1432        if (!have_cpuid_p())
1433                identify_cpu_without_cpuid(c);
1434
1435        /* cyrix could have cpuid enabled via c_identify()*/
1436        if (!have_cpuid_p())
1437                return;
1438
1439        cpu_detect(c);
1440
1441        get_cpu_vendor(c);
1442
1443        get_cpu_cap(c);
1444
1445        get_cpu_address_sizes(c);
1446
1447        if (c->cpuid_level >= 0x00000001) {
1448                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1449#ifdef CONFIG_X86_32
1450# ifdef CONFIG_SMP
1451                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1452# else
1453                c->apicid = c->initial_apicid;
1454# endif
1455#endif
1456                c->phys_proc_id = c->initial_apicid;
1457        }
1458
1459        get_model_name(c); /* Default name */
1460
1461        detect_null_seg_behavior(c);
1462
1463        /*
1464         * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1465         * systems that run Linux at CPL > 0 may or may not have the
1466         * issue, but, even if they have the issue, there's absolutely
1467         * nothing we can do about it because we can't use the real IRET
1468         * instruction.
1469         *
1470         * NB: For the time being, only 32-bit kernels support
1471         * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1472         * whether to apply espfix using paravirt hooks.  If any
1473         * non-paravirt system ever shows up that does *not* have the
1474         * ESPFIX issue, we can change this.
1475         */
1476#ifdef CONFIG_X86_32
1477        set_cpu_bug(c, X86_BUG_ESPFIX);
1478#endif
1479}
1480
1481/*
1482 * Validate that ACPI/mptables have the same information about the
1483 * effective APIC id and update the package map.
1484 */
1485static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1486{
1487#ifdef CONFIG_SMP
1488        unsigned int apicid, cpu = smp_processor_id();
1489
1490        apicid = apic->cpu_present_to_apicid(cpu);
1491
1492        if (apicid != c->apicid) {
1493                pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1494                       cpu, apicid, c->initial_apicid);
1495        }
1496        BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1497        BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1498#else
1499        c->logical_proc_id = 0;
1500#endif
1501}
1502
1503/*
1504 * This does the hard work of actually picking apart the CPU stuff...
1505 */
1506static void identify_cpu(struct cpuinfo_x86 *c)
1507{
1508        int i;
1509
1510        c->loops_per_jiffy = loops_per_jiffy;
1511        c->x86_cache_size = 0;
1512        c->x86_vendor = X86_VENDOR_UNKNOWN;
1513        c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1514        c->x86_vendor_id[0] = '\0'; /* Unset */
1515        c->x86_model_id[0] = '\0';  /* Unset */
1516        c->x86_max_cores = 1;
1517        c->x86_coreid_bits = 0;
1518        c->cu_id = 0xff;
1519#ifdef CONFIG_X86_64
1520        c->x86_clflush_size = 64;
1521        c->x86_phys_bits = 36;
1522        c->x86_virt_bits = 48;
1523#else
1524        c->cpuid_level = -1;    /* CPUID not detected */
1525        c->x86_clflush_size = 32;
1526        c->x86_phys_bits = 32;
1527        c->x86_virt_bits = 32;
1528#endif
1529        c->x86_cache_alignment = c->x86_clflush_size;
1530        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1531#ifdef CONFIG_X86_VMX_FEATURE_NAMES
1532        memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1533#endif
1534
1535        generic_identify(c);
1536
1537        if (this_cpu->c_identify)
1538                this_cpu->c_identify(c);
1539
1540        /* Clear/Set all flags overridden by options, after probe */
1541        apply_forced_caps(c);
1542
1543#ifdef CONFIG_X86_64
1544        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1545#endif
1546
1547        /*
1548         * Vendor-specific initialization.  In this section we
1549         * canonicalize the feature flags, meaning if there are
1550         * features a certain CPU supports which CPUID doesn't
1551         * tell us, CPUID claiming incorrect flags, or other bugs,
1552         * we handle them here.
1553         *
1554         * At the end of this section, c->x86_capability better
1555         * indicate the features this CPU genuinely supports!
1556         */
1557        if (this_cpu->c_init)
1558                this_cpu->c_init(c);
1559
1560        /* Disable the PN if appropriate */
1561        squash_the_stupid_serial_number(c);
1562
1563        /* Set up SMEP/SMAP/UMIP */
1564        setup_smep(c);
1565        setup_smap(c);
1566        setup_umip(c);
1567
1568        /* Enable FSGSBASE instructions if available. */
1569        if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1570                cr4_set_bits(X86_CR4_FSGSBASE);
1571                elf_hwcap2 |= HWCAP2_FSGSBASE;
1572        }
1573
1574        /*
1575         * The vendor-specific functions might have changed features.
1576         * Now we do "generic changes."
1577         */
1578
1579        /* Filter out anything that depends on CPUID levels we don't have */
1580        filter_cpuid_features(c, true);
1581
1582        /* If the model name is still unset, do table lookup. */
1583        if (!c->x86_model_id[0]) {
1584                const char *p;
1585                p = table_lookup_model(c);
1586                if (p)
1587                        strcpy(c->x86_model_id, p);
1588                else
1589                        /* Last resort... */
1590                        sprintf(c->x86_model_id, "%02x/%02x",
1591                                c->x86, c->x86_model);
1592        }
1593
1594#ifdef CONFIG_X86_64
1595        detect_ht(c);
1596#endif
1597
1598        x86_init_rdrand(c);
1599        setup_pku(c);
1600
1601        /*
1602         * Clear/Set all flags overridden by options, need do it
1603         * before following smp all cpus cap AND.
1604         */
1605        apply_forced_caps(c);
1606
1607        /*
1608         * On SMP, boot_cpu_data holds the common feature set between
1609         * all CPUs; so make sure that we indicate which features are
1610         * common between the CPUs.  The first time this routine gets
1611         * executed, c == &boot_cpu_data.
1612         */
1613        if (c != &boot_cpu_data) {
1614                /* AND the already accumulated flags with these */
1615                for (i = 0; i < NCAPINTS; i++)
1616                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1617
1618                /* OR, i.e. replicate the bug flags */
1619                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1620                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1621        }
1622
1623        /* Init Machine Check Exception if available. */
1624        mcheck_cpu_init(c);
1625
1626        select_idle_routine(c);
1627
1628#ifdef CONFIG_NUMA
1629        numa_add_cpu(smp_processor_id());
1630#endif
1631}
1632
1633/*
1634 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1635 * on 32-bit kernels:
1636 */
1637#ifdef CONFIG_X86_32
1638void enable_sep_cpu(void)
1639{
1640        struct tss_struct *tss;
1641        int cpu;
1642
1643        if (!boot_cpu_has(X86_FEATURE_SEP))
1644                return;
1645
1646        cpu = get_cpu();
1647        tss = &per_cpu(cpu_tss_rw, cpu);
1648
1649        /*
1650         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1651         * see the big comment in struct x86_hw_tss's definition.
1652         */
1653
1654        tss->x86_tss.ss1 = __KERNEL_CS;
1655        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1656        wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1657        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1658
1659        put_cpu();
1660}
1661#endif
1662
1663void __init identify_boot_cpu(void)
1664{
1665        identify_cpu(&boot_cpu_data);
1666#ifdef CONFIG_X86_32
1667        sysenter_setup();
1668        enable_sep_cpu();
1669#endif
1670        cpu_detect_tlb(&boot_cpu_data);
1671        setup_cr_pinning();
1672
1673        tsx_init();
1674}
1675
1676void identify_secondary_cpu(struct cpuinfo_x86 *c)
1677{
1678        BUG_ON(c == &boot_cpu_data);
1679        identify_cpu(c);
1680#ifdef CONFIG_X86_32
1681        enable_sep_cpu();
1682#endif
1683        mtrr_ap_init();
1684        validate_apic_and_package_id(c);
1685        x86_spec_ctrl_setup_ap();
1686        update_srbds_msr();
1687}
1688
1689static __init int setup_noclflush(char *arg)
1690{
1691        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1692        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1693        return 1;
1694}
1695__setup("noclflush", setup_noclflush);
1696
1697void print_cpu_info(struct cpuinfo_x86 *c)
1698{
1699        const char *vendor = NULL;
1700
1701        if (c->x86_vendor < X86_VENDOR_NUM) {
1702                vendor = this_cpu->c_vendor;
1703        } else {
1704                if (c->cpuid_level >= 0)
1705                        vendor = c->x86_vendor_id;
1706        }
1707
1708        if (vendor && !strstr(c->x86_model_id, vendor))
1709                pr_cont("%s ", vendor);
1710
1711        if (c->x86_model_id[0])
1712                pr_cont("%s", c->x86_model_id);
1713        else
1714                pr_cont("%d86", c->x86);
1715
1716        pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1717
1718        if (c->x86_stepping || c->cpuid_level >= 0)
1719                pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1720        else
1721                pr_cont(")\n");
1722}
1723
1724/*
1725 * clearcpuid= was already parsed in cpu_parse_early_param().  This dummy
1726 * function prevents it from becoming an environment variable for init.
1727 */
1728static __init int setup_clearcpuid(char *arg)
1729{
1730        return 1;
1731}
1732__setup("clearcpuid=", setup_clearcpuid);
1733
1734#ifdef CONFIG_X86_64
1735DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1736                     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1737EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1738
1739/*
1740 * The following percpu variables are hot.  Align current_task to
1741 * cacheline size such that they fall in the same cacheline.
1742 */
1743DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1744        &init_task;
1745EXPORT_PER_CPU_SYMBOL(current_task);
1746
1747DEFINE_PER_CPU(void *, hardirq_stack_ptr);
1748DEFINE_PER_CPU(bool, hardirq_stack_inuse);
1749
1750DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1751EXPORT_PER_CPU_SYMBOL(__preempt_count);
1752
1753DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
1754
1755/* May not be marked __init: used by software suspend */
1756void syscall_init(void)
1757{
1758        wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1759        wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1760
1761#ifdef CONFIG_IA32_EMULATION
1762        wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1763        /*
1764         * This only works on Intel CPUs.
1765         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1766         * This does not cause SYSENTER to jump to the wrong location, because
1767         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1768         */
1769        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1770        wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1771                    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1772        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1773#else
1774        wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1775        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1776        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1777        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1778#endif
1779
1780        /*
1781         * Flags to clear on syscall; clear as much as possible
1782         * to minimize user space-kernel interference.
1783         */
1784        wrmsrl(MSR_SYSCALL_MASK,
1785               X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
1786               X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
1787               X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
1788               X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
1789               X86_EFLAGS_AC|X86_EFLAGS_ID);
1790}
1791
1792#else   /* CONFIG_X86_64 */
1793
1794DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1795EXPORT_PER_CPU_SYMBOL(current_task);
1796DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1797EXPORT_PER_CPU_SYMBOL(__preempt_count);
1798
1799/*
1800 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1801 * the top of the kernel stack.  Use an extra percpu variable to track the
1802 * top of the kernel stack directly.
1803 */
1804DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1805        (unsigned long)&init_thread_union + THREAD_SIZE;
1806EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1807
1808#ifdef CONFIG_STACKPROTECTOR
1809DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
1810EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
1811#endif
1812
1813#endif  /* CONFIG_X86_64 */
1814
1815/*
1816 * Clear all 6 debug registers:
1817 */
1818static void clear_all_debug_regs(void)
1819{
1820        int i;
1821
1822        for (i = 0; i < 8; i++) {
1823                /* Ignore db4, db5 */
1824                if ((i == 4) || (i == 5))
1825                        continue;
1826
1827                set_debugreg(0, i);
1828        }
1829}
1830
1831#ifdef CONFIG_KGDB
1832/*
1833 * Restore debug regs if using kgdbwait and you have a kernel debugger
1834 * connection established.
1835 */
1836static void dbg_restore_debug_regs(void)
1837{
1838        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1839                arch_kgdb_ops.correct_hw_break();
1840}
1841#else /* ! CONFIG_KGDB */
1842#define dbg_restore_debug_regs()
1843#endif /* ! CONFIG_KGDB */
1844
1845static void wait_for_master_cpu(int cpu)
1846{
1847#ifdef CONFIG_SMP
1848        /*
1849         * wait for ACK from master CPU before continuing
1850         * with AP initialization
1851         */
1852        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1853        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1854                cpu_relax();
1855#endif
1856}
1857
1858#ifdef CONFIG_X86_64
1859static inline void setup_getcpu(int cpu)
1860{
1861        unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1862        struct desc_struct d = { };
1863
1864        if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
1865                wrmsr(MSR_TSC_AUX, cpudata, 0);
1866
1867        /* Store CPU and node number in limit. */
1868        d.limit0 = cpudata;
1869        d.limit1 = cpudata >> 16;
1870
1871        d.type = 5;             /* RO data, expand down, accessed */
1872        d.dpl = 3;              /* Visible to user code */
1873        d.s = 1;                /* Not a system segment */
1874        d.p = 1;                /* Present */
1875        d.d = 1;                /* 32-bit */
1876
1877        write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1878}
1879
1880static inline void ucode_cpu_init(int cpu)
1881{
1882        if (cpu)
1883                load_ucode_ap();
1884}
1885
1886static inline void tss_setup_ist(struct tss_struct *tss)
1887{
1888        /* Set up the per-CPU TSS IST stacks */
1889        tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1890        tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1891        tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1892        tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1893        /* Only mapped when SEV-ES is active */
1894        tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1895}
1896
1897#else /* CONFIG_X86_64 */
1898
1899static inline void setup_getcpu(int cpu) { }
1900
1901static inline void ucode_cpu_init(int cpu)
1902{
1903        show_ucode_info_early();
1904}
1905
1906static inline void tss_setup_ist(struct tss_struct *tss) { }
1907
1908#endif /* !CONFIG_X86_64 */
1909
1910static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1911{
1912        tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1913
1914#ifdef CONFIG_X86_IOPL_IOPERM
1915        tss->io_bitmap.prev_max = 0;
1916        tss->io_bitmap.prev_sequence = 0;
1917        memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1918        /*
1919         * Invalidate the extra array entry past the end of the all
1920         * permission bitmap as required by the hardware.
1921         */
1922        tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1923#endif
1924}
1925
1926/*
1927 * Setup everything needed to handle exceptions from the IDT, including the IST
1928 * exceptions which use paranoid_entry().
1929 */
1930void cpu_init_exception_handling(void)
1931{
1932        struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1933        int cpu = raw_smp_processor_id();
1934
1935        /* paranoid_entry() gets the CPU number from the GDT */
1936        setup_getcpu(cpu);
1937
1938        /* IST vectors need TSS to be set up. */
1939        tss_setup_ist(tss);
1940        tss_setup_io_bitmap(tss);
1941        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942
1943        load_TR_desc();
1944
1945        /* Finally load the IDT */
1946        load_current_idt();
1947}
1948
1949/*
1950 * cpu_init() initializes state that is per-CPU. Some data is already
1951 * initialized (naturally) in the bootstrap process, such as the GDT.  We
1952 * reload it nevertheless, this function acts as a 'CPU state barrier',
1953 * nothing should get across.
1954 */
1955void cpu_init(void)
1956{
1957        struct task_struct *cur = current;
1958        int cpu = raw_smp_processor_id();
1959
1960        wait_for_master_cpu(cpu);
1961
1962        ucode_cpu_init(cpu);
1963
1964#ifdef CONFIG_NUMA
1965        if (this_cpu_read(numa_node) == 0 &&
1966            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1967                set_numa_node(early_cpu_to_node(cpu));
1968#endif
1969        pr_debug("Initializing CPU#%d\n", cpu);
1970
1971        if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1972            boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1973                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1974
1975        /*
1976         * Initialize the per-CPU GDT with the boot GDT,
1977         * and set up the GDT descriptor:
1978         */
1979        switch_to_new_gdt(cpu);
1980
1981        if (IS_ENABLED(CONFIG_X86_64)) {
1982                loadsegment(fs, 0);
1983                memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1984                syscall_init();
1985
1986                wrmsrl(MSR_FS_BASE, 0);
1987                wrmsrl(MSR_KERNEL_GS_BASE, 0);
1988                barrier();
1989
1990                x2apic_setup();
1991        }
1992
1993        mmgrab(&init_mm);
1994        cur->active_mm = &init_mm;
1995        BUG_ON(cur->mm);
1996        initialize_tlbstate_and_flush();
1997        enter_lazy_tlb(&init_mm, cur);
1998
1999        /*
2000         * sp0 points to the entry trampoline stack regardless of what task
2001         * is running.
2002         */
2003        load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2004
2005        load_mm_ldt(&init_mm);
2006
2007        clear_all_debug_regs();
2008        dbg_restore_debug_regs();
2009
2010        doublefault_init_cpu_tss();
2011
2012        fpu__init_cpu();
2013
2014        if (is_uv_system())
2015                uv_cpu_init();
2016
2017        load_fixmap_gdt(cpu);
2018}
2019
2020#ifdef CONFIG_SMP
2021void cpu_init_secondary(void)
2022{
2023        /*
2024         * Relies on the BP having set-up the IDT tables, which are loaded
2025         * on this CPU in cpu_init_exception_handling().
2026         */
2027        cpu_init_exception_handling();
2028        cpu_init();
2029}
2030#endif
2031
2032/*
2033 * The microcode loader calls this upon late microcode load to recheck features,
2034 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2035 * hotplug lock.
2036 */
2037void microcode_check(void)
2038{
2039        struct cpuinfo_x86 info;
2040
2041        perf_check_microcode();
2042
2043        /* Reload CPUID max function as it might've changed. */
2044        info.cpuid_level = cpuid_eax(0);
2045
2046        /*
2047         * Copy all capability leafs to pick up the synthetic ones so that
2048         * memcmp() below doesn't fail on that. The ones coming from CPUID will
2049         * get overwritten in get_cpu_cap().
2050         */
2051        memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2052
2053        get_cpu_cap(&info);
2054
2055        if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2056                return;
2057
2058        pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2059        pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2060}
2061
2062/*
2063 * Invoked from core CPU hotplug code after hotplug operations
2064 */
2065void arch_smt_update(void)
2066{
2067        /* Handle the speculative execution misfeatures */
2068        cpu_bugs_smt_update();
2069        /* Check whether IPI broadcasting can be enabled */
2070        apic_smt_update();
2071}
2072