linux/arch/x86/kernel/cpu/resctrl/monitor.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Resource Director Technology(RDT)
   4 * - Monitoring code
   5 *
   6 * Copyright (C) 2017 Intel Corporation
   7 *
   8 * Author:
   9 *    Vikas Shivappa <vikas.shivappa@intel.com>
  10 *
  11 * This replaces the cqm.c based on perf but we reuse a lot of
  12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
  13 *
  14 * More information about RDT be found in the Intel (R) x86 Architecture
  15 * Software Developer Manual June 2016, volume 3, section 17.17.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <asm/cpu_device_id.h>
  21#include "internal.h"
  22
  23struct rmid_entry {
  24        u32                             rmid;
  25        int                             busy;
  26        struct list_head                list;
  27};
  28
  29/**
  30 * @rmid_free_lru    A least recently used list of free RMIDs
  31 *     These RMIDs are guaranteed to have an occupancy less than the
  32 *     threshold occupancy
  33 */
  34static LIST_HEAD(rmid_free_lru);
  35
  36/**
  37 * @rmid_limbo_count     count of currently unused but (potentially)
  38 *     dirty RMIDs.
  39 *     This counts RMIDs that no one is currently using but that
  40 *     may have a occupancy value > intel_cqm_threshold. User can change
  41 *     the threshold occupancy value.
  42 */
  43static unsigned int rmid_limbo_count;
  44
  45/**
  46 * @rmid_entry - The entry in the limbo and free lists.
  47 */
  48static struct rmid_entry        *rmid_ptrs;
  49
  50/*
  51 * Global boolean for rdt_monitor which is true if any
  52 * resource monitoring is enabled.
  53 */
  54bool rdt_mon_capable;
  55
  56/*
  57 * Global to indicate which monitoring events are enabled.
  58 */
  59unsigned int rdt_mon_features;
  60
  61/*
  62 * This is the threshold cache occupancy at which we will consider an
  63 * RMID available for re-allocation.
  64 */
  65unsigned int resctrl_cqm_threshold;
  66
  67#define CF(cf)  ((unsigned long)(1048576 * (cf) + 0.5))
  68
  69/*
  70 * The correction factor table is documented in Documentation/x86/resctrl.rst.
  71 * If rmid > rmid threshold, MBM total and local values should be multiplied
  72 * by the correction factor.
  73 *
  74 * The original table is modified for better code:
  75 *
  76 * 1. The threshold 0 is changed to rmid count - 1 so don't do correction
  77 *    for the case.
  78 * 2. MBM total and local correction table indexed by core counter which is
  79 *    equal to (x86_cache_max_rmid + 1) / 8 - 1 and is from 0 up to 27.
  80 * 3. The correction factor is normalized to 2^20 (1048576) so it's faster
  81 *    to calculate corrected value by shifting:
  82 *    corrected_value = (original_value * correction_factor) >> 20
  83 */
  84static const struct mbm_correction_factor_table {
  85        u32 rmidthreshold;
  86        u64 cf;
  87} mbm_cf_table[] __initconst = {
  88        {7,     CF(1.000000)},
  89        {15,    CF(1.000000)},
  90        {15,    CF(0.969650)},
  91        {31,    CF(1.000000)},
  92        {31,    CF(1.066667)},
  93        {31,    CF(0.969650)},
  94        {47,    CF(1.142857)},
  95        {63,    CF(1.000000)},
  96        {63,    CF(1.185115)},
  97        {63,    CF(1.066553)},
  98        {79,    CF(1.454545)},
  99        {95,    CF(1.000000)},
 100        {95,    CF(1.230769)},
 101        {95,    CF(1.142857)},
 102        {95,    CF(1.066667)},
 103        {127,   CF(1.000000)},
 104        {127,   CF(1.254863)},
 105        {127,   CF(1.185255)},
 106        {151,   CF(1.000000)},
 107        {127,   CF(1.066667)},
 108        {167,   CF(1.000000)},
 109        {159,   CF(1.454334)},
 110        {183,   CF(1.000000)},
 111        {127,   CF(0.969744)},
 112        {191,   CF(1.280246)},
 113        {191,   CF(1.230921)},
 114        {215,   CF(1.000000)},
 115        {191,   CF(1.143118)},
 116};
 117
 118static u32 mbm_cf_rmidthreshold __read_mostly = UINT_MAX;
 119static u64 mbm_cf __read_mostly;
 120
 121static inline u64 get_corrected_mbm_count(u32 rmid, unsigned long val)
 122{
 123        /* Correct MBM value. */
 124        if (rmid > mbm_cf_rmidthreshold)
 125                val = (val * mbm_cf) >> 20;
 126
 127        return val;
 128}
 129
 130static inline struct rmid_entry *__rmid_entry(u32 rmid)
 131{
 132        struct rmid_entry *entry;
 133
 134        entry = &rmid_ptrs[rmid];
 135        WARN_ON(entry->rmid != rmid);
 136
 137        return entry;
 138}
 139
 140static u64 __rmid_read(u32 rmid, u32 eventid)
 141{
 142        u64 val;
 143
 144        /*
 145         * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
 146         * with a valid event code for supported resource type and the bits
 147         * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
 148         * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
 149         * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
 150         * are error bits.
 151         */
 152        wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
 153        rdmsrl(MSR_IA32_QM_CTR, val);
 154
 155        return val;
 156}
 157
 158static bool rmid_dirty(struct rmid_entry *entry)
 159{
 160        u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
 161
 162        return val >= resctrl_cqm_threshold;
 163}
 164
 165/*
 166 * Check the RMIDs that are marked as busy for this domain. If the
 167 * reported LLC occupancy is below the threshold clear the busy bit and
 168 * decrement the count. If the busy count gets to zero on an RMID, we
 169 * free the RMID
 170 */
 171void __check_limbo(struct rdt_domain *d, bool force_free)
 172{
 173        struct rmid_entry *entry;
 174        struct rdt_resource *r;
 175        u32 crmid = 1, nrmid;
 176
 177        r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
 178
 179        /*
 180         * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
 181         * are marked as busy for occupancy < threshold. If the occupancy
 182         * is less than the threshold decrement the busy counter of the
 183         * RMID and move it to the free list when the counter reaches 0.
 184         */
 185        for (;;) {
 186                nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
 187                if (nrmid >= r->num_rmid)
 188                        break;
 189
 190                entry = __rmid_entry(nrmid);
 191                if (force_free || !rmid_dirty(entry)) {
 192                        clear_bit(entry->rmid, d->rmid_busy_llc);
 193                        if (!--entry->busy) {
 194                                rmid_limbo_count--;
 195                                list_add_tail(&entry->list, &rmid_free_lru);
 196                        }
 197                }
 198                crmid = nrmid + 1;
 199        }
 200}
 201
 202bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
 203{
 204        return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
 205}
 206
 207/*
 208 * As of now the RMIDs allocation is global.
 209 * However we keep track of which packages the RMIDs
 210 * are used to optimize the limbo list management.
 211 */
 212int alloc_rmid(void)
 213{
 214        struct rmid_entry *entry;
 215
 216        lockdep_assert_held(&rdtgroup_mutex);
 217
 218        if (list_empty(&rmid_free_lru))
 219                return rmid_limbo_count ? -EBUSY : -ENOSPC;
 220
 221        entry = list_first_entry(&rmid_free_lru,
 222                                 struct rmid_entry, list);
 223        list_del(&entry->list);
 224
 225        return entry->rmid;
 226}
 227
 228static void add_rmid_to_limbo(struct rmid_entry *entry)
 229{
 230        struct rdt_resource *r;
 231        struct rdt_domain *d;
 232        int cpu;
 233        u64 val;
 234
 235        r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
 236
 237        entry->busy = 0;
 238        cpu = get_cpu();
 239        list_for_each_entry(d, &r->domains, list) {
 240                if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
 241                        val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
 242                        if (val <= resctrl_cqm_threshold)
 243                                continue;
 244                }
 245
 246                /*
 247                 * For the first limbo RMID in the domain,
 248                 * setup up the limbo worker.
 249                 */
 250                if (!has_busy_rmid(r, d))
 251                        cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
 252                set_bit(entry->rmid, d->rmid_busy_llc);
 253                entry->busy++;
 254        }
 255        put_cpu();
 256
 257        if (entry->busy)
 258                rmid_limbo_count++;
 259        else
 260                list_add_tail(&entry->list, &rmid_free_lru);
 261}
 262
 263void free_rmid(u32 rmid)
 264{
 265        struct rmid_entry *entry;
 266
 267        if (!rmid)
 268                return;
 269
 270        lockdep_assert_held(&rdtgroup_mutex);
 271
 272        entry = __rmid_entry(rmid);
 273
 274        if (is_llc_occupancy_enabled())
 275                add_rmid_to_limbo(entry);
 276        else
 277                list_add_tail(&entry->list, &rmid_free_lru);
 278}
 279
 280static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr, unsigned int width)
 281{
 282        u64 shift = 64 - width, chunks;
 283
 284        chunks = (cur_msr << shift) - (prev_msr << shift);
 285        return chunks >>= shift;
 286}
 287
 288static u64 __mon_event_count(u32 rmid, struct rmid_read *rr)
 289{
 290        struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r);
 291        struct mbm_state *m;
 292        u64 chunks, tval;
 293
 294        tval = __rmid_read(rmid, rr->evtid);
 295        if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
 296                return tval;
 297        }
 298        switch (rr->evtid) {
 299        case QOS_L3_OCCUP_EVENT_ID:
 300                rr->val += tval;
 301                return 0;
 302        case QOS_L3_MBM_TOTAL_EVENT_ID:
 303                m = &rr->d->mbm_total[rmid];
 304                break;
 305        case QOS_L3_MBM_LOCAL_EVENT_ID:
 306                m = &rr->d->mbm_local[rmid];
 307                break;
 308        default:
 309                /*
 310                 * Code would never reach here because an invalid
 311                 * event id would fail the __rmid_read.
 312                 */
 313                return RMID_VAL_ERROR;
 314        }
 315
 316        if (rr->first) {
 317                memset(m, 0, sizeof(struct mbm_state));
 318                m->prev_bw_msr = m->prev_msr = tval;
 319                return 0;
 320        }
 321
 322        chunks = mbm_overflow_count(m->prev_msr, tval, hw_res->mbm_width);
 323        m->chunks += chunks;
 324        m->prev_msr = tval;
 325
 326        rr->val += get_corrected_mbm_count(rmid, m->chunks);
 327
 328        return 0;
 329}
 330
 331/*
 332 * Supporting function to calculate the memory bandwidth
 333 * and delta bandwidth in MBps.
 334 */
 335static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
 336{
 337        struct rdt_hw_resource *hw_res = resctrl_to_arch_res(rr->r);
 338        struct mbm_state *m = &rr->d->mbm_local[rmid];
 339        u64 tval, cur_bw, chunks;
 340
 341        tval = __rmid_read(rmid, rr->evtid);
 342        if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
 343                return;
 344
 345        chunks = mbm_overflow_count(m->prev_bw_msr, tval, hw_res->mbm_width);
 346        cur_bw = (get_corrected_mbm_count(rmid, chunks) * hw_res->mon_scale) >> 20;
 347
 348        if (m->delta_comp)
 349                m->delta_bw = abs(cur_bw - m->prev_bw);
 350        m->delta_comp = false;
 351        m->prev_bw = cur_bw;
 352        m->prev_bw_msr = tval;
 353}
 354
 355/*
 356 * This is called via IPI to read the CQM/MBM counters
 357 * on a domain.
 358 */
 359void mon_event_count(void *info)
 360{
 361        struct rdtgroup *rdtgrp, *entry;
 362        struct rmid_read *rr = info;
 363        struct list_head *head;
 364        u64 ret_val;
 365
 366        rdtgrp = rr->rgrp;
 367
 368        ret_val = __mon_event_count(rdtgrp->mon.rmid, rr);
 369
 370        /*
 371         * For Ctrl groups read data from child monitor groups and
 372         * add them together. Count events which are read successfully.
 373         * Discard the rmid_read's reporting errors.
 374         */
 375        head = &rdtgrp->mon.crdtgrp_list;
 376
 377        if (rdtgrp->type == RDTCTRL_GROUP) {
 378                list_for_each_entry(entry, head, mon.crdtgrp_list) {
 379                        if (__mon_event_count(entry->mon.rmid, rr) == 0)
 380                                ret_val = 0;
 381                }
 382        }
 383
 384        /* Report error if none of rmid_reads are successful */
 385        if (ret_val)
 386                rr->val = ret_val;
 387}
 388
 389/*
 390 * Feedback loop for MBA software controller (mba_sc)
 391 *
 392 * mba_sc is a feedback loop where we periodically read MBM counters and
 393 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
 394 * that:
 395 *
 396 *   current bandwidth(cur_bw) < user specified bandwidth(user_bw)
 397 *
 398 * This uses the MBM counters to measure the bandwidth and MBA throttle
 399 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
 400 * fact that resctrl rdtgroups have both monitoring and control.
 401 *
 402 * The frequency of the checks is 1s and we just tag along the MBM overflow
 403 * timer. Having 1s interval makes the calculation of bandwidth simpler.
 404 *
 405 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
 406 * be a need to increase the bandwidth to avoid unnecessarily restricting
 407 * the L2 <-> L3 traffic.
 408 *
 409 * Since MBA controls the L2 external bandwidth where as MBM measures the
 410 * L3 external bandwidth the following sequence could lead to such a
 411 * situation.
 412 *
 413 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
 414 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
 415 * after some time rdtgroup has mostly L2 <-> L3 traffic.
 416 *
 417 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
 418 * throttle MSRs already have low percentage values.  To avoid
 419 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
 420 */
 421static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
 422{
 423        u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
 424        struct mbm_state *pmbm_data, *cmbm_data;
 425        struct rdt_hw_resource *hw_r_mba;
 426        struct rdt_hw_domain *hw_dom_mba;
 427        u32 cur_bw, delta_bw, user_bw;
 428        struct rdt_resource *r_mba;
 429        struct rdt_domain *dom_mba;
 430        struct list_head *head;
 431        struct rdtgroup *entry;
 432
 433        if (!is_mbm_local_enabled())
 434                return;
 435
 436        hw_r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
 437        r_mba = &hw_r_mba->r_resctrl;
 438        closid = rgrp->closid;
 439        rmid = rgrp->mon.rmid;
 440        pmbm_data = &dom_mbm->mbm_local[rmid];
 441
 442        dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
 443        if (!dom_mba) {
 444                pr_warn_once("Failure to get domain for MBA update\n");
 445                return;
 446        }
 447        hw_dom_mba = resctrl_to_arch_dom(dom_mba);
 448
 449        cur_bw = pmbm_data->prev_bw;
 450        user_bw = resctrl_arch_get_config(r_mba, dom_mba, closid, CDP_NONE);
 451        delta_bw = pmbm_data->delta_bw;
 452        /*
 453         * resctrl_arch_get_config() chooses the mbps/ctrl value to return
 454         * based on is_mba_sc(). For now, reach into the hw_dom.
 455         */
 456        cur_msr_val = hw_dom_mba->ctrl_val[closid];
 457
 458        /*
 459         * For Ctrl groups read data from child monitor groups.
 460         */
 461        head = &rgrp->mon.crdtgrp_list;
 462        list_for_each_entry(entry, head, mon.crdtgrp_list) {
 463                cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
 464                cur_bw += cmbm_data->prev_bw;
 465                delta_bw += cmbm_data->delta_bw;
 466        }
 467
 468        /*
 469         * Scale up/down the bandwidth linearly for the ctrl group.  The
 470         * bandwidth step is the bandwidth granularity specified by the
 471         * hardware.
 472         *
 473         * The delta_bw is used when increasing the bandwidth so that we
 474         * dont alternately increase and decrease the control values
 475         * continuously.
 476         *
 477         * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
 478         * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
 479         * switching between 90 and 110 continuously if we only check
 480         * cur_bw < user_bw.
 481         */
 482        if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
 483                new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
 484        } else if (cur_msr_val < MAX_MBA_BW &&
 485                   (user_bw > (cur_bw + delta_bw))) {
 486                new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
 487        } else {
 488                return;
 489        }
 490
 491        cur_msr = hw_r_mba->msr_base + closid;
 492        wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
 493        hw_dom_mba->ctrl_val[closid] = new_msr_val;
 494
 495        /*
 496         * Delta values are updated dynamically package wise for each
 497         * rdtgrp every time the throttle MSR changes value.
 498         *
 499         * This is because (1)the increase in bandwidth is not perfectly
 500         * linear and only "approximately" linear even when the hardware
 501         * says it is linear.(2)Also since MBA is a core specific
 502         * mechanism, the delta values vary based on number of cores used
 503         * by the rdtgrp.
 504         */
 505        pmbm_data->delta_comp = true;
 506        list_for_each_entry(entry, head, mon.crdtgrp_list) {
 507                cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
 508                cmbm_data->delta_comp = true;
 509        }
 510}
 511
 512static void mbm_update(struct rdt_resource *r, struct rdt_domain *d, int rmid)
 513{
 514        struct rmid_read rr;
 515
 516        rr.first = false;
 517        rr.r = r;
 518        rr.d = d;
 519
 520        /*
 521         * This is protected from concurrent reads from user
 522         * as both the user and we hold the global mutex.
 523         */
 524        if (is_mbm_total_enabled()) {
 525                rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
 526                __mon_event_count(rmid, &rr);
 527        }
 528        if (is_mbm_local_enabled()) {
 529                rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
 530                __mon_event_count(rmid, &rr);
 531
 532                /*
 533                 * Call the MBA software controller only for the
 534                 * control groups and when user has enabled
 535                 * the software controller explicitly.
 536                 */
 537                if (is_mba_sc(NULL))
 538                        mbm_bw_count(rmid, &rr);
 539        }
 540}
 541
 542/*
 543 * Handler to scan the limbo list and move the RMIDs
 544 * to free list whose occupancy < threshold_occupancy.
 545 */
 546void cqm_handle_limbo(struct work_struct *work)
 547{
 548        unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
 549        int cpu = smp_processor_id();
 550        struct rdt_resource *r;
 551        struct rdt_domain *d;
 552
 553        mutex_lock(&rdtgroup_mutex);
 554
 555        r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
 556        d = container_of(work, struct rdt_domain, cqm_limbo.work);
 557
 558        __check_limbo(d, false);
 559
 560        if (has_busy_rmid(r, d))
 561                schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
 562
 563        mutex_unlock(&rdtgroup_mutex);
 564}
 565
 566void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
 567{
 568        unsigned long delay = msecs_to_jiffies(delay_ms);
 569        int cpu;
 570
 571        cpu = cpumask_any(&dom->cpu_mask);
 572        dom->cqm_work_cpu = cpu;
 573
 574        schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
 575}
 576
 577void mbm_handle_overflow(struct work_struct *work)
 578{
 579        unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
 580        struct rdtgroup *prgrp, *crgrp;
 581        int cpu = smp_processor_id();
 582        struct list_head *head;
 583        struct rdt_resource *r;
 584        struct rdt_domain *d;
 585
 586        mutex_lock(&rdtgroup_mutex);
 587
 588        if (!static_branch_likely(&rdt_mon_enable_key))
 589                goto out_unlock;
 590
 591        r = &rdt_resources_all[RDT_RESOURCE_L3].r_resctrl;
 592        d = container_of(work, struct rdt_domain, mbm_over.work);
 593
 594        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
 595                mbm_update(r, d, prgrp->mon.rmid);
 596
 597                head = &prgrp->mon.crdtgrp_list;
 598                list_for_each_entry(crgrp, head, mon.crdtgrp_list)
 599                        mbm_update(r, d, crgrp->mon.rmid);
 600
 601                if (is_mba_sc(NULL))
 602                        update_mba_bw(prgrp, d);
 603        }
 604
 605        schedule_delayed_work_on(cpu, &d->mbm_over, delay);
 606
 607out_unlock:
 608        mutex_unlock(&rdtgroup_mutex);
 609}
 610
 611void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
 612{
 613        unsigned long delay = msecs_to_jiffies(delay_ms);
 614        int cpu;
 615
 616        if (!static_branch_likely(&rdt_mon_enable_key))
 617                return;
 618        cpu = cpumask_any(&dom->cpu_mask);
 619        dom->mbm_work_cpu = cpu;
 620        schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
 621}
 622
 623static int dom_data_init(struct rdt_resource *r)
 624{
 625        struct rmid_entry *entry = NULL;
 626        int i, nr_rmids;
 627
 628        nr_rmids = r->num_rmid;
 629        rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
 630        if (!rmid_ptrs)
 631                return -ENOMEM;
 632
 633        for (i = 0; i < nr_rmids; i++) {
 634                entry = &rmid_ptrs[i];
 635                INIT_LIST_HEAD(&entry->list);
 636
 637                entry->rmid = i;
 638                list_add_tail(&entry->list, &rmid_free_lru);
 639        }
 640
 641        /*
 642         * RMID 0 is special and is always allocated. It's used for all
 643         * tasks that are not monitored.
 644         */
 645        entry = __rmid_entry(0);
 646        list_del(&entry->list);
 647
 648        return 0;
 649}
 650
 651static struct mon_evt llc_occupancy_event = {
 652        .name           = "llc_occupancy",
 653        .evtid          = QOS_L3_OCCUP_EVENT_ID,
 654};
 655
 656static struct mon_evt mbm_total_event = {
 657        .name           = "mbm_total_bytes",
 658        .evtid          = QOS_L3_MBM_TOTAL_EVENT_ID,
 659};
 660
 661static struct mon_evt mbm_local_event = {
 662        .name           = "mbm_local_bytes",
 663        .evtid          = QOS_L3_MBM_LOCAL_EVENT_ID,
 664};
 665
 666/*
 667 * Initialize the event list for the resource.
 668 *
 669 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
 670 * because as per the SDM the total and local memory bandwidth
 671 * are enumerated as part of L3 monitoring.
 672 */
 673static void l3_mon_evt_init(struct rdt_resource *r)
 674{
 675        INIT_LIST_HEAD(&r->evt_list);
 676
 677        if (is_llc_occupancy_enabled())
 678                list_add_tail(&llc_occupancy_event.list, &r->evt_list);
 679        if (is_mbm_total_enabled())
 680                list_add_tail(&mbm_total_event.list, &r->evt_list);
 681        if (is_mbm_local_enabled())
 682                list_add_tail(&mbm_local_event.list, &r->evt_list);
 683}
 684
 685int rdt_get_mon_l3_config(struct rdt_resource *r)
 686{
 687        unsigned int mbm_offset = boot_cpu_data.x86_cache_mbm_width_offset;
 688        struct rdt_hw_resource *hw_res = resctrl_to_arch_res(r);
 689        unsigned int cl_size = boot_cpu_data.x86_cache_size;
 690        int ret;
 691
 692        hw_res->mon_scale = boot_cpu_data.x86_cache_occ_scale;
 693        r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
 694        hw_res->mbm_width = MBM_CNTR_WIDTH_BASE;
 695
 696        if (mbm_offset > 0 && mbm_offset <= MBM_CNTR_WIDTH_OFFSET_MAX)
 697                hw_res->mbm_width += mbm_offset;
 698        else if (mbm_offset > MBM_CNTR_WIDTH_OFFSET_MAX)
 699                pr_warn("Ignoring impossible MBM counter offset\n");
 700
 701        /*
 702         * A reasonable upper limit on the max threshold is the number
 703         * of lines tagged per RMID if all RMIDs have the same number of
 704         * lines tagged in the LLC.
 705         *
 706         * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
 707         */
 708        resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
 709
 710        /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
 711        resctrl_cqm_threshold /= hw_res->mon_scale;
 712
 713        ret = dom_data_init(r);
 714        if (ret)
 715                return ret;
 716
 717        l3_mon_evt_init(r);
 718
 719        r->mon_capable = true;
 720        r->mon_enabled = true;
 721
 722        return 0;
 723}
 724
 725void __init intel_rdt_mbm_apply_quirk(void)
 726{
 727        int cf_index;
 728
 729        cf_index = (boot_cpu_data.x86_cache_max_rmid + 1) / 8 - 1;
 730        if (cf_index >= ARRAY_SIZE(mbm_cf_table)) {
 731                pr_info("No MBM correction factor available\n");
 732                return;
 733        }
 734
 735        mbm_cf_rmidthreshold = mbm_cf_table[cf_index].rmidthreshold;
 736        mbm_cf = mbm_cf_table[cf_index].cf;
 737}
 738