linux/arch/x86/kernel/nmi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   5 *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
   6 *
   7 *  Pentium III FXSR, SSE support
   8 *      Gareth Hughes <gareth@valinux.com>, May 2000
   9 */
  10
  11/*
  12 * Handle hardware traps and faults.
  13 */
  14#include <linux/spinlock.h>
  15#include <linux/kprobes.h>
  16#include <linux/kdebug.h>
  17#include <linux/sched/debug.h>
  18#include <linux/nmi.h>
  19#include <linux/debugfs.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/ratelimit.h>
  23#include <linux/slab.h>
  24#include <linux/export.h>
  25#include <linux/atomic.h>
  26#include <linux/sched/clock.h>
  27
  28#include <asm/cpu_entry_area.h>
  29#include <asm/traps.h>
  30#include <asm/mach_traps.h>
  31#include <asm/nmi.h>
  32#include <asm/x86_init.h>
  33#include <asm/reboot.h>
  34#include <asm/cache.h>
  35#include <asm/nospec-branch.h>
  36#include <asm/sev.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/nmi.h>
  40
  41struct nmi_desc {
  42        raw_spinlock_t lock;
  43        struct list_head head;
  44};
  45
  46static struct nmi_desc nmi_desc[NMI_MAX] = 
  47{
  48        {
  49                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  50                .head = LIST_HEAD_INIT(nmi_desc[0].head),
  51        },
  52        {
  53                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  54                .head = LIST_HEAD_INIT(nmi_desc[1].head),
  55        },
  56        {
  57                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  58                .head = LIST_HEAD_INIT(nmi_desc[2].head),
  59        },
  60        {
  61                .lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  62                .head = LIST_HEAD_INIT(nmi_desc[3].head),
  63        },
  64
  65};
  66
  67struct nmi_stats {
  68        unsigned int normal;
  69        unsigned int unknown;
  70        unsigned int external;
  71        unsigned int swallow;
  72};
  73
  74static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  75
  76static int ignore_nmis __read_mostly;
  77
  78int unknown_nmi_panic;
  79/*
  80 * Prevent NMI reason port (0x61) being accessed simultaneously, can
  81 * only be used in NMI handler.
  82 */
  83static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  84
  85static int __init setup_unknown_nmi_panic(char *str)
  86{
  87        unknown_nmi_panic = 1;
  88        return 1;
  89}
  90__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  91
  92#define nmi_to_desc(type) (&nmi_desc[type])
  93
  94static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  95
  96static int __init nmi_warning_debugfs(void)
  97{
  98        debugfs_create_u64("nmi_longest_ns", 0644,
  99                        arch_debugfs_dir, &nmi_longest_ns);
 100        return 0;
 101}
 102fs_initcall(nmi_warning_debugfs);
 103
 104static void nmi_check_duration(struct nmiaction *action, u64 duration)
 105{
 106        int remainder_ns, decimal_msecs;
 107
 108        if (duration < nmi_longest_ns || duration < action->max_duration)
 109                return;
 110
 111        action->max_duration = duration;
 112
 113        remainder_ns = do_div(duration, (1000 * 1000));
 114        decimal_msecs = remainder_ns / 1000;
 115
 116        printk_ratelimited(KERN_INFO
 117                "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
 118                action->handler, duration, decimal_msecs);
 119}
 120
 121static int nmi_handle(unsigned int type, struct pt_regs *regs)
 122{
 123        struct nmi_desc *desc = nmi_to_desc(type);
 124        struct nmiaction *a;
 125        int handled=0;
 126
 127        rcu_read_lock();
 128
 129        /*
 130         * NMIs are edge-triggered, which means if you have enough
 131         * of them concurrently, you can lose some because only one
 132         * can be latched at any given time.  Walk the whole list
 133         * to handle those situations.
 134         */
 135        list_for_each_entry_rcu(a, &desc->head, list) {
 136                int thishandled;
 137                u64 delta;
 138
 139                delta = sched_clock();
 140                thishandled = a->handler(type, regs);
 141                handled += thishandled;
 142                delta = sched_clock() - delta;
 143                trace_nmi_handler(a->handler, (int)delta, thishandled);
 144
 145                nmi_check_duration(a, delta);
 146        }
 147
 148        rcu_read_unlock();
 149
 150        /* return total number of NMI events handled */
 151        return handled;
 152}
 153NOKPROBE_SYMBOL(nmi_handle);
 154
 155int __register_nmi_handler(unsigned int type, struct nmiaction *action)
 156{
 157        struct nmi_desc *desc = nmi_to_desc(type);
 158        unsigned long flags;
 159
 160        if (!action->handler)
 161                return -EINVAL;
 162
 163        raw_spin_lock_irqsave(&desc->lock, flags);
 164
 165        /*
 166         * Indicate if there are multiple registrations on the
 167         * internal NMI handler call chains (SERR and IO_CHECK).
 168         */
 169        WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
 170        WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
 171
 172        /*
 173         * some handlers need to be executed first otherwise a fake
 174         * event confuses some handlers (kdump uses this flag)
 175         */
 176        if (action->flags & NMI_FLAG_FIRST)
 177                list_add_rcu(&action->list, &desc->head);
 178        else
 179                list_add_tail_rcu(&action->list, &desc->head);
 180        
 181        raw_spin_unlock_irqrestore(&desc->lock, flags);
 182        return 0;
 183}
 184EXPORT_SYMBOL(__register_nmi_handler);
 185
 186void unregister_nmi_handler(unsigned int type, const char *name)
 187{
 188        struct nmi_desc *desc = nmi_to_desc(type);
 189        struct nmiaction *n;
 190        unsigned long flags;
 191
 192        raw_spin_lock_irqsave(&desc->lock, flags);
 193
 194        list_for_each_entry_rcu(n, &desc->head, list) {
 195                /*
 196                 * the name passed in to describe the nmi handler
 197                 * is used as the lookup key
 198                 */
 199                if (!strcmp(n->name, name)) {
 200                        WARN(in_nmi(),
 201                                "Trying to free NMI (%s) from NMI context!\n", n->name);
 202                        list_del_rcu(&n->list);
 203                        break;
 204                }
 205        }
 206
 207        raw_spin_unlock_irqrestore(&desc->lock, flags);
 208        synchronize_rcu();
 209}
 210EXPORT_SYMBOL_GPL(unregister_nmi_handler);
 211
 212static void
 213pci_serr_error(unsigned char reason, struct pt_regs *regs)
 214{
 215        /* check to see if anyone registered against these types of errors */
 216        if (nmi_handle(NMI_SERR, regs))
 217                return;
 218
 219        pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 220                 reason, smp_processor_id());
 221
 222        if (panic_on_unrecovered_nmi)
 223                nmi_panic(regs, "NMI: Not continuing");
 224
 225        pr_emerg("Dazed and confused, but trying to continue\n");
 226
 227        /* Clear and disable the PCI SERR error line. */
 228        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 229        outb(reason, NMI_REASON_PORT);
 230}
 231NOKPROBE_SYMBOL(pci_serr_error);
 232
 233static void
 234io_check_error(unsigned char reason, struct pt_regs *regs)
 235{
 236        unsigned long i;
 237
 238        /* check to see if anyone registered against these types of errors */
 239        if (nmi_handle(NMI_IO_CHECK, regs))
 240                return;
 241
 242        pr_emerg(
 243        "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 244                 reason, smp_processor_id());
 245        show_regs(regs);
 246
 247        if (panic_on_io_nmi) {
 248                nmi_panic(regs, "NMI IOCK error: Not continuing");
 249
 250                /*
 251                 * If we end up here, it means we have received an NMI while
 252                 * processing panic(). Simply return without delaying and
 253                 * re-enabling NMIs.
 254                 */
 255                return;
 256        }
 257
 258        /* Re-enable the IOCK line, wait for a few seconds */
 259        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 260        outb(reason, NMI_REASON_PORT);
 261
 262        i = 20000;
 263        while (--i) {
 264                touch_nmi_watchdog();
 265                udelay(100);
 266        }
 267
 268        reason &= ~NMI_REASON_CLEAR_IOCHK;
 269        outb(reason, NMI_REASON_PORT);
 270}
 271NOKPROBE_SYMBOL(io_check_error);
 272
 273static void
 274unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 275{
 276        int handled;
 277
 278        /*
 279         * Use 'false' as back-to-back NMIs are dealt with one level up.
 280         * Of course this makes having multiple 'unknown' handlers useless
 281         * as only the first one is ever run (unless it can actually determine
 282         * if it caused the NMI)
 283         */
 284        handled = nmi_handle(NMI_UNKNOWN, regs);
 285        if (handled) {
 286                __this_cpu_add(nmi_stats.unknown, handled);
 287                return;
 288        }
 289
 290        __this_cpu_add(nmi_stats.unknown, 1);
 291
 292        pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 293                 reason, smp_processor_id());
 294
 295        pr_emerg("Do you have a strange power saving mode enabled?\n");
 296        if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 297                nmi_panic(regs, "NMI: Not continuing");
 298
 299        pr_emerg("Dazed and confused, but trying to continue\n");
 300}
 301NOKPROBE_SYMBOL(unknown_nmi_error);
 302
 303static DEFINE_PER_CPU(bool, swallow_nmi);
 304static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
 305
 306static noinstr void default_do_nmi(struct pt_regs *regs)
 307{
 308        unsigned char reason = 0;
 309        int handled;
 310        bool b2b = false;
 311
 312        /*
 313         * CPU-specific NMI must be processed before non-CPU-specific
 314         * NMI, otherwise we may lose it, because the CPU-specific
 315         * NMI can not be detected/processed on other CPUs.
 316         */
 317
 318        /*
 319         * Back-to-back NMIs are interesting because they can either
 320         * be two NMI or more than two NMIs (any thing over two is dropped
 321         * due to NMI being edge-triggered).  If this is the second half
 322         * of the back-to-back NMI, assume we dropped things and process
 323         * more handlers.  Otherwise reset the 'swallow' NMI behaviour
 324         */
 325        if (regs->ip == __this_cpu_read(last_nmi_rip))
 326                b2b = true;
 327        else
 328                __this_cpu_write(swallow_nmi, false);
 329
 330        __this_cpu_write(last_nmi_rip, regs->ip);
 331
 332        instrumentation_begin();
 333
 334        handled = nmi_handle(NMI_LOCAL, regs);
 335        __this_cpu_add(nmi_stats.normal, handled);
 336        if (handled) {
 337                /*
 338                 * There are cases when a NMI handler handles multiple
 339                 * events in the current NMI.  One of these events may
 340                 * be queued for in the next NMI.  Because the event is
 341                 * already handled, the next NMI will result in an unknown
 342                 * NMI.  Instead lets flag this for a potential NMI to
 343                 * swallow.
 344                 */
 345                if (handled > 1)
 346                        __this_cpu_write(swallow_nmi, true);
 347                goto out;
 348        }
 349
 350        /*
 351         * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
 352         *
 353         * Another CPU may be processing panic routines while holding
 354         * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
 355         * and if so, call its callback directly.  If there is no CPU preparing
 356         * crash dump, we simply loop here.
 357         */
 358        while (!raw_spin_trylock(&nmi_reason_lock)) {
 359                run_crash_ipi_callback(regs);
 360                cpu_relax();
 361        }
 362
 363        reason = x86_platform.get_nmi_reason();
 364
 365        if (reason & NMI_REASON_MASK) {
 366                if (reason & NMI_REASON_SERR)
 367                        pci_serr_error(reason, regs);
 368                else if (reason & NMI_REASON_IOCHK)
 369                        io_check_error(reason, regs);
 370#ifdef CONFIG_X86_32
 371                /*
 372                 * Reassert NMI in case it became active
 373                 * meanwhile as it's edge-triggered:
 374                 */
 375                reassert_nmi();
 376#endif
 377                __this_cpu_add(nmi_stats.external, 1);
 378                raw_spin_unlock(&nmi_reason_lock);
 379                goto out;
 380        }
 381        raw_spin_unlock(&nmi_reason_lock);
 382
 383        /*
 384         * Only one NMI can be latched at a time.  To handle
 385         * this we may process multiple nmi handlers at once to
 386         * cover the case where an NMI is dropped.  The downside
 387         * to this approach is we may process an NMI prematurely,
 388         * while its real NMI is sitting latched.  This will cause
 389         * an unknown NMI on the next run of the NMI processing.
 390         *
 391         * We tried to flag that condition above, by setting the
 392         * swallow_nmi flag when we process more than one event.
 393         * This condition is also only present on the second half
 394         * of a back-to-back NMI, so we flag that condition too.
 395         *
 396         * If both are true, we assume we already processed this
 397         * NMI previously and we swallow it.  Otherwise we reset
 398         * the logic.
 399         *
 400         * There are scenarios where we may accidentally swallow
 401         * a 'real' unknown NMI.  For example, while processing
 402         * a perf NMI another perf NMI comes in along with a
 403         * 'real' unknown NMI.  These two NMIs get combined into
 404         * one (as described above).  When the next NMI gets
 405         * processed, it will be flagged by perf as handled, but
 406         * no one will know that there was a 'real' unknown NMI sent
 407         * also.  As a result it gets swallowed.  Or if the first
 408         * perf NMI returns two events handled then the second
 409         * NMI will get eaten by the logic below, again losing a
 410         * 'real' unknown NMI.  But this is the best we can do
 411         * for now.
 412         */
 413        if (b2b && __this_cpu_read(swallow_nmi))
 414                __this_cpu_add(nmi_stats.swallow, 1);
 415        else
 416                unknown_nmi_error(reason, regs);
 417
 418out:
 419        instrumentation_end();
 420}
 421
 422/*
 423 * NMIs can page fault or hit breakpoints which will cause it to lose
 424 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
 425 *
 426 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
 427 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
 428 * if the outer NMI came from kernel mode, but we can still nest if the
 429 * outer NMI came from user mode.
 430 *
 431 * To handle these nested NMIs, we have three states:
 432 *
 433 *  1) not running
 434 *  2) executing
 435 *  3) latched
 436 *
 437 * When no NMI is in progress, it is in the "not running" state.
 438 * When an NMI comes in, it goes into the "executing" state.
 439 * Normally, if another NMI is triggered, it does not interrupt
 440 * the running NMI and the HW will simply latch it so that when
 441 * the first NMI finishes, it will restart the second NMI.
 442 * (Note, the latch is binary, thus multiple NMIs triggering,
 443 *  when one is running, are ignored. Only one NMI is restarted.)
 444 *
 445 * If an NMI executes an iret, another NMI can preempt it. We do not
 446 * want to allow this new NMI to run, but we want to execute it when the
 447 * first one finishes.  We set the state to "latched", and the exit of
 448 * the first NMI will perform a dec_return, if the result is zero
 449 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
 450 * dec_return would have set the state to NMI_EXECUTING (what we want it
 451 * to be when we are running). In this case, we simply jump back to
 452 * rerun the NMI handler again, and restart the 'latched' NMI.
 453 *
 454 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 455 * thus there is no race between the first check of state for NOT_RUNNING
 456 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 457 * at this point.
 458 *
 459 * In case the NMI takes a page fault, we need to save off the CR2
 460 * because the NMI could have preempted another page fault and corrupt
 461 * the CR2 that is about to be read. As nested NMIs must be restarted
 462 * and they can not take breakpoints or page faults, the update of the
 463 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 464 * Otherwise, there would be a race of another nested NMI coming in
 465 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 466 */
 467enum nmi_states {
 468        NMI_NOT_RUNNING = 0,
 469        NMI_EXECUTING,
 470        NMI_LATCHED,
 471};
 472static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 473static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 474static DEFINE_PER_CPU(unsigned long, nmi_dr7);
 475
 476DEFINE_IDTENTRY_RAW(exc_nmi)
 477{
 478        irqentry_state_t irq_state;
 479
 480        /*
 481         * Re-enable NMIs right here when running as an SEV-ES guest. This might
 482         * cause nested NMIs, but those can be handled safely.
 483         */
 484        sev_es_nmi_complete();
 485
 486        if (IS_ENABLED(CONFIG_SMP) && arch_cpu_is_offline(smp_processor_id()))
 487                return;
 488
 489        if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
 490                this_cpu_write(nmi_state, NMI_LATCHED);
 491                return;
 492        }
 493        this_cpu_write(nmi_state, NMI_EXECUTING);
 494        this_cpu_write(nmi_cr2, read_cr2());
 495nmi_restart:
 496
 497        /*
 498         * Needs to happen before DR7 is accessed, because the hypervisor can
 499         * intercept DR7 reads/writes, turning those into #VC exceptions.
 500         */
 501        sev_es_ist_enter(regs);
 502
 503        this_cpu_write(nmi_dr7, local_db_save());
 504
 505        irq_state = irqentry_nmi_enter(regs);
 506
 507        inc_irq_stat(__nmi_count);
 508
 509        if (!ignore_nmis)
 510                default_do_nmi(regs);
 511
 512        irqentry_nmi_exit(regs, irq_state);
 513
 514        local_db_restore(this_cpu_read(nmi_dr7));
 515
 516        sev_es_ist_exit();
 517
 518        if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
 519                write_cr2(this_cpu_read(nmi_cr2));
 520        if (this_cpu_dec_return(nmi_state))
 521                goto nmi_restart;
 522
 523        if (user_mode(regs))
 524                mds_user_clear_cpu_buffers();
 525}
 526
 527#if defined(CONFIG_X86_64) && IS_ENABLED(CONFIG_KVM_INTEL)
 528DEFINE_IDTENTRY_RAW(exc_nmi_noist)
 529{
 530        exc_nmi(regs);
 531}
 532#endif
 533#if IS_MODULE(CONFIG_KVM_INTEL)
 534EXPORT_SYMBOL_GPL(asm_exc_nmi_noist);
 535#endif
 536
 537void stop_nmi(void)
 538{
 539        ignore_nmis++;
 540}
 541
 542void restart_nmi(void)
 543{
 544        ignore_nmis--;
 545}
 546
 547/* reset the back-to-back NMI logic */
 548void local_touch_nmi(void)
 549{
 550        __this_cpu_write(last_nmi_rip, 0);
 551}
 552EXPORT_SYMBOL_GPL(local_touch_nmi);
 553