linux/arch/x86/kernel/setup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
   7 */
   8#include <linux/acpi.h>
   9#include <linux/console.h>
  10#include <linux/crash_dump.h>
  11#include <linux/dma-map-ops.h>
  12#include <linux/dmi.h>
  13#include <linux/efi.h>
  14#include <linux/init_ohci1394_dma.h>
  15#include <linux/initrd.h>
  16#include <linux/iscsi_ibft.h>
  17#include <linux/memblock.h>
  18#include <linux/panic_notifier.h>
  19#include <linux/pci.h>
  20#include <linux/root_dev.h>
  21#include <linux/hugetlb.h>
  22#include <linux/tboot.h>
  23#include <linux/usb/xhci-dbgp.h>
  24#include <linux/static_call.h>
  25#include <linux/swiotlb.h>
  26
  27#include <uapi/linux/mount.h>
  28
  29#include <xen/xen.h>
  30
  31#include <asm/apic.h>
  32#include <asm/numa.h>
  33#include <asm/bios_ebda.h>
  34#include <asm/bugs.h>
  35#include <asm/cpu.h>
  36#include <asm/efi.h>
  37#include <asm/gart.h>
  38#include <asm/hypervisor.h>
  39#include <asm/io_apic.h>
  40#include <asm/kasan.h>
  41#include <asm/kaslr.h>
  42#include <asm/mce.h>
  43#include <asm/mtrr.h>
  44#include <asm/realmode.h>
  45#include <asm/olpc_ofw.h>
  46#include <asm/pci-direct.h>
  47#include <asm/prom.h>
  48#include <asm/proto.h>
  49#include <asm/thermal.h>
  50#include <asm/unwind.h>
  51#include <asm/vsyscall.h>
  52#include <linux/vmalloc.h>
  53
  54/*
  55 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  56 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  57 *
  58 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  59 * represented by pfn_mapped[].
  60 */
  61unsigned long max_low_pfn_mapped;
  62unsigned long max_pfn_mapped;
  63
  64#ifdef CONFIG_DMI
  65RESERVE_BRK(dmi_alloc, 65536);
  66#endif
  67
  68
  69/*
  70 * Range of the BSS area. The size of the BSS area is determined
  71 * at link time, with RESERVE_BRK() facility reserving additional
  72 * chunks.
  73 */
  74unsigned long _brk_start = (unsigned long)__brk_base;
  75unsigned long _brk_end   = (unsigned long)__brk_base;
  76
  77struct boot_params boot_params;
  78
  79/*
  80 * These are the four main kernel memory regions, we put them into
  81 * the resource tree so that kdump tools and other debugging tools
  82 * recover it:
  83 */
  84
  85static struct resource rodata_resource = {
  86        .name   = "Kernel rodata",
  87        .start  = 0,
  88        .end    = 0,
  89        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  90};
  91
  92static struct resource data_resource = {
  93        .name   = "Kernel data",
  94        .start  = 0,
  95        .end    = 0,
  96        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  97};
  98
  99static struct resource code_resource = {
 100        .name   = "Kernel code",
 101        .start  = 0,
 102        .end    = 0,
 103        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 104};
 105
 106static struct resource bss_resource = {
 107        .name   = "Kernel bss",
 108        .start  = 0,
 109        .end    = 0,
 110        .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 111};
 112
 113
 114#ifdef CONFIG_X86_32
 115/* CPU data as detected by the assembly code in head_32.S */
 116struct cpuinfo_x86 new_cpu_data;
 117
 118/* Common CPU data for all CPUs */
 119struct cpuinfo_x86 boot_cpu_data __read_mostly;
 120EXPORT_SYMBOL(boot_cpu_data);
 121
 122unsigned int def_to_bigsmp;
 123
 124struct apm_info apm_info;
 125EXPORT_SYMBOL(apm_info);
 126
 127#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 128        defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 129struct ist_info ist_info;
 130EXPORT_SYMBOL(ist_info);
 131#else
 132struct ist_info ist_info;
 133#endif
 134
 135#else
 136struct cpuinfo_x86 boot_cpu_data __read_mostly;
 137EXPORT_SYMBOL(boot_cpu_data);
 138#endif
 139
 140
 141#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 142__visible unsigned long mmu_cr4_features __ro_after_init;
 143#else
 144__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 145#endif
 146
 147/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 148int bootloader_type, bootloader_version;
 149
 150/*
 151 * Setup options
 152 */
 153struct screen_info screen_info;
 154EXPORT_SYMBOL(screen_info);
 155struct edid_info edid_info;
 156EXPORT_SYMBOL_GPL(edid_info);
 157
 158extern int root_mountflags;
 159
 160unsigned long saved_video_mode;
 161
 162#define RAMDISK_IMAGE_START_MASK        0x07FF
 163#define RAMDISK_PROMPT_FLAG             0x8000
 164#define RAMDISK_LOAD_FLAG               0x4000
 165
 166static char __initdata command_line[COMMAND_LINE_SIZE];
 167#ifdef CONFIG_CMDLINE_BOOL
 168static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 169#endif
 170
 171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 172struct edd edd;
 173#ifdef CONFIG_EDD_MODULE
 174EXPORT_SYMBOL(edd);
 175#endif
 176/**
 177 * copy_edd() - Copy the BIOS EDD information
 178 *              from boot_params into a safe place.
 179 *
 180 */
 181static inline void __init copy_edd(void)
 182{
 183     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 184            sizeof(edd.mbr_signature));
 185     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 186     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 187     edd.edd_info_nr = boot_params.eddbuf_entries;
 188}
 189#else
 190static inline void __init copy_edd(void)
 191{
 192}
 193#endif
 194
 195void * __init extend_brk(size_t size, size_t align)
 196{
 197        size_t mask = align - 1;
 198        void *ret;
 199
 200        BUG_ON(_brk_start == 0);
 201        BUG_ON(align & mask);
 202
 203        _brk_end = (_brk_end + mask) & ~mask;
 204        BUG_ON((char *)(_brk_end + size) > __brk_limit);
 205
 206        ret = (void *)_brk_end;
 207        _brk_end += size;
 208
 209        memset(ret, 0, size);
 210
 211        return ret;
 212}
 213
 214#ifdef CONFIG_X86_32
 215static void __init cleanup_highmap(void)
 216{
 217}
 218#endif
 219
 220static void __init reserve_brk(void)
 221{
 222        if (_brk_end > _brk_start)
 223                memblock_reserve(__pa_symbol(_brk_start),
 224                                 _brk_end - _brk_start);
 225
 226        /* Mark brk area as locked down and no longer taking any
 227           new allocations */
 228        _brk_start = 0;
 229}
 230
 231u64 relocated_ramdisk;
 232
 233#ifdef CONFIG_BLK_DEV_INITRD
 234
 235static u64 __init get_ramdisk_image(void)
 236{
 237        u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 238
 239        ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 240
 241        if (ramdisk_image == 0)
 242                ramdisk_image = phys_initrd_start;
 243
 244        return ramdisk_image;
 245}
 246static u64 __init get_ramdisk_size(void)
 247{
 248        u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 249
 250        ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 251
 252        if (ramdisk_size == 0)
 253                ramdisk_size = phys_initrd_size;
 254
 255        return ramdisk_size;
 256}
 257
 258static void __init relocate_initrd(void)
 259{
 260        /* Assume only end is not page aligned */
 261        u64 ramdisk_image = get_ramdisk_image();
 262        u64 ramdisk_size  = get_ramdisk_size();
 263        u64 area_size     = PAGE_ALIGN(ramdisk_size);
 264
 265        /* We need to move the initrd down into directly mapped mem */
 266        relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 267                                                      PFN_PHYS(max_pfn_mapped));
 268        if (!relocated_ramdisk)
 269                panic("Cannot find place for new RAMDISK of size %lld\n",
 270                      ramdisk_size);
 271
 272        initrd_start = relocated_ramdisk + PAGE_OFFSET;
 273        initrd_end   = initrd_start + ramdisk_size;
 274        printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 275               relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 276
 277        copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 278
 279        printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 280                " [mem %#010llx-%#010llx]\n",
 281                ramdisk_image, ramdisk_image + ramdisk_size - 1,
 282                relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 283}
 284
 285static void __init early_reserve_initrd(void)
 286{
 287        /* Assume only end is not page aligned */
 288        u64 ramdisk_image = get_ramdisk_image();
 289        u64 ramdisk_size  = get_ramdisk_size();
 290        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 291
 292        if (!boot_params.hdr.type_of_loader ||
 293            !ramdisk_image || !ramdisk_size)
 294                return;         /* No initrd provided by bootloader */
 295
 296        memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 297}
 298
 299static void __init reserve_initrd(void)
 300{
 301        /* Assume only end is not page aligned */
 302        u64 ramdisk_image = get_ramdisk_image();
 303        u64 ramdisk_size  = get_ramdisk_size();
 304        u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 305
 306        if (!boot_params.hdr.type_of_loader ||
 307            !ramdisk_image || !ramdisk_size)
 308                return;         /* No initrd provided by bootloader */
 309
 310        initrd_start = 0;
 311
 312        printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 313                        ramdisk_end - 1);
 314
 315        if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 316                                PFN_DOWN(ramdisk_end))) {
 317                /* All are mapped, easy case */
 318                initrd_start = ramdisk_image + PAGE_OFFSET;
 319                initrd_end = initrd_start + ramdisk_size;
 320                return;
 321        }
 322
 323        relocate_initrd();
 324
 325        memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 326}
 327
 328#else
 329static void __init early_reserve_initrd(void)
 330{
 331}
 332static void __init reserve_initrd(void)
 333{
 334}
 335#endif /* CONFIG_BLK_DEV_INITRD */
 336
 337static void __init parse_setup_data(void)
 338{
 339        struct setup_data *data;
 340        u64 pa_data, pa_next;
 341
 342        pa_data = boot_params.hdr.setup_data;
 343        while (pa_data) {
 344                u32 data_len, data_type;
 345
 346                data = early_memremap(pa_data, sizeof(*data));
 347                data_len = data->len + sizeof(struct setup_data);
 348                data_type = data->type;
 349                pa_next = data->next;
 350                early_memunmap(data, sizeof(*data));
 351
 352                switch (data_type) {
 353                case SETUP_E820_EXT:
 354                        e820__memory_setup_extended(pa_data, data_len);
 355                        break;
 356                case SETUP_DTB:
 357                        add_dtb(pa_data);
 358                        break;
 359                case SETUP_EFI:
 360                        parse_efi_setup(pa_data, data_len);
 361                        break;
 362                default:
 363                        break;
 364                }
 365                pa_data = pa_next;
 366        }
 367}
 368
 369static void __init memblock_x86_reserve_range_setup_data(void)
 370{
 371        struct setup_data *data;
 372        u64 pa_data;
 373
 374        pa_data = boot_params.hdr.setup_data;
 375        while (pa_data) {
 376                data = early_memremap(pa_data, sizeof(*data));
 377                memblock_reserve(pa_data, sizeof(*data) + data->len);
 378
 379                if (data->type == SETUP_INDIRECT &&
 380                    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT)
 381                        memblock_reserve(((struct setup_indirect *)data->data)->addr,
 382                                         ((struct setup_indirect *)data->data)->len);
 383
 384                pa_data = data->next;
 385                early_memunmap(data, sizeof(*data));
 386        }
 387}
 388
 389/*
 390 * --------- Crashkernel reservation ------------------------------
 391 */
 392
 393#ifdef CONFIG_KEXEC_CORE
 394
 395/* 16M alignment for crash kernel regions */
 396#define CRASH_ALIGN             SZ_16M
 397
 398/*
 399 * Keep the crash kernel below this limit.
 400 *
 401 * Earlier 32-bits kernels would limit the kernel to the low 512 MB range
 402 * due to mapping restrictions.
 403 *
 404 * 64-bit kdump kernels need to be restricted to be under 64 TB, which is
 405 * the upper limit of system RAM in 4-level paging mode. Since the kdump
 406 * jump could be from 5-level paging to 4-level paging, the jump will fail if
 407 * the kernel is put above 64 TB, and during the 1st kernel bootup there's
 408 * no good way to detect the paging mode of the target kernel which will be
 409 * loaded for dumping.
 410 */
 411#ifdef CONFIG_X86_32
 412# define CRASH_ADDR_LOW_MAX     SZ_512M
 413# define CRASH_ADDR_HIGH_MAX    SZ_512M
 414#else
 415# define CRASH_ADDR_LOW_MAX     SZ_4G
 416# define CRASH_ADDR_HIGH_MAX    SZ_64T
 417#endif
 418
 419static int __init reserve_crashkernel_low(void)
 420{
 421#ifdef CONFIG_X86_64
 422        unsigned long long base, low_base = 0, low_size = 0;
 423        unsigned long low_mem_limit;
 424        int ret;
 425
 426        low_mem_limit = min(memblock_phys_mem_size(), CRASH_ADDR_LOW_MAX);
 427
 428        /* crashkernel=Y,low */
 429        ret = parse_crashkernel_low(boot_command_line, low_mem_limit, &low_size, &base);
 430        if (ret) {
 431                /*
 432                 * two parts from kernel/dma/swiotlb.c:
 433                 * -swiotlb size: user-specified with swiotlb= or default.
 434                 *
 435                 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 436                 * to 8M for other buffers that may need to stay low too. Also
 437                 * make sure we allocate enough extra low memory so that we
 438                 * don't run out of DMA buffers for 32-bit devices.
 439                 */
 440                low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 441        } else {
 442                /* passed with crashkernel=0,low ? */
 443                if (!low_size)
 444                        return 0;
 445        }
 446
 447        low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
 448        if (!low_base) {
 449                pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 450                       (unsigned long)(low_size >> 20));
 451                return -ENOMEM;
 452        }
 453
 454        pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (low RAM limit: %ldMB)\n",
 455                (unsigned long)(low_size >> 20),
 456                (unsigned long)(low_base >> 20),
 457                (unsigned long)(low_mem_limit >> 20));
 458
 459        crashk_low_res.start = low_base;
 460        crashk_low_res.end   = low_base + low_size - 1;
 461        insert_resource(&iomem_resource, &crashk_low_res);
 462#endif
 463        return 0;
 464}
 465
 466static void __init reserve_crashkernel(void)
 467{
 468        unsigned long long crash_size, crash_base, total_mem;
 469        bool high = false;
 470        int ret;
 471
 472        total_mem = memblock_phys_mem_size();
 473
 474        /* crashkernel=XM */
 475        ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 476        if (ret != 0 || crash_size <= 0) {
 477                /* crashkernel=X,high */
 478                ret = parse_crashkernel_high(boot_command_line, total_mem,
 479                                             &crash_size, &crash_base);
 480                if (ret != 0 || crash_size <= 0)
 481                        return;
 482                high = true;
 483        }
 484
 485        if (xen_pv_domain()) {
 486                pr_info("Ignoring crashkernel for a Xen PV domain\n");
 487                return;
 488        }
 489
 490        /* 0 means: find the address automatically */
 491        if (!crash_base) {
 492                /*
 493                 * Set CRASH_ADDR_LOW_MAX upper bound for crash memory,
 494                 * crashkernel=x,high reserves memory over 4G, also allocates
 495                 * 256M extra low memory for DMA buffers and swiotlb.
 496                 * But the extra memory is not required for all machines.
 497                 * So try low memory first and fall back to high memory
 498                 * unless "crashkernel=size[KMG],high" is specified.
 499                 */
 500                if (!high)
 501                        crash_base = memblock_phys_alloc_range(crash_size,
 502                                                CRASH_ALIGN, CRASH_ALIGN,
 503                                                CRASH_ADDR_LOW_MAX);
 504                if (!crash_base)
 505                        crash_base = memblock_phys_alloc_range(crash_size,
 506                                                CRASH_ALIGN, CRASH_ALIGN,
 507                                                CRASH_ADDR_HIGH_MAX);
 508                if (!crash_base) {
 509                        pr_info("crashkernel reservation failed - No suitable area found.\n");
 510                        return;
 511                }
 512        } else {
 513                unsigned long long start;
 514
 515                start = memblock_phys_alloc_range(crash_size, SZ_1M, crash_base,
 516                                                  crash_base + crash_size);
 517                if (start != crash_base) {
 518                        pr_info("crashkernel reservation failed - memory is in use.\n");
 519                        return;
 520                }
 521        }
 522
 523        if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 524                memblock_free(crash_base, crash_size);
 525                return;
 526        }
 527
 528        pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 529                (unsigned long)(crash_size >> 20),
 530                (unsigned long)(crash_base >> 20),
 531                (unsigned long)(total_mem >> 20));
 532
 533        crashk_res.start = crash_base;
 534        crashk_res.end   = crash_base + crash_size - 1;
 535        insert_resource(&iomem_resource, &crashk_res);
 536}
 537#else
 538static void __init reserve_crashkernel(void)
 539{
 540}
 541#endif
 542
 543static struct resource standard_io_resources[] = {
 544        { .name = "dma1", .start = 0x00, .end = 0x1f,
 545                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 546        { .name = "pic1", .start = 0x20, .end = 0x21,
 547                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 548        { .name = "timer0", .start = 0x40, .end = 0x43,
 549                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 550        { .name = "timer1", .start = 0x50, .end = 0x53,
 551                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 552        { .name = "keyboard", .start = 0x60, .end = 0x60,
 553                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 554        { .name = "keyboard", .start = 0x64, .end = 0x64,
 555                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 556        { .name = "dma page reg", .start = 0x80, .end = 0x8f,
 557                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 558        { .name = "pic2", .start = 0xa0, .end = 0xa1,
 559                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 560        { .name = "dma2", .start = 0xc0, .end = 0xdf,
 561                .flags = IORESOURCE_BUSY | IORESOURCE_IO },
 562        { .name = "fpu", .start = 0xf0, .end = 0xff,
 563                .flags = IORESOURCE_BUSY | IORESOURCE_IO }
 564};
 565
 566void __init reserve_standard_io_resources(void)
 567{
 568        int i;
 569
 570        /* request I/O space for devices used on all i[345]86 PCs */
 571        for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 572                request_resource(&ioport_resource, &standard_io_resources[i]);
 573
 574}
 575
 576static bool __init snb_gfx_workaround_needed(void)
 577{
 578#ifdef CONFIG_PCI
 579        int i;
 580        u16 vendor, devid;
 581        static const __initconst u16 snb_ids[] = {
 582                0x0102,
 583                0x0112,
 584                0x0122,
 585                0x0106,
 586                0x0116,
 587                0x0126,
 588                0x010a,
 589        };
 590
 591        /* Assume no if something weird is going on with PCI */
 592        if (!early_pci_allowed())
 593                return false;
 594
 595        vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 596        if (vendor != 0x8086)
 597                return false;
 598
 599        devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 600        for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 601                if (devid == snb_ids[i])
 602                        return true;
 603#endif
 604
 605        return false;
 606}
 607
 608/*
 609 * Sandy Bridge graphics has trouble with certain ranges, exclude
 610 * them from allocation.
 611 */
 612static void __init trim_snb_memory(void)
 613{
 614        static const __initconst unsigned long bad_pages[] = {
 615                0x20050000,
 616                0x20110000,
 617                0x20130000,
 618                0x20138000,
 619                0x40004000,
 620        };
 621        int i;
 622
 623        if (!snb_gfx_workaround_needed())
 624                return;
 625
 626        printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 627
 628        /*
 629         * SandyBridge integrated graphics devices have a bug that prevents
 630         * them from accessing certain memory ranges, namely anything below
 631         * 1M and in the pages listed in bad_pages[] above.
 632         *
 633         * To avoid these pages being ever accessed by SNB gfx devices reserve
 634         * bad_pages that have not already been reserved at boot time.
 635         * All memory below the 1 MB mark is anyway reserved later during
 636         * setup_arch(), so there is no need to reserve it here.
 637         */
 638
 639        for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 640                if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 641                        printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 642                               bad_pages[i]);
 643        }
 644}
 645
 646static void __init trim_bios_range(void)
 647{
 648        /*
 649         * A special case is the first 4Kb of memory;
 650         * This is a BIOS owned area, not kernel ram, but generally
 651         * not listed as such in the E820 table.
 652         *
 653         * This typically reserves additional memory (64KiB by default)
 654         * since some BIOSes are known to corrupt low memory.  See the
 655         * Kconfig help text for X86_RESERVE_LOW.
 656         */
 657        e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 658
 659        /*
 660         * special case: Some BIOSes report the PC BIOS
 661         * area (640Kb -> 1Mb) as RAM even though it is not.
 662         * take them out.
 663         */
 664        e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 665
 666        e820__update_table(e820_table);
 667}
 668
 669/* called before trim_bios_range() to spare extra sanitize */
 670static void __init e820_add_kernel_range(void)
 671{
 672        u64 start = __pa_symbol(_text);
 673        u64 size = __pa_symbol(_end) - start;
 674
 675        /*
 676         * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 677         * attempt to fix it by adding the range. We may have a confused BIOS,
 678         * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 679         * exclude kernel range. If we really are running on top non-RAM,
 680         * we will crash later anyways.
 681         */
 682        if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 683                return;
 684
 685        pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 686        e820__range_remove(start, size, E820_TYPE_RAM, 0);
 687        e820__range_add(start, size, E820_TYPE_RAM);
 688}
 689
 690static void __init early_reserve_memory(void)
 691{
 692        /*
 693         * Reserve the memory occupied by the kernel between _text and
 694         * __end_of_kernel_reserve symbols. Any kernel sections after the
 695         * __end_of_kernel_reserve symbol must be explicitly reserved with a
 696         * separate memblock_reserve() or they will be discarded.
 697         */
 698        memblock_reserve(__pa_symbol(_text),
 699                         (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 700
 701        /*
 702         * The first 4Kb of memory is a BIOS owned area, but generally it is
 703         * not listed as such in the E820 table.
 704         *
 705         * Reserve the first 64K of memory since some BIOSes are known to
 706         * corrupt low memory. After the real mode trampoline is allocated the
 707         * rest of the memory below 640k is reserved.
 708         *
 709         * In addition, make sure page 0 is always reserved because on
 710         * systems with L1TF its contents can be leaked to user processes.
 711         */
 712        memblock_reserve(0, SZ_64K);
 713
 714        early_reserve_initrd();
 715
 716        if (efi_enabled(EFI_BOOT))
 717                efi_memblock_x86_reserve_range();
 718
 719        memblock_x86_reserve_range_setup_data();
 720
 721        reserve_ibft_region();
 722        reserve_bios_regions();
 723        trim_snb_memory();
 724}
 725
 726/*
 727 * Dump out kernel offset information on panic.
 728 */
 729static int
 730dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 731{
 732        if (kaslr_enabled()) {
 733                pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 734                         kaslr_offset(),
 735                         __START_KERNEL,
 736                         __START_KERNEL_map,
 737                         MODULES_VADDR-1);
 738        } else {
 739                pr_emerg("Kernel Offset: disabled\n");
 740        }
 741
 742        return 0;
 743}
 744
 745/*
 746 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 747 * passed the efi memmap, systab, etc., so we should use these data structures
 748 * for initialization.  Note, the efi init code path is determined by the
 749 * global efi_enabled. This allows the same kernel image to be used on existing
 750 * systems (with a traditional BIOS) as well as on EFI systems.
 751 */
 752/*
 753 * setup_arch - architecture-specific boot-time initializations
 754 *
 755 * Note: On x86_64, fixmaps are ready for use even before this is called.
 756 */
 757
 758void __init setup_arch(char **cmdline_p)
 759{
 760#ifdef CONFIG_X86_32
 761        memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 762
 763        /*
 764         * copy kernel address range established so far and switch
 765         * to the proper swapper page table
 766         */
 767        clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 768                        initial_page_table + KERNEL_PGD_BOUNDARY,
 769                        KERNEL_PGD_PTRS);
 770
 771        load_cr3(swapper_pg_dir);
 772        /*
 773         * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 774         * a cr3 based tlb flush, so the following __flush_tlb_all()
 775         * will not flush anything because the CPU quirk which clears
 776         * X86_FEATURE_PGE has not been invoked yet. Though due to the
 777         * load_cr3() above the TLB has been flushed already. The
 778         * quirk is invoked before subsequent calls to __flush_tlb_all()
 779         * so proper operation is guaranteed.
 780         */
 781        __flush_tlb_all();
 782#else
 783        printk(KERN_INFO "Command line: %s\n", boot_command_line);
 784        boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 785#endif
 786
 787        /*
 788         * If we have OLPC OFW, we might end up relocating the fixmap due to
 789         * reserve_top(), so do this before touching the ioremap area.
 790         */
 791        olpc_ofw_detect();
 792
 793        idt_setup_early_traps();
 794        early_cpu_init();
 795        jump_label_init();
 796        static_call_init();
 797        early_ioremap_init();
 798
 799        setup_olpc_ofw_pgd();
 800
 801        ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 802        screen_info = boot_params.screen_info;
 803        edid_info = boot_params.edid_info;
 804#ifdef CONFIG_X86_32
 805        apm_info.bios = boot_params.apm_bios_info;
 806        ist_info = boot_params.ist_info;
 807#endif
 808        saved_video_mode = boot_params.hdr.vid_mode;
 809        bootloader_type = boot_params.hdr.type_of_loader;
 810        if ((bootloader_type >> 4) == 0xe) {
 811                bootloader_type &= 0xf;
 812                bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 813        }
 814        bootloader_version  = bootloader_type & 0xf;
 815        bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 816
 817#ifdef CONFIG_BLK_DEV_RAM
 818        rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 819#endif
 820#ifdef CONFIG_EFI
 821        if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 822                     EFI32_LOADER_SIGNATURE, 4)) {
 823                set_bit(EFI_BOOT, &efi.flags);
 824        } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 825                     EFI64_LOADER_SIGNATURE, 4)) {
 826                set_bit(EFI_BOOT, &efi.flags);
 827                set_bit(EFI_64BIT, &efi.flags);
 828        }
 829#endif
 830
 831        x86_init.oem.arch_setup();
 832
 833        /*
 834         * Do some memory reservations *before* memory is added to memblock, so
 835         * memblock allocations won't overwrite it.
 836         *
 837         * After this point, everything still needed from the boot loader or
 838         * firmware or kernel text should be early reserved or marked not RAM in
 839         * e820. All other memory is free game.
 840         *
 841         * This call needs to happen before e820__memory_setup() which calls the
 842         * xen_memory_setup() on Xen dom0 which relies on the fact that those
 843         * early reservations have happened already.
 844         */
 845        early_reserve_memory();
 846
 847        iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 848        e820__memory_setup();
 849        parse_setup_data();
 850
 851        copy_edd();
 852
 853        if (!boot_params.hdr.root_flags)
 854                root_mountflags &= ~MS_RDONLY;
 855        setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 856
 857        code_resource.start = __pa_symbol(_text);
 858        code_resource.end = __pa_symbol(_etext)-1;
 859        rodata_resource.start = __pa_symbol(__start_rodata);
 860        rodata_resource.end = __pa_symbol(__end_rodata)-1;
 861        data_resource.start = __pa_symbol(_sdata);
 862        data_resource.end = __pa_symbol(_edata)-1;
 863        bss_resource.start = __pa_symbol(__bss_start);
 864        bss_resource.end = __pa_symbol(__bss_stop)-1;
 865
 866#ifdef CONFIG_CMDLINE_BOOL
 867#ifdef CONFIG_CMDLINE_OVERRIDE
 868        strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 869#else
 870        if (builtin_cmdline[0]) {
 871                /* append boot loader cmdline to builtin */
 872                strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 873                strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 874                strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 875        }
 876#endif
 877#endif
 878
 879        strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 880        *cmdline_p = command_line;
 881
 882        /*
 883         * x86_configure_nx() is called before parse_early_param() to detect
 884         * whether hardware doesn't support NX (so that the early EHCI debug
 885         * console setup can safely call set_fixmap()). It may then be called
 886         * again from within noexec_setup() during parsing early parameters
 887         * to honor the respective command line option.
 888         */
 889        x86_configure_nx();
 890
 891        parse_early_param();
 892
 893#ifdef CONFIG_MEMORY_HOTPLUG
 894        /*
 895         * Memory used by the kernel cannot be hot-removed because Linux
 896         * cannot migrate the kernel pages. When memory hotplug is
 897         * enabled, we should prevent memblock from allocating memory
 898         * for the kernel.
 899         *
 900         * ACPI SRAT records all hotpluggable memory ranges. But before
 901         * SRAT is parsed, we don't know about it.
 902         *
 903         * The kernel image is loaded into memory at very early time. We
 904         * cannot prevent this anyway. So on NUMA system, we set any
 905         * node the kernel resides in as un-hotpluggable.
 906         *
 907         * Since on modern servers, one node could have double-digit
 908         * gigabytes memory, we can assume the memory around the kernel
 909         * image is also un-hotpluggable. So before SRAT is parsed, just
 910         * allocate memory near the kernel image to try the best to keep
 911         * the kernel away from hotpluggable memory.
 912         */
 913        if (movable_node_is_enabled())
 914                memblock_set_bottom_up(true);
 915#endif
 916
 917        x86_report_nx();
 918
 919        if (acpi_mps_check()) {
 920#ifdef CONFIG_X86_LOCAL_APIC
 921                disable_apic = 1;
 922#endif
 923                setup_clear_cpu_cap(X86_FEATURE_APIC);
 924        }
 925
 926        e820__reserve_setup_data();
 927        e820__finish_early_params();
 928
 929        if (efi_enabled(EFI_BOOT))
 930                efi_init();
 931
 932        dmi_setup();
 933
 934        /*
 935         * VMware detection requires dmi to be available, so this
 936         * needs to be done after dmi_setup(), for the boot CPU.
 937         */
 938        init_hypervisor_platform();
 939
 940        tsc_early_init();
 941        x86_init.resources.probe_roms();
 942
 943        /* after parse_early_param, so could debug it */
 944        insert_resource(&iomem_resource, &code_resource);
 945        insert_resource(&iomem_resource, &rodata_resource);
 946        insert_resource(&iomem_resource, &data_resource);
 947        insert_resource(&iomem_resource, &bss_resource);
 948
 949        e820_add_kernel_range();
 950        trim_bios_range();
 951#ifdef CONFIG_X86_32
 952        if (ppro_with_ram_bug()) {
 953                e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 954                                  E820_TYPE_RESERVED);
 955                e820__update_table(e820_table);
 956                printk(KERN_INFO "fixed physical RAM map:\n");
 957                e820__print_table("bad_ppro");
 958        }
 959#else
 960        early_gart_iommu_check();
 961#endif
 962
 963        /*
 964         * partially used pages are not usable - thus
 965         * we are rounding upwards:
 966         */
 967        max_pfn = e820__end_of_ram_pfn();
 968
 969        /* update e820 for memory not covered by WB MTRRs */
 970        mtrr_bp_init();
 971        if (mtrr_trim_uncached_memory(max_pfn))
 972                max_pfn = e820__end_of_ram_pfn();
 973
 974        max_possible_pfn = max_pfn;
 975
 976        /*
 977         * This call is required when the CPU does not support PAT. If
 978         * mtrr_bp_init() invoked it already via pat_init() the call has no
 979         * effect.
 980         */
 981        init_cache_modes();
 982
 983        /*
 984         * Define random base addresses for memory sections after max_pfn is
 985         * defined and before each memory section base is used.
 986         */
 987        kernel_randomize_memory();
 988
 989#ifdef CONFIG_X86_32
 990        /* max_low_pfn get updated here */
 991        find_low_pfn_range();
 992#else
 993        check_x2apic();
 994
 995        /* How many end-of-memory variables you have, grandma! */
 996        /* need this before calling reserve_initrd */
 997        if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 998                max_low_pfn = e820__end_of_low_ram_pfn();
 999        else
1000                max_low_pfn = max_pfn;
1001
1002        high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1003#endif
1004
1005        /*
1006         * Find and reserve possible boot-time SMP configuration:
1007         */
1008        find_smp_config();
1009
1010        early_alloc_pgt_buf();
1011
1012        /*
1013         * Need to conclude brk, before e820__memblock_setup()
1014         * it could use memblock_find_in_range, could overlap with
1015         * brk area.
1016         */
1017        reserve_brk();
1018
1019        cleanup_highmap();
1020
1021        memblock_set_current_limit(ISA_END_ADDRESS);
1022        e820__memblock_setup();
1023
1024        /*
1025         * Needs to run after memblock setup because it needs the physical
1026         * memory size.
1027         */
1028        sev_setup_arch();
1029
1030        efi_fake_memmap();
1031        efi_find_mirror();
1032        efi_esrt_init();
1033        efi_mokvar_table_init();
1034
1035        /*
1036         * The EFI specification says that boot service code won't be
1037         * called after ExitBootServices(). This is, in fact, a lie.
1038         */
1039        efi_reserve_boot_services();
1040
1041        /* preallocate 4k for mptable mpc */
1042        e820__memblock_alloc_reserved_mpc_new();
1043
1044#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1045        setup_bios_corruption_check();
1046#endif
1047
1048#ifdef CONFIG_X86_32
1049        printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1050                        (max_pfn_mapped<<PAGE_SHIFT) - 1);
1051#endif
1052
1053        /*
1054         * Find free memory for the real mode trampoline and place it there. If
1055         * there is not enough free memory under 1M, on EFI-enabled systems
1056         * there will be additional attempt to reclaim the memory for the real
1057         * mode trampoline at efi_free_boot_services().
1058         *
1059         * Unconditionally reserve the entire first 1M of RAM because BIOSes
1060         * are known to corrupt low memory and several hundred kilobytes are not
1061         * worth complex detection what memory gets clobbered. Windows does the
1062         * same thing for very similar reasons.
1063         *
1064         * Moreover, on machines with SandyBridge graphics or in setups that use
1065         * crashkernel the entire 1M is reserved anyway.
1066         */
1067        reserve_real_mode();
1068
1069        init_mem_mapping();
1070
1071        idt_setup_early_pf();
1072
1073        /*
1074         * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1075         * with the current CR4 value.  This may not be necessary, but
1076         * auditing all the early-boot CR4 manipulation would be needed to
1077         * rule it out.
1078         *
1079         * Mask off features that don't work outside long mode (just
1080         * PCIDE for now).
1081         */
1082        mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1083
1084        memblock_set_current_limit(get_max_mapped());
1085
1086        /*
1087         * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1088         */
1089
1090#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1091        if (init_ohci1394_dma_early)
1092                init_ohci1394_dma_on_all_controllers();
1093#endif
1094        /* Allocate bigger log buffer */
1095        setup_log_buf(1);
1096
1097        if (efi_enabled(EFI_BOOT)) {
1098                switch (boot_params.secure_boot) {
1099                case efi_secureboot_mode_disabled:
1100                        pr_info("Secure boot disabled\n");
1101                        break;
1102                case efi_secureboot_mode_enabled:
1103                        pr_info("Secure boot enabled\n");
1104                        break;
1105                default:
1106                        pr_info("Secure boot could not be determined\n");
1107                        break;
1108                }
1109        }
1110
1111        reserve_initrd();
1112
1113        acpi_table_upgrade();
1114        /* Look for ACPI tables and reserve memory occupied by them. */
1115        acpi_boot_table_init();
1116
1117        vsmp_init();
1118
1119        io_delay_init();
1120
1121        early_platform_quirks();
1122
1123        early_acpi_boot_init();
1124
1125        initmem_init();
1126        dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1127
1128        if (boot_cpu_has(X86_FEATURE_GBPAGES))
1129                hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1130
1131        /*
1132         * Reserve memory for crash kernel after SRAT is parsed so that it
1133         * won't consume hotpluggable memory.
1134         */
1135        reserve_crashkernel();
1136
1137        memblock_find_dma_reserve();
1138
1139        if (!early_xdbc_setup_hardware())
1140                early_xdbc_register_console();
1141
1142        x86_init.paging.pagetable_init();
1143
1144        kasan_init();
1145
1146        /*
1147         * Sync back kernel address range.
1148         *
1149         * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1150         * this call?
1151         */
1152        sync_initial_page_table();
1153
1154        tboot_probe();
1155
1156        map_vsyscall();
1157
1158        generic_apic_probe();
1159
1160        early_quirks();
1161
1162        /*
1163         * Read APIC and some other early information from ACPI tables.
1164         */
1165        acpi_boot_init();
1166        x86_dtb_init();
1167
1168        /*
1169         * get boot-time SMP configuration:
1170         */
1171        get_smp_config();
1172
1173        /*
1174         * Systems w/o ACPI and mptables might not have it mapped the local
1175         * APIC yet, but prefill_possible_map() might need to access it.
1176         */
1177        init_apic_mappings();
1178
1179        prefill_possible_map();
1180
1181        init_cpu_to_node();
1182        init_gi_nodes();
1183
1184        io_apic_init_mappings();
1185
1186        x86_init.hyper.guest_late_init();
1187
1188        e820__reserve_resources();
1189        e820__register_nosave_regions(max_pfn);
1190
1191        x86_init.resources.reserve_resources();
1192
1193        e820__setup_pci_gap();
1194
1195#ifdef CONFIG_VT
1196#if defined(CONFIG_VGA_CONSOLE)
1197        if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1198                conswitchp = &vga_con;
1199#endif
1200#endif
1201        x86_init.oem.banner();
1202
1203        x86_init.timers.wallclock_init();
1204
1205        /*
1206         * This needs to run before setup_local_APIC() which soft-disables the
1207         * local APIC temporarily and that masks the thermal LVT interrupt,
1208         * leading to softlockups on machines which have configured SMI
1209         * interrupt delivery.
1210         */
1211        therm_lvt_init();
1212
1213        mcheck_init();
1214
1215        register_refined_jiffies(CLOCK_TICK_RATE);
1216
1217#ifdef CONFIG_EFI
1218        if (efi_enabled(EFI_BOOT))
1219                efi_apply_memmap_quirks();
1220#endif
1221
1222        unwind_init();
1223}
1224
1225#ifdef CONFIG_X86_32
1226
1227static struct resource video_ram_resource = {
1228        .name   = "Video RAM area",
1229        .start  = 0xa0000,
1230        .end    = 0xbffff,
1231        .flags  = IORESOURCE_BUSY | IORESOURCE_MEM
1232};
1233
1234void __init i386_reserve_resources(void)
1235{
1236        request_resource(&iomem_resource, &video_ram_resource);
1237        reserve_standard_io_resources();
1238}
1239
1240#endif /* CONFIG_X86_32 */
1241
1242static struct notifier_block kernel_offset_notifier = {
1243        .notifier_call = dump_kernel_offset
1244};
1245
1246static int __init register_kernel_offset_dumper(void)
1247{
1248        atomic_notifier_chain_register(&panic_notifier_list,
1249                                        &kernel_offset_notifier);
1250        return 0;
1251}
1252__initcall(register_kernel_offset_dumper);
1253