linux/arch/x86/kernel/smpboot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *      x86 SMP booting functions
   4 *
   5 *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *      (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *      Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *      Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *      whom a great many thanks are extended.
  11 *
  12 *      Thanks to Intel for making available several different Pentium,
  13 *      Pentium Pro and Pentium-II/Xeon MP machines.
  14 *      Original development of Linux SMP code supported by Caldera.
  15 *
  16 *      Fixes
  17 *              Felix Koop      :       NR_CPUS used properly
  18 *              Jose Renau      :       Handle single CPU case.
  19 *              Alan Cox        :       By repeated request 8) - Total BogoMIPS report.
  20 *              Greg Wright     :       Fix for kernel stacks panic.
  21 *              Erich Boleyn    :       MP v1.4 and additional changes.
  22 *      Matthias Sattler        :       Changes for 2.1 kernel map.
  23 *      Michel Lespinasse       :       Changes for 2.1 kernel map.
  24 *      Michael Chastain        :       Change trampoline.S to gnu as.
  25 *              Alan Cox        :       Dumb bug: 'B' step PPro's are fine
  26 *              Ingo Molnar     :       Added APIC timers, based on code
  27 *                                      from Jose Renau
  28 *              Ingo Molnar     :       various cleanups and rewrites
  29 *              Tigran Aivazian :       fixed "0.00 in /proc/uptime on SMP" bug.
  30 *      Maciej W. Rozycki       :       Bits for genuine 82489DX APICs
  31 *      Andi Kleen              :       Changed for SMP boot into long mode.
  32 *              Martin J. Bligh :       Added support for multi-quad systems
  33 *              Dave Jones      :       Report invalid combinations of Athlon CPUs.
  34 *              Rusty Russell   :       Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *      Ashok Raj               :       CPU hotplug support
  37 *      Glauber Costa           :       i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/numa.h>
  57#include <linux/pgtable.h>
  58#include <linux/overflow.h>
  59#include <linux/syscore_ops.h>
  60
  61#include <asm/acpi.h>
  62#include <asm/desc.h>
  63#include <asm/nmi.h>
  64#include <asm/irq.h>
  65#include <asm/realmode.h>
  66#include <asm/cpu.h>
  67#include <asm/numa.h>
  68#include <asm/tlbflush.h>
  69#include <asm/mtrr.h>
  70#include <asm/mwait.h>
  71#include <asm/apic.h>
  72#include <asm/io_apic.h>
  73#include <asm/fpu/internal.h>
  74#include <asm/setup.h>
  75#include <asm/uv/uv.h>
  76#include <linux/mc146818rtc.h>
  77#include <asm/i8259.h>
  78#include <asm/misc.h>
  79#include <asm/qspinlock.h>
  80#include <asm/intel-family.h>
  81#include <asm/cpu_device_id.h>
  82#include <asm/spec-ctrl.h>
  83#include <asm/hw_irq.h>
  84#include <asm/stackprotector.h>
  85
  86#ifdef CONFIG_ACPI_CPPC_LIB
  87#include <acpi/cppc_acpi.h>
  88#endif
  89
  90/* representing HT siblings of each logical CPU */
  91DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  92EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  93
  94/* representing HT and core siblings of each logical CPU */
  95DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  96EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  97
  98/* representing HT, core, and die siblings of each logical CPU */
  99DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 100EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 101
 102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
 103
 104/* Per CPU bogomips and other parameters */
 105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 106EXPORT_PER_CPU_SYMBOL(cpu_info);
 107
 108/* Logical package management. We might want to allocate that dynamically */
 109unsigned int __max_logical_packages __read_mostly;
 110EXPORT_SYMBOL(__max_logical_packages);
 111static unsigned int logical_packages __read_mostly;
 112static unsigned int logical_die __read_mostly;
 113
 114/* Maximum number of SMT threads on any online core */
 115int __read_mostly __max_smt_threads = 1;
 116
 117/* Flag to indicate if a complete sched domain rebuild is required */
 118bool x86_topology_update;
 119
 120int arch_update_cpu_topology(void)
 121{
 122        int retval = x86_topology_update;
 123
 124        x86_topology_update = false;
 125        return retval;
 126}
 127
 128static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 129{
 130        unsigned long flags;
 131
 132        spin_lock_irqsave(&rtc_lock, flags);
 133        CMOS_WRITE(0xa, 0xf);
 134        spin_unlock_irqrestore(&rtc_lock, flags);
 135        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
 136                                                        start_eip >> 4;
 137        *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
 138                                                        start_eip & 0xf;
 139}
 140
 141static inline void smpboot_restore_warm_reset_vector(void)
 142{
 143        unsigned long flags;
 144
 145        /*
 146         * Paranoid:  Set warm reset code and vector here back
 147         * to default values.
 148         */
 149        spin_lock_irqsave(&rtc_lock, flags);
 150        CMOS_WRITE(0, 0xf);
 151        spin_unlock_irqrestore(&rtc_lock, flags);
 152
 153        *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 154}
 155
 156static void init_freq_invariance(bool secondary, bool cppc_ready);
 157
 158/*
 159 * Report back to the Boot Processor during boot time or to the caller processor
 160 * during CPU online.
 161 */
 162static void smp_callin(void)
 163{
 164        int cpuid;
 165
 166        /*
 167         * If waken up by an INIT in an 82489DX configuration
 168         * cpu_callout_mask guarantees we don't get here before
 169         * an INIT_deassert IPI reaches our local APIC, so it is
 170         * now safe to touch our local APIC.
 171         */
 172        cpuid = smp_processor_id();
 173
 174        /*
 175         * the boot CPU has finished the init stage and is spinning
 176         * on callin_map until we finish. We are free to set up this
 177         * CPU, first the APIC. (this is probably redundant on most
 178         * boards)
 179         */
 180        apic_ap_setup();
 181
 182        /*
 183         * Save our processor parameters. Note: this information
 184         * is needed for clock calibration.
 185         */
 186        smp_store_cpu_info(cpuid);
 187
 188        /*
 189         * The topology information must be up to date before
 190         * calibrate_delay() and notify_cpu_starting().
 191         */
 192        set_cpu_sibling_map(raw_smp_processor_id());
 193
 194        init_freq_invariance(true, false);
 195
 196        /*
 197         * Get our bogomips.
 198         * Update loops_per_jiffy in cpu_data. Previous call to
 199         * smp_store_cpu_info() stored a value that is close but not as
 200         * accurate as the value just calculated.
 201         */
 202        calibrate_delay();
 203        cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
 204        pr_debug("Stack at about %p\n", &cpuid);
 205
 206        wmb();
 207
 208        notify_cpu_starting(cpuid);
 209
 210        /*
 211         * Allow the master to continue.
 212         */
 213        cpumask_set_cpu(cpuid, cpu_callin_mask);
 214}
 215
 216static int cpu0_logical_apicid;
 217static int enable_start_cpu0;
 218/*
 219 * Activate a secondary processor.
 220 */
 221static void notrace start_secondary(void *unused)
 222{
 223        /*
 224         * Don't put *anything* except direct CPU state initialization
 225         * before cpu_init(), SMP booting is too fragile that we want to
 226         * limit the things done here to the most necessary things.
 227         */
 228        cr4_init();
 229
 230#ifdef CONFIG_X86_32
 231        /* switch away from the initial page table */
 232        load_cr3(swapper_pg_dir);
 233        __flush_tlb_all();
 234#endif
 235        cpu_init_secondary();
 236        rcu_cpu_starting(raw_smp_processor_id());
 237        x86_cpuinit.early_percpu_clock_init();
 238        smp_callin();
 239
 240        enable_start_cpu0 = 0;
 241
 242        /* otherwise gcc will move up smp_processor_id before the cpu_init */
 243        barrier();
 244        /*
 245         * Check TSC synchronization with the boot CPU:
 246         */
 247        check_tsc_sync_target();
 248
 249        speculative_store_bypass_ht_init();
 250
 251        /*
 252         * Lock vector_lock, set CPU online and bring the vector
 253         * allocator online. Online must be set with vector_lock held
 254         * to prevent a concurrent irq setup/teardown from seeing a
 255         * half valid vector space.
 256         */
 257        lock_vector_lock();
 258        set_cpu_online(smp_processor_id(), true);
 259        lapic_online();
 260        unlock_vector_lock();
 261        cpu_set_state_online(smp_processor_id());
 262        x86_platform.nmi_init();
 263
 264        /* enable local interrupts */
 265        local_irq_enable();
 266
 267        x86_cpuinit.setup_percpu_clockev();
 268
 269        wmb();
 270        cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 271}
 272
 273/**
 274 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
 275 * @cpu:        CPU to check
 276 */
 277bool topology_is_primary_thread(unsigned int cpu)
 278{
 279        return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
 280}
 281
 282/**
 283 * topology_smt_supported - Check whether SMT is supported by the CPUs
 284 */
 285bool topology_smt_supported(void)
 286{
 287        return smp_num_siblings > 1;
 288}
 289
 290/**
 291 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 292 *
 293 * Returns logical package id or -1 if not found
 294 */
 295int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 296{
 297        int cpu;
 298
 299        for_each_possible_cpu(cpu) {
 300                struct cpuinfo_x86 *c = &cpu_data(cpu);
 301
 302                if (c->initialized && c->phys_proc_id == phys_pkg)
 303                        return c->logical_proc_id;
 304        }
 305        return -1;
 306}
 307EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 308/**
 309 * topology_phys_to_logical_die - Map a physical die id to logical
 310 *
 311 * Returns logical die id or -1 if not found
 312 */
 313int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 314{
 315        int cpu;
 316        int proc_id = cpu_data(cur_cpu).phys_proc_id;
 317
 318        for_each_possible_cpu(cpu) {
 319                struct cpuinfo_x86 *c = &cpu_data(cpu);
 320
 321                if (c->initialized && c->cpu_die_id == die_id &&
 322                    c->phys_proc_id == proc_id)
 323                        return c->logical_die_id;
 324        }
 325        return -1;
 326}
 327EXPORT_SYMBOL(topology_phys_to_logical_die);
 328
 329/**
 330 * topology_update_package_map - Update the physical to logical package map
 331 * @pkg:        The physical package id as retrieved via CPUID
 332 * @cpu:        The cpu for which this is updated
 333 */
 334int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 335{
 336        int new;
 337
 338        /* Already available somewhere? */
 339        new = topology_phys_to_logical_pkg(pkg);
 340        if (new >= 0)
 341                goto found;
 342
 343        new = logical_packages++;
 344        if (new != pkg) {
 345                pr_info("CPU %u Converting physical %u to logical package %u\n",
 346                        cpu, pkg, new);
 347        }
 348found:
 349        cpu_data(cpu).logical_proc_id = new;
 350        return 0;
 351}
 352/**
 353 * topology_update_die_map - Update the physical to logical die map
 354 * @die:        The die id as retrieved via CPUID
 355 * @cpu:        The cpu for which this is updated
 356 */
 357int topology_update_die_map(unsigned int die, unsigned int cpu)
 358{
 359        int new;
 360
 361        /* Already available somewhere? */
 362        new = topology_phys_to_logical_die(die, cpu);
 363        if (new >= 0)
 364                goto found;
 365
 366        new = logical_die++;
 367        if (new != die) {
 368                pr_info("CPU %u Converting physical %u to logical die %u\n",
 369                        cpu, die, new);
 370        }
 371found:
 372        cpu_data(cpu).logical_die_id = new;
 373        return 0;
 374}
 375
 376void __init smp_store_boot_cpu_info(void)
 377{
 378        int id = 0; /* CPU 0 */
 379        struct cpuinfo_x86 *c = &cpu_data(id);
 380
 381        *c = boot_cpu_data;
 382        c->cpu_index = id;
 383        topology_update_package_map(c->phys_proc_id, id);
 384        topology_update_die_map(c->cpu_die_id, id);
 385        c->initialized = true;
 386}
 387
 388/*
 389 * The bootstrap kernel entry code has set these up. Save them for
 390 * a given CPU
 391 */
 392void smp_store_cpu_info(int id)
 393{
 394        struct cpuinfo_x86 *c = &cpu_data(id);
 395
 396        /* Copy boot_cpu_data only on the first bringup */
 397        if (!c->initialized)
 398                *c = boot_cpu_data;
 399        c->cpu_index = id;
 400        /*
 401         * During boot time, CPU0 has this setup already. Save the info when
 402         * bringing up AP or offlined CPU0.
 403         */
 404        identify_secondary_cpu(c);
 405        c->initialized = true;
 406}
 407
 408static bool
 409topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 410{
 411        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 412
 413        return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 414}
 415
 416static bool
 417topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 418{
 419        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 420
 421        return !WARN_ONCE(!topology_same_node(c, o),
 422                "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 423                "[node: %d != %d]. Ignoring dependency.\n",
 424                cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 425}
 426
 427#define link_mask(mfunc, c1, c2)                                        \
 428do {                                                                    \
 429        cpumask_set_cpu((c1), mfunc(c2));                               \
 430        cpumask_set_cpu((c2), mfunc(c1));                               \
 431} while (0)
 432
 433static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 434{
 435        if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 436                int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 437
 438                if (c->phys_proc_id == o->phys_proc_id &&
 439                    c->cpu_die_id == o->cpu_die_id &&
 440                    per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
 441                        if (c->cpu_core_id == o->cpu_core_id)
 442                                return topology_sane(c, o, "smt");
 443
 444                        if ((c->cu_id != 0xff) &&
 445                            (o->cu_id != 0xff) &&
 446                            (c->cu_id == o->cu_id))
 447                                return topology_sane(c, o, "smt");
 448                }
 449
 450        } else if (c->phys_proc_id == o->phys_proc_id &&
 451                   c->cpu_die_id == o->cpu_die_id &&
 452                   c->cpu_core_id == o->cpu_core_id) {
 453                return topology_sane(c, o, "smt");
 454        }
 455
 456        return false;
 457}
 458
 459static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 460{
 461        if (c->phys_proc_id == o->phys_proc_id &&
 462            c->cpu_die_id == o->cpu_die_id)
 463                return true;
 464        return false;
 465}
 466
 467/*
 468 * Unlike the other levels, we do not enforce keeping a
 469 * multicore group inside a NUMA node.  If this happens, we will
 470 * discard the MC level of the topology later.
 471 */
 472static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 473{
 474        if (c->phys_proc_id == o->phys_proc_id)
 475                return true;
 476        return false;
 477}
 478
 479/*
 480 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 481 *
 482 * Any Intel CPU that has multiple nodes per package and does not
 483 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 484 *
 485 * When in SNC mode, these CPUs enumerate an LLC that is shared
 486 * by multiple NUMA nodes. The LLC is shared for off-package data
 487 * access but private to the NUMA node (half of the package) for
 488 * on-package access. CPUID (the source of the information about
 489 * the LLC) can only enumerate the cache as shared or unshared,
 490 * but not this particular configuration.
 491 */
 492
 493static const struct x86_cpu_id intel_cod_cpu[] = {
 494        X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),       /* COD */
 495        X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),     /* COD */
 496        X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),             /* SNC */
 497        {}
 498};
 499
 500static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 501{
 502        const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 503        int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 504        bool intel_snc = id && id->driver_data;
 505
 506        /* Do not match if we do not have a valid APICID for cpu: */
 507        if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
 508                return false;
 509
 510        /* Do not match if LLC id does not match: */
 511        if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
 512                return false;
 513
 514        /*
 515         * Allow the SNC topology without warning. Return of false
 516         * means 'c' does not share the LLC of 'o'. This will be
 517         * reflected to userspace.
 518         */
 519        if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 520                return false;
 521
 522        return topology_sane(c, o, "llc");
 523}
 524
 525
 526#if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_MC)
 527static inline int x86_sched_itmt_flags(void)
 528{
 529        return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 530}
 531
 532#ifdef CONFIG_SCHED_MC
 533static int x86_core_flags(void)
 534{
 535        return cpu_core_flags() | x86_sched_itmt_flags();
 536}
 537#endif
 538#ifdef CONFIG_SCHED_SMT
 539static int x86_smt_flags(void)
 540{
 541        return cpu_smt_flags() | x86_sched_itmt_flags();
 542}
 543#endif
 544#endif
 545
 546static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
 547#ifdef CONFIG_SCHED_SMT
 548        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 549#endif
 550#ifdef CONFIG_SCHED_MC
 551        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 552#endif
 553        { NULL, },
 554};
 555
 556static struct sched_domain_topology_level x86_topology[] = {
 557#ifdef CONFIG_SCHED_SMT
 558        { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
 559#endif
 560#ifdef CONFIG_SCHED_MC
 561        { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
 562#endif
 563        { cpu_cpu_mask, SD_INIT_NAME(DIE) },
 564        { NULL, },
 565};
 566
 567/*
 568 * Set if a package/die has multiple NUMA nodes inside.
 569 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 570 * Sub-NUMA Clustering have this.
 571 */
 572static bool x86_has_numa_in_package;
 573
 574void set_cpu_sibling_map(int cpu)
 575{
 576        bool has_smt = smp_num_siblings > 1;
 577        bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 578        struct cpuinfo_x86 *c = &cpu_data(cpu);
 579        struct cpuinfo_x86 *o;
 580        int i, threads;
 581
 582        cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 583
 584        if (!has_mp) {
 585                cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 586                cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 587                cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 588                cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 589                c->booted_cores = 1;
 590                return;
 591        }
 592
 593        for_each_cpu(i, cpu_sibling_setup_mask) {
 594                o = &cpu_data(i);
 595
 596                if (match_pkg(c, o) && !topology_same_node(c, o))
 597                        x86_has_numa_in_package = true;
 598
 599                if ((i == cpu) || (has_smt && match_smt(c, o)))
 600                        link_mask(topology_sibling_cpumask, cpu, i);
 601
 602                if ((i == cpu) || (has_mp && match_llc(c, o)))
 603                        link_mask(cpu_llc_shared_mask, cpu, i);
 604
 605                if ((i == cpu) || (has_mp && match_die(c, o)))
 606                        link_mask(topology_die_cpumask, cpu, i);
 607        }
 608
 609        threads = cpumask_weight(topology_sibling_cpumask(cpu));
 610        if (threads > __max_smt_threads)
 611                __max_smt_threads = threads;
 612
 613        for_each_cpu(i, topology_sibling_cpumask(cpu))
 614                cpu_data(i).smt_active = threads > 1;
 615
 616        /*
 617         * This needs a separate iteration over the cpus because we rely on all
 618         * topology_sibling_cpumask links to be set-up.
 619         */
 620        for_each_cpu(i, cpu_sibling_setup_mask) {
 621                o = &cpu_data(i);
 622
 623                if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 624                        link_mask(topology_core_cpumask, cpu, i);
 625
 626                        /*
 627                         *  Does this new cpu bringup a new core?
 628                         */
 629                        if (threads == 1) {
 630                                /*
 631                                 * for each core in package, increment
 632                                 * the booted_cores for this new cpu
 633                                 */
 634                                if (cpumask_first(
 635                                    topology_sibling_cpumask(i)) == i)
 636                                        c->booted_cores++;
 637                                /*
 638                                 * increment the core count for all
 639                                 * the other cpus in this package
 640                                 */
 641                                if (i != cpu)
 642                                        cpu_data(i).booted_cores++;
 643                        } else if (i != cpu && !c->booted_cores)
 644                                c->booted_cores = cpu_data(i).booted_cores;
 645                }
 646        }
 647}
 648
 649/* maps the cpu to the sched domain representing multi-core */
 650const struct cpumask *cpu_coregroup_mask(int cpu)
 651{
 652        return cpu_llc_shared_mask(cpu);
 653}
 654
 655static void impress_friends(void)
 656{
 657        int cpu;
 658        unsigned long bogosum = 0;
 659        /*
 660         * Allow the user to impress friends.
 661         */
 662        pr_debug("Before bogomips\n");
 663        for_each_possible_cpu(cpu)
 664                if (cpumask_test_cpu(cpu, cpu_callout_mask))
 665                        bogosum += cpu_data(cpu).loops_per_jiffy;
 666        pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 667                num_online_cpus(),
 668                bogosum/(500000/HZ),
 669                (bogosum/(5000/HZ))%100);
 670
 671        pr_debug("Before bogocount - setting activated=1\n");
 672}
 673
 674void __inquire_remote_apic(int apicid)
 675{
 676        unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
 677        const char * const names[] = { "ID", "VERSION", "SPIV" };
 678        int timeout;
 679        u32 status;
 680
 681        pr_info("Inquiring remote APIC 0x%x...\n", apicid);
 682
 683        for (i = 0; i < ARRAY_SIZE(regs); i++) {
 684                pr_info("... APIC 0x%x %s: ", apicid, names[i]);
 685
 686                /*
 687                 * Wait for idle.
 688                 */
 689                status = safe_apic_wait_icr_idle();
 690                if (status)
 691                        pr_cont("a previous APIC delivery may have failed\n");
 692
 693                apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
 694
 695                timeout = 0;
 696                do {
 697                        udelay(100);
 698                        status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
 699                } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
 700
 701                switch (status) {
 702                case APIC_ICR_RR_VALID:
 703                        status = apic_read(APIC_RRR);
 704                        pr_cont("%08x\n", status);
 705                        break;
 706                default:
 707                        pr_cont("failed\n");
 708                }
 709        }
 710}
 711
 712/*
 713 * The Multiprocessor Specification 1.4 (1997) example code suggests
 714 * that there should be a 10ms delay between the BSP asserting INIT
 715 * and de-asserting INIT, when starting a remote processor.
 716 * But that slows boot and resume on modern processors, which include
 717 * many cores and don't require that delay.
 718 *
 719 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 720 * Modern processor families are quirked to remove the delay entirely.
 721 */
 722#define UDELAY_10MS_DEFAULT 10000
 723
 724static unsigned int init_udelay = UINT_MAX;
 725
 726static int __init cpu_init_udelay(char *str)
 727{
 728        get_option(&str, &init_udelay);
 729
 730        return 0;
 731}
 732early_param("cpu_init_udelay", cpu_init_udelay);
 733
 734static void __init smp_quirk_init_udelay(void)
 735{
 736        /* if cmdline changed it from default, leave it alone */
 737        if (init_udelay != UINT_MAX)
 738                return;
 739
 740        /* if modern processor, use no delay */
 741        if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 742            ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 743            ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 744                init_udelay = 0;
 745                return;
 746        }
 747        /* else, use legacy delay */
 748        init_udelay = UDELAY_10MS_DEFAULT;
 749}
 750
 751/*
 752 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
 753 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
 754 * won't ... remember to clear down the APIC, etc later.
 755 */
 756int
 757wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
 758{
 759        u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
 760        unsigned long send_status, accept_status = 0;
 761        int maxlvt;
 762
 763        /* Target chip */
 764        /* Boot on the stack */
 765        /* Kick the second */
 766        apic_icr_write(APIC_DM_NMI | dm, apicid);
 767
 768        pr_debug("Waiting for send to finish...\n");
 769        send_status = safe_apic_wait_icr_idle();
 770
 771        /*
 772         * Give the other CPU some time to accept the IPI.
 773         */
 774        udelay(200);
 775        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 776                maxlvt = lapic_get_maxlvt();
 777                if (maxlvt > 3)                 /* Due to the Pentium erratum 3AP.  */
 778                        apic_write(APIC_ESR, 0);
 779                accept_status = (apic_read(APIC_ESR) & 0xEF);
 780        }
 781        pr_debug("NMI sent\n");
 782
 783        if (send_status)
 784                pr_err("APIC never delivered???\n");
 785        if (accept_status)
 786                pr_err("APIC delivery error (%lx)\n", accept_status);
 787
 788        return (send_status | accept_status);
 789}
 790
 791static int
 792wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
 793{
 794        unsigned long send_status = 0, accept_status = 0;
 795        int maxlvt, num_starts, j;
 796
 797        maxlvt = lapic_get_maxlvt();
 798
 799        /*
 800         * Be paranoid about clearing APIC errors.
 801         */
 802        if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 803                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 804                        apic_write(APIC_ESR, 0);
 805                apic_read(APIC_ESR);
 806        }
 807
 808        pr_debug("Asserting INIT\n");
 809
 810        /*
 811         * Turn INIT on target chip
 812         */
 813        /*
 814         * Send IPI
 815         */
 816        apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
 817                       phys_apicid);
 818
 819        pr_debug("Waiting for send to finish...\n");
 820        send_status = safe_apic_wait_icr_idle();
 821
 822        udelay(init_udelay);
 823
 824        pr_debug("Deasserting INIT\n");
 825
 826        /* Target chip */
 827        /* Send IPI */
 828        apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 829
 830        pr_debug("Waiting for send to finish...\n");
 831        send_status = safe_apic_wait_icr_idle();
 832
 833        mb();
 834
 835        /*
 836         * Should we send STARTUP IPIs ?
 837         *
 838         * Determine this based on the APIC version.
 839         * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 840         */
 841        if (APIC_INTEGRATED(boot_cpu_apic_version))
 842                num_starts = 2;
 843        else
 844                num_starts = 0;
 845
 846        /*
 847         * Run STARTUP IPI loop.
 848         */
 849        pr_debug("#startup loops: %d\n", num_starts);
 850
 851        for (j = 1; j <= num_starts; j++) {
 852                pr_debug("Sending STARTUP #%d\n", j);
 853                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 854                        apic_write(APIC_ESR, 0);
 855                apic_read(APIC_ESR);
 856                pr_debug("After apic_write\n");
 857
 858                /*
 859                 * STARTUP IPI
 860                 */
 861
 862                /* Target chip */
 863                /* Boot on the stack */
 864                /* Kick the second */
 865                apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 866                               phys_apicid);
 867
 868                /*
 869                 * Give the other CPU some time to accept the IPI.
 870                 */
 871                if (init_udelay == 0)
 872                        udelay(10);
 873                else
 874                        udelay(300);
 875
 876                pr_debug("Startup point 1\n");
 877
 878                pr_debug("Waiting for send to finish...\n");
 879                send_status = safe_apic_wait_icr_idle();
 880
 881                /*
 882                 * Give the other CPU some time to accept the IPI.
 883                 */
 884                if (init_udelay == 0)
 885                        udelay(10);
 886                else
 887                        udelay(200);
 888
 889                if (maxlvt > 3)         /* Due to the Pentium erratum 3AP.  */
 890                        apic_write(APIC_ESR, 0);
 891                accept_status = (apic_read(APIC_ESR) & 0xEF);
 892                if (send_status || accept_status)
 893                        break;
 894        }
 895        pr_debug("After Startup\n");
 896
 897        if (send_status)
 898                pr_err("APIC never delivered???\n");
 899        if (accept_status)
 900                pr_err("APIC delivery error (%lx)\n", accept_status);
 901
 902        return (send_status | accept_status);
 903}
 904
 905/* reduce the number of lines printed when booting a large cpu count system */
 906static void announce_cpu(int cpu, int apicid)
 907{
 908        static int current_node = NUMA_NO_NODE;
 909        int node = early_cpu_to_node(cpu);
 910        static int width, node_width;
 911
 912        if (!width)
 913                width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 914
 915        if (!node_width)
 916                node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 917
 918        if (cpu == 1)
 919                printk(KERN_INFO "x86: Booting SMP configuration:\n");
 920
 921        if (system_state < SYSTEM_RUNNING) {
 922                if (node != current_node) {
 923                        if (current_node > (-1))
 924                                pr_cont("\n");
 925                        current_node = node;
 926
 927                        printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 928                               node_width - num_digits(node), " ", node);
 929                }
 930
 931                /* Add padding for the BSP */
 932                if (cpu == 1)
 933                        pr_cont("%*s", width + 1, " ");
 934
 935                pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 936
 937        } else
 938                pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 939                        node, cpu, apicid);
 940}
 941
 942static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
 943{
 944        int cpu;
 945
 946        cpu = smp_processor_id();
 947        if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
 948                return NMI_HANDLED;
 949
 950        return NMI_DONE;
 951}
 952
 953/*
 954 * Wake up AP by INIT, INIT, STARTUP sequence.
 955 *
 956 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
 957 * boot-strap code which is not a desired behavior for waking up BSP. To
 958 * void the boot-strap code, wake up CPU0 by NMI instead.
 959 *
 960 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
 961 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
 962 * We'll change this code in the future to wake up hard offlined CPU0 if
 963 * real platform and request are available.
 964 */
 965static int
 966wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
 967               int *cpu0_nmi_registered)
 968{
 969        int id;
 970        int boot_error;
 971
 972        preempt_disable();
 973
 974        /*
 975         * Wake up AP by INIT, INIT, STARTUP sequence.
 976         */
 977        if (cpu) {
 978                boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
 979                goto out;
 980        }
 981
 982        /*
 983         * Wake up BSP by nmi.
 984         *
 985         * Register a NMI handler to help wake up CPU0.
 986         */
 987        boot_error = register_nmi_handler(NMI_LOCAL,
 988                                          wakeup_cpu0_nmi, 0, "wake_cpu0");
 989
 990        if (!boot_error) {
 991                enable_start_cpu0 = 1;
 992                *cpu0_nmi_registered = 1;
 993                id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
 994                boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
 995        }
 996
 997out:
 998        preempt_enable();
 999
1000        return boot_error;
1001}
1002
1003int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1004{
1005        int ret;
1006
1007        /* Just in case we booted with a single CPU. */
1008        alternatives_enable_smp();
1009
1010        per_cpu(current_task, cpu) = idle;
1011        cpu_init_stack_canary(cpu, idle);
1012
1013        /* Initialize the interrupt stack(s) */
1014        ret = irq_init_percpu_irqstack(cpu);
1015        if (ret)
1016                return ret;
1017
1018#ifdef CONFIG_X86_32
1019        /* Stack for startup_32 can be just as for start_secondary onwards */
1020        per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1021#else
1022        initial_gs = per_cpu_offset(cpu);
1023#endif
1024        return 0;
1025}
1026
1027/*
1028 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1029 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1030 * Returns zero if CPU booted OK, else error code from
1031 * ->wakeup_secondary_cpu.
1032 */
1033static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1034                       int *cpu0_nmi_registered)
1035{
1036        /* start_ip had better be page-aligned! */
1037        unsigned long start_ip = real_mode_header->trampoline_start;
1038
1039        unsigned long boot_error = 0;
1040        unsigned long timeout;
1041
1042        idle->thread.sp = (unsigned long)task_pt_regs(idle);
1043        early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1044        initial_code = (unsigned long)start_secondary;
1045        initial_stack  = idle->thread.sp;
1046
1047        /* Enable the espfix hack for this CPU */
1048        init_espfix_ap(cpu);
1049
1050        /* So we see what's up */
1051        announce_cpu(cpu, apicid);
1052
1053        /*
1054         * This grunge runs the startup process for
1055         * the targeted processor.
1056         */
1057
1058        if (x86_platform.legacy.warm_reset) {
1059
1060                pr_debug("Setting warm reset code and vector.\n");
1061
1062                smpboot_setup_warm_reset_vector(start_ip);
1063                /*
1064                 * Be paranoid about clearing APIC errors.
1065                */
1066                if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1067                        apic_write(APIC_ESR, 0);
1068                        apic_read(APIC_ESR);
1069                }
1070        }
1071
1072        /*
1073         * AP might wait on cpu_callout_mask in cpu_init() with
1074         * cpu_initialized_mask set if previous attempt to online
1075         * it timed-out. Clear cpu_initialized_mask so that after
1076         * INIT/SIPI it could start with a clean state.
1077         */
1078        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1079        smp_mb();
1080
1081        /*
1082         * Wake up a CPU in difference cases:
1083         * - Use the method in the APIC driver if it's defined
1084         * Otherwise,
1085         * - Use an INIT boot APIC message for APs or NMI for BSP.
1086         */
1087        if (apic->wakeup_secondary_cpu)
1088                boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1089        else
1090                boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1091                                                     cpu0_nmi_registered);
1092
1093        if (!boot_error) {
1094                /*
1095                 * Wait 10s total for first sign of life from AP
1096                 */
1097                boot_error = -1;
1098                timeout = jiffies + 10*HZ;
1099                while (time_before(jiffies, timeout)) {
1100                        if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1101                                /*
1102                                 * Tell AP to proceed with initialization
1103                                 */
1104                                cpumask_set_cpu(cpu, cpu_callout_mask);
1105                                boot_error = 0;
1106                                break;
1107                        }
1108                        schedule();
1109                }
1110        }
1111
1112        if (!boot_error) {
1113                /*
1114                 * Wait till AP completes initial initialization
1115                 */
1116                while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1117                        /*
1118                         * Allow other tasks to run while we wait for the
1119                         * AP to come online. This also gives a chance
1120                         * for the MTRR work(triggered by the AP coming online)
1121                         * to be completed in the stop machine context.
1122                         */
1123                        schedule();
1124                }
1125        }
1126
1127        if (x86_platform.legacy.warm_reset) {
1128                /*
1129                 * Cleanup possible dangling ends...
1130                 */
1131                smpboot_restore_warm_reset_vector();
1132        }
1133
1134        return boot_error;
1135}
1136
1137int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1138{
1139        int apicid = apic->cpu_present_to_apicid(cpu);
1140        int cpu0_nmi_registered = 0;
1141        unsigned long flags;
1142        int err, ret = 0;
1143
1144        lockdep_assert_irqs_enabled();
1145
1146        pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1147
1148        if (apicid == BAD_APICID ||
1149            !physid_isset(apicid, phys_cpu_present_map) ||
1150            !apic->apic_id_valid(apicid)) {
1151                pr_err("%s: bad cpu %d\n", __func__, cpu);
1152                return -EINVAL;
1153        }
1154
1155        /*
1156         * Already booted CPU?
1157         */
1158        if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1159                pr_debug("do_boot_cpu %d Already started\n", cpu);
1160                return -ENOSYS;
1161        }
1162
1163        /*
1164         * Save current MTRR state in case it was changed since early boot
1165         * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1166         */
1167        mtrr_save_state();
1168
1169        /* x86 CPUs take themselves offline, so delayed offline is OK. */
1170        err = cpu_check_up_prepare(cpu);
1171        if (err && err != -EBUSY)
1172                return err;
1173
1174        /* the FPU context is blank, nobody can own it */
1175        per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1176
1177        err = common_cpu_up(cpu, tidle);
1178        if (err)
1179                return err;
1180
1181        err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1182        if (err) {
1183                pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1184                ret = -EIO;
1185                goto unreg_nmi;
1186        }
1187
1188        /*
1189         * Check TSC synchronization with the AP (keep irqs disabled
1190         * while doing so):
1191         */
1192        local_irq_save(flags);
1193        check_tsc_sync_source(cpu);
1194        local_irq_restore(flags);
1195
1196        while (!cpu_online(cpu)) {
1197                cpu_relax();
1198                touch_nmi_watchdog();
1199        }
1200
1201unreg_nmi:
1202        /*
1203         * Clean up the nmi handler. Do this after the callin and callout sync
1204         * to avoid impact of possible long unregister time.
1205         */
1206        if (cpu0_nmi_registered)
1207                unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1208
1209        return ret;
1210}
1211
1212/**
1213 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1214 */
1215void arch_disable_smp_support(void)
1216{
1217        disable_ioapic_support();
1218}
1219
1220/*
1221 * Fall back to non SMP mode after errors.
1222 *
1223 * RED-PEN audit/test this more. I bet there is more state messed up here.
1224 */
1225static __init void disable_smp(void)
1226{
1227        pr_info("SMP disabled\n");
1228
1229        disable_ioapic_support();
1230
1231        init_cpu_present(cpumask_of(0));
1232        init_cpu_possible(cpumask_of(0));
1233
1234        if (smp_found_config)
1235                physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1236        else
1237                physid_set_mask_of_physid(0, &phys_cpu_present_map);
1238        cpumask_set_cpu(0, topology_sibling_cpumask(0));
1239        cpumask_set_cpu(0, topology_core_cpumask(0));
1240        cpumask_set_cpu(0, topology_die_cpumask(0));
1241}
1242
1243/*
1244 * Various sanity checks.
1245 */
1246static void __init smp_sanity_check(void)
1247{
1248        preempt_disable();
1249
1250#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1251        if (def_to_bigsmp && nr_cpu_ids > 8) {
1252                unsigned int cpu;
1253                unsigned nr;
1254
1255                pr_warn("More than 8 CPUs detected - skipping them\n"
1256                        "Use CONFIG_X86_BIGSMP\n");
1257
1258                nr = 0;
1259                for_each_present_cpu(cpu) {
1260                        if (nr >= 8)
1261                                set_cpu_present(cpu, false);
1262                        nr++;
1263                }
1264
1265                nr = 0;
1266                for_each_possible_cpu(cpu) {
1267                        if (nr >= 8)
1268                                set_cpu_possible(cpu, false);
1269                        nr++;
1270                }
1271
1272                nr_cpu_ids = 8;
1273        }
1274#endif
1275
1276        if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1277                pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1278                        hard_smp_processor_id());
1279
1280                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1281        }
1282
1283        /*
1284         * Should not be necessary because the MP table should list the boot
1285         * CPU too, but we do it for the sake of robustness anyway.
1286         */
1287        if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1288                pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1289                          boot_cpu_physical_apicid);
1290                physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1291        }
1292        preempt_enable();
1293}
1294
1295static void __init smp_cpu_index_default(void)
1296{
1297        int i;
1298        struct cpuinfo_x86 *c;
1299
1300        for_each_possible_cpu(i) {
1301                c = &cpu_data(i);
1302                /* mark all to hotplug */
1303                c->cpu_index = nr_cpu_ids;
1304        }
1305}
1306
1307static void __init smp_get_logical_apicid(void)
1308{
1309        if (x2apic_mode)
1310                cpu0_logical_apicid = apic_read(APIC_LDR);
1311        else
1312                cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1313}
1314
1315/*
1316 * Prepare for SMP bootup.
1317 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1318 *            for common interface support.
1319 */
1320void __init native_smp_prepare_cpus(unsigned int max_cpus)
1321{
1322        unsigned int i;
1323
1324        smp_cpu_index_default();
1325
1326        /*
1327         * Setup boot CPU information
1328         */
1329        smp_store_boot_cpu_info(); /* Final full version of the data */
1330        cpumask_copy(cpu_callin_mask, cpumask_of(0));
1331        mb();
1332
1333        for_each_possible_cpu(i) {
1334                zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1335                zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1336                zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1337                zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1338        }
1339
1340        /*
1341         * Set 'default' x86 topology, this matches default_topology() in that
1342         * it has NUMA nodes as a topology level. See also
1343         * native_smp_cpus_done().
1344         *
1345         * Must be done before set_cpus_sibling_map() is ran.
1346         */
1347        set_sched_topology(x86_topology);
1348
1349        set_cpu_sibling_map(0);
1350        init_freq_invariance(false, false);
1351        smp_sanity_check();
1352
1353        switch (apic_intr_mode) {
1354        case APIC_PIC:
1355        case APIC_VIRTUAL_WIRE_NO_CONFIG:
1356                disable_smp();
1357                return;
1358        case APIC_SYMMETRIC_IO_NO_ROUTING:
1359                disable_smp();
1360                /* Setup local timer */
1361                x86_init.timers.setup_percpu_clockev();
1362                return;
1363        case APIC_VIRTUAL_WIRE:
1364        case APIC_SYMMETRIC_IO:
1365                break;
1366        }
1367
1368        /* Setup local timer */
1369        x86_init.timers.setup_percpu_clockev();
1370
1371        smp_get_logical_apicid();
1372
1373        pr_info("CPU0: ");
1374        print_cpu_info(&cpu_data(0));
1375
1376        uv_system_init();
1377
1378        set_mtrr_aps_delayed_init();
1379
1380        smp_quirk_init_udelay();
1381
1382        speculative_store_bypass_ht_init();
1383}
1384
1385void arch_thaw_secondary_cpus_begin(void)
1386{
1387        set_mtrr_aps_delayed_init();
1388}
1389
1390void arch_thaw_secondary_cpus_end(void)
1391{
1392        mtrr_aps_init();
1393}
1394
1395/*
1396 * Early setup to make printk work.
1397 */
1398void __init native_smp_prepare_boot_cpu(void)
1399{
1400        int me = smp_processor_id();
1401        switch_to_new_gdt(me);
1402        /* already set me in cpu_online_mask in boot_cpu_init() */
1403        cpumask_set_cpu(me, cpu_callout_mask);
1404        cpu_set_state_online(me);
1405        native_pv_lock_init();
1406}
1407
1408void __init calculate_max_logical_packages(void)
1409{
1410        int ncpus;
1411
1412        /*
1413         * Today neither Intel nor AMD support heterogeneous systems so
1414         * extrapolate the boot cpu's data to all packages.
1415         */
1416        ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1417        __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1418        pr_info("Max logical packages: %u\n", __max_logical_packages);
1419}
1420
1421void __init native_smp_cpus_done(unsigned int max_cpus)
1422{
1423        pr_debug("Boot done\n");
1424
1425        calculate_max_logical_packages();
1426
1427        if (x86_has_numa_in_package)
1428                set_sched_topology(x86_numa_in_package_topology);
1429
1430        nmi_selftest();
1431        impress_friends();
1432        mtrr_aps_init();
1433}
1434
1435static int __initdata setup_possible_cpus = -1;
1436static int __init _setup_possible_cpus(char *str)
1437{
1438        get_option(&str, &setup_possible_cpus);
1439        return 0;
1440}
1441early_param("possible_cpus", _setup_possible_cpus);
1442
1443
1444/*
1445 * cpu_possible_mask should be static, it cannot change as cpu's
1446 * are onlined, or offlined. The reason is per-cpu data-structures
1447 * are allocated by some modules at init time, and don't expect to
1448 * do this dynamically on cpu arrival/departure.
1449 * cpu_present_mask on the other hand can change dynamically.
1450 * In case when cpu_hotplug is not compiled, then we resort to current
1451 * behaviour, which is cpu_possible == cpu_present.
1452 * - Ashok Raj
1453 *
1454 * Three ways to find out the number of additional hotplug CPUs:
1455 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1456 * - The user can overwrite it with possible_cpus=NUM
1457 * - Otherwise don't reserve additional CPUs.
1458 * We do this because additional CPUs waste a lot of memory.
1459 * -AK
1460 */
1461__init void prefill_possible_map(void)
1462{
1463        int i, possible;
1464
1465        /* No boot processor was found in mptable or ACPI MADT */
1466        if (!num_processors) {
1467                if (boot_cpu_has(X86_FEATURE_APIC)) {
1468                        int apicid = boot_cpu_physical_apicid;
1469                        int cpu = hard_smp_processor_id();
1470
1471                        pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1472
1473                        /* Make sure boot cpu is enumerated */
1474                        if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1475                            apic->apic_id_valid(apicid))
1476                                generic_processor_info(apicid, boot_cpu_apic_version);
1477                }
1478
1479                if (!num_processors)
1480                        num_processors = 1;
1481        }
1482
1483        i = setup_max_cpus ?: 1;
1484        if (setup_possible_cpus == -1) {
1485                possible = num_processors;
1486#ifdef CONFIG_HOTPLUG_CPU
1487                if (setup_max_cpus)
1488                        possible += disabled_cpus;
1489#else
1490                if (possible > i)
1491                        possible = i;
1492#endif
1493        } else
1494                possible = setup_possible_cpus;
1495
1496        total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1497
1498        /* nr_cpu_ids could be reduced via nr_cpus= */
1499        if (possible > nr_cpu_ids) {
1500                pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1501                        possible, nr_cpu_ids);
1502                possible = nr_cpu_ids;
1503        }
1504
1505#ifdef CONFIG_HOTPLUG_CPU
1506        if (!setup_max_cpus)
1507#endif
1508        if (possible > i) {
1509                pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1510                        possible, setup_max_cpus);
1511                possible = i;
1512        }
1513
1514        nr_cpu_ids = possible;
1515
1516        pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1517                possible, max_t(int, possible - num_processors, 0));
1518
1519        reset_cpu_possible_mask();
1520
1521        for (i = 0; i < possible; i++)
1522                set_cpu_possible(i, true);
1523}
1524
1525#ifdef CONFIG_HOTPLUG_CPU
1526
1527/* Recompute SMT state for all CPUs on offline */
1528static void recompute_smt_state(void)
1529{
1530        int max_threads, cpu;
1531
1532        max_threads = 0;
1533        for_each_online_cpu (cpu) {
1534                int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1535
1536                if (threads > max_threads)
1537                        max_threads = threads;
1538        }
1539        __max_smt_threads = max_threads;
1540}
1541
1542static void remove_siblinginfo(int cpu)
1543{
1544        int sibling;
1545        struct cpuinfo_x86 *c = &cpu_data(cpu);
1546
1547        for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1548                cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1549                /*/
1550                 * last thread sibling in this cpu core going down
1551                 */
1552                if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1553                        cpu_data(sibling).booted_cores--;
1554        }
1555
1556        for_each_cpu(sibling, topology_die_cpumask(cpu))
1557                cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1558
1559        for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1560                cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1561                if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1562                        cpu_data(sibling).smt_active = false;
1563        }
1564
1565        for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1566                cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1567        cpumask_clear(cpu_llc_shared_mask(cpu));
1568        cpumask_clear(topology_sibling_cpumask(cpu));
1569        cpumask_clear(topology_core_cpumask(cpu));
1570        cpumask_clear(topology_die_cpumask(cpu));
1571        c->cpu_core_id = 0;
1572        c->booted_cores = 0;
1573        cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1574        recompute_smt_state();
1575}
1576
1577static void remove_cpu_from_maps(int cpu)
1578{
1579        set_cpu_online(cpu, false);
1580        cpumask_clear_cpu(cpu, cpu_callout_mask);
1581        cpumask_clear_cpu(cpu, cpu_callin_mask);
1582        /* was set by cpu_init() */
1583        cpumask_clear_cpu(cpu, cpu_initialized_mask);
1584        numa_remove_cpu(cpu);
1585}
1586
1587void cpu_disable_common(void)
1588{
1589        int cpu = smp_processor_id();
1590
1591        remove_siblinginfo(cpu);
1592
1593        /* It's now safe to remove this processor from the online map */
1594        lock_vector_lock();
1595        remove_cpu_from_maps(cpu);
1596        unlock_vector_lock();
1597        fixup_irqs();
1598        lapic_offline();
1599}
1600
1601int native_cpu_disable(void)
1602{
1603        int ret;
1604
1605        ret = lapic_can_unplug_cpu();
1606        if (ret)
1607                return ret;
1608
1609        cpu_disable_common();
1610
1611        /*
1612         * Disable the local APIC. Otherwise IPI broadcasts will reach
1613         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1614         * messages.
1615         *
1616         * Disabling the APIC must happen after cpu_disable_common()
1617         * which invokes fixup_irqs().
1618         *
1619         * Disabling the APIC preserves already set bits in IRR, but
1620         * an interrupt arriving after disabling the local APIC does not
1621         * set the corresponding IRR bit.
1622         *
1623         * fixup_irqs() scans IRR for set bits so it can raise a not
1624         * yet handled interrupt on the new destination CPU via an IPI
1625         * but obviously it can't do so for IRR bits which are not set.
1626         * IOW, interrupts arriving after disabling the local APIC will
1627         * be lost.
1628         */
1629        apic_soft_disable();
1630
1631        return 0;
1632}
1633
1634int common_cpu_die(unsigned int cpu)
1635{
1636        int ret = 0;
1637
1638        /* We don't do anything here: idle task is faking death itself. */
1639
1640        /* They ack this in play_dead() by setting CPU_DEAD */
1641        if (cpu_wait_death(cpu, 5)) {
1642                if (system_state == SYSTEM_RUNNING)
1643                        pr_info("CPU %u is now offline\n", cpu);
1644        } else {
1645                pr_err("CPU %u didn't die...\n", cpu);
1646                ret = -1;
1647        }
1648
1649        return ret;
1650}
1651
1652void native_cpu_die(unsigned int cpu)
1653{
1654        common_cpu_die(cpu);
1655}
1656
1657void play_dead_common(void)
1658{
1659        idle_task_exit();
1660
1661        /* Ack it */
1662        (void)cpu_report_death();
1663
1664        /*
1665         * With physical CPU hotplug, we should halt the cpu
1666         */
1667        local_irq_disable();
1668}
1669
1670/**
1671 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1672 *
1673 * If NMI wants to wake up CPU0, start CPU0.
1674 */
1675void cond_wakeup_cpu0(void)
1676{
1677        if (smp_processor_id() == 0 && enable_start_cpu0)
1678                start_cpu0();
1679}
1680EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1681
1682/*
1683 * We need to flush the caches before going to sleep, lest we have
1684 * dirty data in our caches when we come back up.
1685 */
1686static inline void mwait_play_dead(void)
1687{
1688        unsigned int eax, ebx, ecx, edx;
1689        unsigned int highest_cstate = 0;
1690        unsigned int highest_subcstate = 0;
1691        void *mwait_ptr;
1692        int i;
1693
1694        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1695            boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1696                return;
1697        if (!this_cpu_has(X86_FEATURE_MWAIT))
1698                return;
1699        if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1700                return;
1701        if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1702                return;
1703
1704        eax = CPUID_MWAIT_LEAF;
1705        ecx = 0;
1706        native_cpuid(&eax, &ebx, &ecx, &edx);
1707
1708        /*
1709         * eax will be 0 if EDX enumeration is not valid.
1710         * Initialized below to cstate, sub_cstate value when EDX is valid.
1711         */
1712        if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1713                eax = 0;
1714        } else {
1715                edx >>= MWAIT_SUBSTATE_SIZE;
1716                for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1717                        if (edx & MWAIT_SUBSTATE_MASK) {
1718                                highest_cstate = i;
1719                                highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1720                        }
1721                }
1722                eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1723                        (highest_subcstate - 1);
1724        }
1725
1726        /*
1727         * This should be a memory location in a cache line which is
1728         * unlikely to be touched by other processors.  The actual
1729         * content is immaterial as it is not actually modified in any way.
1730         */
1731        mwait_ptr = &current_thread_info()->flags;
1732
1733        wbinvd();
1734
1735        while (1) {
1736                /*
1737                 * The CLFLUSH is a workaround for erratum AAI65 for
1738                 * the Xeon 7400 series.  It's not clear it is actually
1739                 * needed, but it should be harmless in either case.
1740                 * The WBINVD is insufficient due to the spurious-wakeup
1741                 * case where we return around the loop.
1742                 */
1743                mb();
1744                clflush(mwait_ptr);
1745                mb();
1746                __monitor(mwait_ptr, 0, 0);
1747                mb();
1748                __mwait(eax, 0);
1749
1750                cond_wakeup_cpu0();
1751        }
1752}
1753
1754void hlt_play_dead(void)
1755{
1756        if (__this_cpu_read(cpu_info.x86) >= 4)
1757                wbinvd();
1758
1759        while (1) {
1760                native_halt();
1761
1762                cond_wakeup_cpu0();
1763        }
1764}
1765
1766void native_play_dead(void)
1767{
1768        play_dead_common();
1769        tboot_shutdown(TB_SHUTDOWN_WFS);
1770
1771        mwait_play_dead();      /* Only returns on failure */
1772        if (cpuidle_play_dead())
1773                hlt_play_dead();
1774}
1775
1776#else /* ... !CONFIG_HOTPLUG_CPU */
1777int native_cpu_disable(void)
1778{
1779        return -ENOSYS;
1780}
1781
1782void native_cpu_die(unsigned int cpu)
1783{
1784        /* We said "no" in __cpu_disable */
1785        BUG();
1786}
1787
1788void native_play_dead(void)
1789{
1790        BUG();
1791}
1792
1793#endif
1794
1795#ifdef CONFIG_X86_64
1796/*
1797 * APERF/MPERF frequency ratio computation.
1798 *
1799 * The scheduler wants to do frequency invariant accounting and needs a <1
1800 * ratio to account for the 'current' frequency, corresponding to
1801 * freq_curr / freq_max.
1802 *
1803 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1804 * our P-state setting is little more than a request/hint, we need to observe
1805 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1806 * interval after discarding idle time. This is given by:
1807 *
1808 *   BusyMHz = delta_APERF / delta_MPERF * freq_base
1809 *
1810 * where freq_base is the max non-turbo P-state.
1811 *
1812 * The freq_max term has to be set to a somewhat arbitrary value, because we
1813 * can't know which turbo states will be available at a given point in time:
1814 * it all depends on the thermal headroom of the entire package. We set it to
1815 * the turbo level with 4 cores active.
1816 *
1817 * Benchmarks show that's a good compromise between the 1C turbo ratio
1818 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1819 * which would ignore the entire turbo range (a conspicuous part, making
1820 * freq_curr/freq_max always maxed out).
1821 *
1822 * An exception to the heuristic above is the Atom uarch, where we choose the
1823 * highest turbo level for freq_max since Atom's are generally oriented towards
1824 * power efficiency.
1825 *
1826 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1827 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1828 */
1829
1830DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1831
1832static DEFINE_PER_CPU(u64, arch_prev_aperf);
1833static DEFINE_PER_CPU(u64, arch_prev_mperf);
1834static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1835static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1836
1837void arch_set_max_freq_ratio(bool turbo_disabled)
1838{
1839        arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1840                                        arch_turbo_freq_ratio;
1841}
1842EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1843
1844static bool turbo_disabled(void)
1845{
1846        u64 misc_en;
1847        int err;
1848
1849        err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1850        if (err)
1851                return false;
1852
1853        return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1854}
1855
1856static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1857{
1858        int err;
1859
1860        err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1861        if (err)
1862                return false;
1863
1864        err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1865        if (err)
1866                return false;
1867
1868        *base_freq = (*base_freq >> 16) & 0x3F;     /* max P state */
1869        *turbo_freq = *turbo_freq & 0x3F;           /* 1C turbo    */
1870
1871        return true;
1872}
1873
1874#define X86_MATCH(model)                                        \
1875        X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6,            \
1876                INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1877
1878static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1879        X86_MATCH(XEON_PHI_KNL),
1880        X86_MATCH(XEON_PHI_KNM),
1881        {}
1882};
1883
1884static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1885        X86_MATCH(SKYLAKE_X),
1886        {}
1887};
1888
1889static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1890        X86_MATCH(ATOM_GOLDMONT),
1891        X86_MATCH(ATOM_GOLDMONT_D),
1892        X86_MATCH(ATOM_GOLDMONT_PLUS),
1893        {}
1894};
1895
1896static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1897                                int num_delta_fratio)
1898{
1899        int fratio, delta_fratio, found;
1900        int err, i;
1901        u64 msr;
1902
1903        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1904        if (err)
1905                return false;
1906
1907        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1908
1909        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1910        if (err)
1911                return false;
1912
1913        fratio = (msr >> 8) & 0xFF;
1914        i = 16;
1915        found = 0;
1916        do {
1917                if (found >= num_delta_fratio) {
1918                        *turbo_freq = fratio;
1919                        return true;
1920                }
1921
1922                delta_fratio = (msr >> (i + 5)) & 0x7;
1923
1924                if (delta_fratio) {
1925                        found += 1;
1926                        fratio -= delta_fratio;
1927                }
1928
1929                i += 8;
1930        } while (i < 64);
1931
1932        return true;
1933}
1934
1935static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1936{
1937        u64 ratios, counts;
1938        u32 group_size;
1939        int err, i;
1940
1941        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1942        if (err)
1943                return false;
1944
1945        *base_freq = (*base_freq >> 8) & 0xFF;      /* max P state */
1946
1947        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
1948        if (err)
1949                return false;
1950
1951        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
1952        if (err)
1953                return false;
1954
1955        for (i = 0; i < 64; i += 8) {
1956                group_size = (counts >> i) & 0xFF;
1957                if (group_size >= size) {
1958                        *turbo_freq = (ratios >> i) & 0xFF;
1959                        return true;
1960                }
1961        }
1962
1963        return false;
1964}
1965
1966static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1967{
1968        u64 msr;
1969        int err;
1970
1971        err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1972        if (err)
1973                return false;
1974
1975        err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1976        if (err)
1977                return false;
1978
1979        *base_freq = (*base_freq >> 8) & 0xFF;    /* max P state */
1980        *turbo_freq = (msr >> 24) & 0xFF;         /* 4C turbo    */
1981
1982        /* The CPU may have less than 4 cores */
1983        if (!*turbo_freq)
1984                *turbo_freq = msr & 0xFF;         /* 1C turbo    */
1985
1986        return true;
1987}
1988
1989static bool intel_set_max_freq_ratio(void)
1990{
1991        u64 base_freq, turbo_freq;
1992        u64 turbo_ratio;
1993
1994        if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
1995                goto out;
1996
1997        if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
1998            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
1999                goto out;
2000
2001        if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2002            knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2003                goto out;
2004
2005        if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2006            skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2007                goto out;
2008
2009        if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2010                goto out;
2011
2012        return false;
2013
2014out:
2015        /*
2016         * Some hypervisors advertise X86_FEATURE_APERFMPERF
2017         * but then fill all MSR's with zeroes.
2018         * Some CPUs have turbo boost but don't declare any turbo ratio
2019         * in MSR_TURBO_RATIO_LIMIT.
2020         */
2021        if (!base_freq || !turbo_freq) {
2022                pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2023                return false;
2024        }
2025
2026        turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2027        if (!turbo_ratio) {
2028                pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2029                return false;
2030        }
2031
2032        arch_turbo_freq_ratio = turbo_ratio;
2033        arch_set_max_freq_ratio(turbo_disabled());
2034
2035        return true;
2036}
2037
2038#ifdef CONFIG_ACPI_CPPC_LIB
2039static bool amd_set_max_freq_ratio(void)
2040{
2041        struct cppc_perf_caps perf_caps;
2042        u64 highest_perf, nominal_perf;
2043        u64 perf_ratio;
2044        int rc;
2045
2046        rc = cppc_get_perf_caps(0, &perf_caps);
2047        if (rc) {
2048                pr_debug("Could not retrieve perf counters (%d)\n", rc);
2049                return false;
2050        }
2051
2052        highest_perf = amd_get_highest_perf();
2053        nominal_perf = perf_caps.nominal_perf;
2054
2055        if (!highest_perf || !nominal_perf) {
2056                pr_debug("Could not retrieve highest or nominal performance\n");
2057                return false;
2058        }
2059
2060        perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2061        /* midpoint between max_boost and max_P */
2062        perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2063        if (!perf_ratio) {
2064                pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2065                return false;
2066        }
2067
2068        arch_turbo_freq_ratio = perf_ratio;
2069        arch_set_max_freq_ratio(false);
2070
2071        return true;
2072}
2073#else
2074static bool amd_set_max_freq_ratio(void)
2075{
2076        return false;
2077}
2078#endif
2079
2080static void init_counter_refs(void)
2081{
2082        u64 aperf, mperf;
2083
2084        rdmsrl(MSR_IA32_APERF, aperf);
2085        rdmsrl(MSR_IA32_MPERF, mperf);
2086
2087        this_cpu_write(arch_prev_aperf, aperf);
2088        this_cpu_write(arch_prev_mperf, mperf);
2089}
2090
2091#ifdef CONFIG_PM_SLEEP
2092static struct syscore_ops freq_invariance_syscore_ops = {
2093        .resume = init_counter_refs,
2094};
2095
2096static void register_freq_invariance_syscore_ops(void)
2097{
2098        /* Bail out if registered already. */
2099        if (freq_invariance_syscore_ops.node.prev)
2100                return;
2101
2102        register_syscore_ops(&freq_invariance_syscore_ops);
2103}
2104#else
2105static inline void register_freq_invariance_syscore_ops(void) {}
2106#endif
2107
2108static void init_freq_invariance(bool secondary, bool cppc_ready)
2109{
2110        bool ret = false;
2111
2112        if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2113                return;
2114
2115        if (secondary) {
2116                if (static_branch_likely(&arch_scale_freq_key)) {
2117                        init_counter_refs();
2118                }
2119                return;
2120        }
2121
2122        if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2123                ret = intel_set_max_freq_ratio();
2124        else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2125                if (!cppc_ready) {
2126                        return;
2127                }
2128                ret = amd_set_max_freq_ratio();
2129        }
2130
2131        if (ret) {
2132                init_counter_refs();
2133                static_branch_enable(&arch_scale_freq_key);
2134                register_freq_invariance_syscore_ops();
2135                pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2136        } else {
2137                pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2138        }
2139}
2140
2141#ifdef CONFIG_ACPI_CPPC_LIB
2142static DEFINE_MUTEX(freq_invariance_lock);
2143
2144void init_freq_invariance_cppc(void)
2145{
2146        static bool secondary;
2147
2148        mutex_lock(&freq_invariance_lock);
2149
2150        init_freq_invariance(secondary, true);
2151        secondary = true;
2152
2153        mutex_unlock(&freq_invariance_lock);
2154}
2155#endif
2156
2157static void disable_freq_invariance_workfn(struct work_struct *work)
2158{
2159        static_branch_disable(&arch_scale_freq_key);
2160}
2161
2162static DECLARE_WORK(disable_freq_invariance_work,
2163                    disable_freq_invariance_workfn);
2164
2165DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2166
2167void arch_scale_freq_tick(void)
2168{
2169        u64 freq_scale = SCHED_CAPACITY_SCALE;
2170        u64 aperf, mperf;
2171        u64 acnt, mcnt;
2172
2173        if (!arch_scale_freq_invariant())
2174                return;
2175
2176        rdmsrl(MSR_IA32_APERF, aperf);
2177        rdmsrl(MSR_IA32_MPERF, mperf);
2178
2179        acnt = aperf - this_cpu_read(arch_prev_aperf);
2180        mcnt = mperf - this_cpu_read(arch_prev_mperf);
2181
2182        this_cpu_write(arch_prev_aperf, aperf);
2183        this_cpu_write(arch_prev_mperf, mperf);
2184
2185        if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2186                goto error;
2187
2188        if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2189                goto error;
2190
2191        freq_scale = div64_u64(acnt, mcnt);
2192        if (!freq_scale)
2193                goto error;
2194
2195        if (freq_scale > SCHED_CAPACITY_SCALE)
2196                freq_scale = SCHED_CAPACITY_SCALE;
2197
2198        this_cpu_write(arch_freq_scale, freq_scale);
2199        return;
2200
2201error:
2202        pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2203        schedule_work(&disable_freq_invariance_work);
2204}
2205#else
2206static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2207{
2208}
2209#endif /* CONFIG_X86_64 */
2210