linux/arch/x86/kernel/tsc_msr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * TSC frequency enumeration via MSR
   4 *
   5 * Copyright (C) 2013, 2018 Intel Corporation
   6 * Author: Bin Gao <bin.gao@intel.com>
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/thread_info.h>
  11
  12#include <asm/apic.h>
  13#include <asm/cpu_device_id.h>
  14#include <asm/intel-family.h>
  15#include <asm/msr.h>
  16#include <asm/param.h>
  17#include <asm/tsc.h>
  18
  19#define MAX_NUM_FREQS   16 /* 4 bits to select the frequency */
  20
  21/*
  22 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
  23 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
  24 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
  25 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
  26 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
  27 * if there is another PLL in between.
  28 * This does not matter though, we can model the chain of PLLs as a single PLL
  29 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
  30 * So we can create a simplified model of the CPU clock setup using a reference
  31 * clock of 100 MHz plus a quotient which gets us as close to the frequency
  32 * from the SDM as possible.
  33 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
  34 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
  35 */
  36#define TSC_REFERENCE_KHZ 100000
  37
  38struct muldiv {
  39        u32 multiplier;
  40        u32 divider;
  41};
  42
  43/*
  44 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
  45 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
  46 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
  47 * so we need manually differentiate SoC families. This is what the
  48 * field use_msr_plat does.
  49 */
  50struct freq_desc {
  51        bool use_msr_plat;
  52        struct muldiv muldiv[MAX_NUM_FREQS];
  53        /*
  54         * Some CPU frequencies in the SDM do not map to known PLL freqs, in
  55         * that case the muldiv array is empty and the freqs array is used.
  56         */
  57        u32 freqs[MAX_NUM_FREQS];
  58        u32 mask;
  59};
  60
  61/*
  62 * Penwell and Clovertrail use spread spectrum clock,
  63 * so the freq number is not exactly the same as reported
  64 * by MSR based on SDM.
  65 */
  66static const struct freq_desc freq_desc_pnw = {
  67        .use_msr_plat = false,
  68        .freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
  69        .mask = 0x07,
  70};
  71
  72static const struct freq_desc freq_desc_clv = {
  73        .use_msr_plat = false,
  74        .freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
  75        .mask = 0x07,
  76};
  77
  78/*
  79 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
  80 *  000:   100 *  5 /  6  =  83.3333 MHz
  81 *  001:   100 *  1 /  1  = 100.0000 MHz
  82 *  010:   100 *  4 /  3  = 133.3333 MHz
  83 *  011:   100 *  7 /  6  = 116.6667 MHz
  84 *  100:   100 *  4 /  5  =  80.0000 MHz
  85 */
  86static const struct freq_desc freq_desc_byt = {
  87        .use_msr_plat = true,
  88        .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
  89                    { 4, 5 } },
  90        .mask = 0x07,
  91};
  92
  93/*
  94 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
  95 * 0000:   100 *  5 /  6  =  83.3333 MHz
  96 * 0001:   100 *  1 /  1  = 100.0000 MHz
  97 * 0010:   100 *  4 /  3  = 133.3333 MHz
  98 * 0011:   100 *  7 /  6  = 116.6667 MHz
  99 * 0100:   100 *  4 /  5  =  80.0000 MHz
 100 * 0101:   100 * 14 / 15  =  93.3333 MHz
 101 * 0110:   100 *  9 / 10  =  90.0000 MHz
 102 * 0111:   100 *  8 /  9  =  88.8889 MHz
 103 * 1000:   100 *  7 /  8  =  87.5000 MHz
 104 */
 105static const struct freq_desc freq_desc_cht = {
 106        .use_msr_plat = true,
 107        .muldiv = { { 5, 6 }, {  1,  1 }, { 4,  3 }, { 7, 6 },
 108                    { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
 109                    { 7, 8 } },
 110        .mask = 0x0f,
 111};
 112
 113/*
 114 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
 115 * 0001:   100 *  1 /  1  = 100.0000 MHz
 116 * 0010:   100 *  4 /  3  = 133.3333 MHz
 117 */
 118static const struct freq_desc freq_desc_tng = {
 119        .use_msr_plat = true,
 120        .muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
 121        .mask = 0x07,
 122};
 123
 124/*
 125 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
 126 * 0000:   100 *  5 /  6  =  83.3333 MHz
 127 * 0001:   100 *  1 /  1  = 100.0000 MHz
 128 * 0010:   100 *  4 /  3  = 133.3333 MHz
 129 * 0011:   100 *  1 /  1  = 100.0000 MHz
 130 */
 131static const struct freq_desc freq_desc_ann = {
 132        .use_msr_plat = true,
 133        .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
 134        .mask = 0x0f,
 135};
 136
 137/*
 138 * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
 139 * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
 140 * so all the frequency entries are 78000.
 141 */
 142static const struct freq_desc freq_desc_lgm = {
 143        .use_msr_plat = true,
 144        .freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
 145                   78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
 146        .mask = 0x0f,
 147};
 148
 149static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
 150        X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_MID,   &freq_desc_pnw),
 151        X86_MATCH_INTEL_FAM6_MODEL(ATOM_SALTWELL_TABLET,&freq_desc_clv),
 152        X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT,     &freq_desc_byt),
 153        X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &freq_desc_tng),
 154        X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT,        &freq_desc_cht),
 155        X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID,    &freq_desc_ann),
 156        X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_NP,     &freq_desc_lgm),
 157        {}
 158};
 159
 160/*
 161 * MSR-based CPU/TSC frequency discovery for certain CPUs.
 162 *
 163 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
 164 * Return processor base frequency in KHz, or 0 on failure.
 165 */
 166unsigned long cpu_khz_from_msr(void)
 167{
 168        u32 lo, hi, ratio, freq, tscref;
 169        const struct freq_desc *freq_desc;
 170        const struct x86_cpu_id *id;
 171        const struct muldiv *md;
 172        unsigned long res;
 173        int index;
 174
 175        id = x86_match_cpu(tsc_msr_cpu_ids);
 176        if (!id)
 177                return 0;
 178
 179        freq_desc = (struct freq_desc *)id->driver_data;
 180        if (freq_desc->use_msr_plat) {
 181                rdmsr(MSR_PLATFORM_INFO, lo, hi);
 182                ratio = (lo >> 8) & 0xff;
 183        } else {
 184                rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
 185                ratio = (hi >> 8) & 0x1f;
 186        }
 187
 188        /* Get FSB FREQ ID */
 189        rdmsr(MSR_FSB_FREQ, lo, hi);
 190        index = lo & freq_desc->mask;
 191        md = &freq_desc->muldiv[index];
 192
 193        /*
 194         * Note this also catches cases where the index points to an unpopulated
 195         * part of muldiv, in that case the else will set freq and res to 0.
 196         */
 197        if (md->divider) {
 198                tscref = TSC_REFERENCE_KHZ * md->multiplier;
 199                freq = DIV_ROUND_CLOSEST(tscref, md->divider);
 200                /*
 201                 * Multiplying by ratio before the division has better
 202                 * accuracy than just calculating freq * ratio.
 203                 */
 204                res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
 205        } else {
 206                freq = freq_desc->freqs[index];
 207                res = freq * ratio;
 208        }
 209
 210        if (freq == 0)
 211                pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
 212
 213#ifdef CONFIG_X86_LOCAL_APIC
 214        lapic_timer_period = (freq * 1000) / HZ;
 215#endif
 216
 217        /*
 218         * TSC frequency determined by MSR is always considered "known"
 219         * because it is reported by HW.
 220         * Another fact is that on MSR capable platforms, PIT/HPET is
 221         * generally not available so calibration won't work at all.
 222         */
 223        setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 224
 225        /*
 226         * Unfortunately there is no way for hardware to tell whether the
 227         * TSC is reliable.  We were told by silicon design team that TSC
 228         * on Atom SoCs are always "reliable". TSC is also the only
 229         * reliable clocksource on these SoCs (HPET is either not present
 230         * or not functional) so mark TSC reliable which removes the
 231         * requirement for a watchdog clocksource.
 232         */
 233        setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 234
 235        return res;
 236}
 237