linux/arch/x86/kernel/uprobes.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *      Srikar Dronamraju
   8 *      Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15
  16#include <linux/kdebug.h>
  17#include <asm/processor.h>
  18#include <asm/insn.h>
  19#include <asm/mmu_context.h>
  20
  21/* Post-execution fixups. */
  22
  23/* Adjust IP back to vicinity of actual insn */
  24#define UPROBE_FIX_IP           0x01
  25
  26/* Adjust the return address of a call insn */
  27#define UPROBE_FIX_CALL         0x02
  28
  29/* Instruction will modify TF, don't change it */
  30#define UPROBE_FIX_SETF         0x04
  31
  32#define UPROBE_FIX_RIP_SI       0x08
  33#define UPROBE_FIX_RIP_DI       0x10
  34#define UPROBE_FIX_RIP_BX       0x20
  35#define UPROBE_FIX_RIP_MASK     \
  36        (UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  37
  38#define UPROBE_TRAP_NR          UINT_MAX
  39
  40/* Adaptations for mhiramat x86 decoder v14. */
  41#define OPCODE1(insn)           ((insn)->opcode.bytes[0])
  42#define OPCODE2(insn)           ((insn)->opcode.bytes[1])
  43#define OPCODE3(insn)           ((insn)->opcode.bytes[2])
  44#define MODRM_REG(insn)         X86_MODRM_REG((insn)->modrm.value)
  45
  46#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  47        (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  48          (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  49          (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  50          (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  51         << (row % 32))
  52
  53/*
  54 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  55 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  56 * some versions of gcc to think only *(unsigned long*) is used.
  57 *
  58 * Opcodes we'll probably never support:
  59 * 6c-6f - ins,outs. SEGVs if used in userspace
  60 * e4-e7 - in,out imm. SEGVs if used in userspace
  61 * ec-ef - in,out acc. SEGVs if used in userspace
  62 * cc - int3. SIGTRAP if used in userspace
  63 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  64 *      (why we support bound (62) then? it's similar, and similarly unused...)
  65 * f1 - int1. SIGTRAP if used in userspace
  66 * f4 - hlt. SEGVs if used in userspace
  67 * fa - cli. SEGVs if used in userspace
  68 * fb - sti. SEGVs if used in userspace
  69 *
  70 * Opcodes which need some work to be supported:
  71 * 07,17,1f - pop es/ss/ds
  72 *      Normally not used in userspace, but would execute if used.
  73 *      Can cause GP or stack exception if tries to load wrong segment descriptor.
  74 *      We hesitate to run them under single step since kernel's handling
  75 *      of userspace single-stepping (TF flag) is fragile.
  76 *      We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  77 *      on the same grounds that they are never used.
  78 * cd - int N.
  79 *      Used by userspace for "int 80" syscall entry. (Other "int N"
  80 *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  81 *      Not supported since kernel's handling of userspace single-stepping
  82 *      (TF flag) is fragile.
  83 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  84 */
  85#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  86static volatile u32 good_insns_32[256 / 32] = {
  87        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  88        /*      ----------------------------------------------         */
  89        W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  90        W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  91        W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  92        W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  93        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  94        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  95        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  96        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  97        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  98        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  99        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 100        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 101        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 102        W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 103        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 104        W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 105        /*      ----------------------------------------------         */
 106        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 107};
 108#else
 109#define good_insns_32   NULL
 110#endif
 111
 112/* Good-instruction tables for 64-bit apps.
 113 *
 114 * Genuinely invalid opcodes:
 115 * 06,07 - formerly push/pop es
 116 * 0e - formerly push cs
 117 * 16,17 - formerly push/pop ss
 118 * 1e,1f - formerly push/pop ds
 119 * 27,2f,37,3f - formerly daa/das/aaa/aas
 120 * 60,61 - formerly pusha/popa
 121 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 122 * 82 - formerly redundant encoding of Group1
 123 * 9a - formerly call seg:ofs
 124 * ce - formerly into
 125 * d4,d5 - formerly aam/aad
 126 * d6 - formerly undocumented salc
 127 * ea - formerly jmp seg:ofs
 128 *
 129 * Opcodes we'll probably never support:
 130 * 6c-6f - ins,outs. SEGVs if used in userspace
 131 * e4-e7 - in,out imm. SEGVs if used in userspace
 132 * ec-ef - in,out acc. SEGVs if used in userspace
 133 * cc - int3. SIGTRAP if used in userspace
 134 * f1 - int1. SIGTRAP if used in userspace
 135 * f4 - hlt. SEGVs if used in userspace
 136 * fa - cli. SEGVs if used in userspace
 137 * fb - sti. SEGVs if used in userspace
 138 *
 139 * Opcodes which need some work to be supported:
 140 * cd - int N.
 141 *      Used by userspace for "int 80" syscall entry. (Other "int N"
 142 *      cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 143 *      Not supported since kernel's handling of userspace single-stepping
 144 *      (TF flag) is fragile.
 145 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 146 */
 147#if defined(CONFIG_X86_64)
 148static volatile u32 good_insns_64[256 / 32] = {
 149        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 150        /*      ----------------------------------------------         */
 151        W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 152        W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 153        W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 154        W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 155        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 156        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 157        W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 158        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 159        W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 160        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 161        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 162        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 163        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 164        W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 165        W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 166        W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 167        /*      ----------------------------------------------         */
 168        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 169};
 170#else
 171#define good_insns_64   NULL
 172#endif
 173
 174/* Using this for both 64-bit and 32-bit apps.
 175 * Opcodes we don't support:
 176 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 177 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 178 *      Also encodes tons of other system insns if mod=11.
 179 *      Some are in fact non-system: xend, xtest, rdtscp, maybe more
 180 * 0f 05 - syscall
 181 * 0f 06 - clts (CPL0 insn)
 182 * 0f 07 - sysret
 183 * 0f 08 - invd (CPL0 insn)
 184 * 0f 09 - wbinvd (CPL0 insn)
 185 * 0f 0b - ud2
 186 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 187 * 0f 34 - sysenter
 188 * 0f 35 - sysexit
 189 * 0f 37 - getsec
 190 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 191 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 192 *      Note: with prefixes, these two opcodes are
 193 *      extrq/insertq/AVX512 convert vector ops.
 194 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 195 *      {rd,wr}{fs,gs}base,{s,l,m}fence.
 196 *      Why? They are all user-executable.
 197 */
 198static volatile u32 good_2byte_insns[256 / 32] = {
 199        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 200        /*      ----------------------------------------------         */
 201        W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 202        W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 203        W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 204        W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 205        W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 206        W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 207        W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 208        W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 209        W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 210        W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 211        W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 212        W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 213        W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 214        W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 215        W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 216        W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 217        /*      ----------------------------------------------         */
 218        /*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 219};
 220#undef W
 221
 222/*
 223 * opcodes we may need to refine support for:
 224 *
 225 *  0f - 2-byte instructions: For many of these instructions, the validity
 226 *  depends on the prefix and/or the reg field.  On such instructions, we
 227 *  just consider the opcode combination valid if it corresponds to any
 228 *  valid instruction.
 229 *
 230 *  8f - Group 1 - only reg = 0 is OK
 231 *  c6-c7 - Group 11 - only reg = 0 is OK
 232 *  d9-df - fpu insns with some illegal encodings
 233 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 234 *  certain floating-point instructions, such as addsd.
 235 *
 236 *  fe - Group 4 - only reg = 0 or 1 is OK
 237 *  ff - Group 5 - only reg = 0-6 is OK
 238 *
 239 * others -- Do we need to support these?
 240 *
 241 *  0f - (floating-point?) prefetch instructions
 242 *  07, 17, 1f - pop es, pop ss, pop ds
 243 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 244 *      but 64 and 65 (fs: and gs:) seem to be used, so we support them
 245 *  67 - addr16 prefix
 246 *  ce - into
 247 *  f0 - lock prefix
 248 */
 249
 250/*
 251 * TODO:
 252 * - Where necessary, examine the modrm byte and allow only valid instructions
 253 * in the different Groups and fpu instructions.
 254 */
 255
 256static bool is_prefix_bad(struct insn *insn)
 257{
 258        insn_byte_t p;
 259        int i;
 260
 261        for_each_insn_prefix(insn, i, p) {
 262                insn_attr_t attr;
 263
 264                attr = inat_get_opcode_attribute(p);
 265                switch (attr) {
 266                case INAT_MAKE_PREFIX(INAT_PFX_ES):
 267                case INAT_MAKE_PREFIX(INAT_PFX_CS):
 268                case INAT_MAKE_PREFIX(INAT_PFX_DS):
 269                case INAT_MAKE_PREFIX(INAT_PFX_SS):
 270                case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 271                        return true;
 272                }
 273        }
 274        return false;
 275}
 276
 277static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 278{
 279        enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 280        u32 volatile *good_insns;
 281        int ret;
 282
 283        ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 284        if (ret < 0)
 285                return -ENOEXEC;
 286
 287        if (is_prefix_bad(insn))
 288                return -ENOTSUPP;
 289
 290        /* We should not singlestep on the exception masking instructions */
 291        if (insn_masking_exception(insn))
 292                return -ENOTSUPP;
 293
 294        if (x86_64)
 295                good_insns = good_insns_64;
 296        else
 297                good_insns = good_insns_32;
 298
 299        if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 300                return 0;
 301
 302        if (insn->opcode.nbytes == 2) {
 303                if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 304                        return 0;
 305        }
 306
 307        return -ENOTSUPP;
 308}
 309
 310#ifdef CONFIG_X86_64
 311/*
 312 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 313 * immediately.  Otherwise, rewrite the instruction so that it accesses
 314 * its memory operand indirectly through a scratch register.  Set
 315 * defparam->fixups accordingly. (The contents of the scratch register
 316 * will be saved before we single-step the modified instruction,
 317 * and restored afterward).
 318 *
 319 * We do this because a rip-relative instruction can access only a
 320 * relatively small area (+/- 2 GB from the instruction), and the XOL
 321 * area typically lies beyond that area.  At least for instructions
 322 * that store to memory, we can't execute the original instruction
 323 * and "fix things up" later, because the misdirected store could be
 324 * disastrous.
 325 *
 326 * Some useful facts about rip-relative instructions:
 327 *
 328 *  - There's always a modrm byte with bit layout "00 reg 101".
 329 *  - There's never a SIB byte.
 330 *  - The displacement is always 4 bytes.
 331 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 332 *    has no effect on rip-relative mode. It doesn't make modrm byte
 333 *    with r/m=101 refer to register 1101 = R13.
 334 */
 335static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 336{
 337        u8 *cursor;
 338        u8 reg;
 339        u8 reg2;
 340
 341        if (!insn_rip_relative(insn))
 342                return;
 343
 344        /*
 345         * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 346         * Clear REX.b bit (extension of MODRM.rm field):
 347         * we want to encode low numbered reg, not r8+.
 348         */
 349        if (insn->rex_prefix.nbytes) {
 350                cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 351                /* REX byte has 0100wrxb layout, clearing REX.b bit */
 352                *cursor &= 0xfe;
 353        }
 354        /*
 355         * Similar treatment for VEX3/EVEX prefix.
 356         * TODO: add XOP treatment when insn decoder supports them
 357         */
 358        if (insn->vex_prefix.nbytes >= 3) {
 359                /*
 360                 * vex2:     c5    rvvvvLpp   (has no b bit)
 361                 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 362                 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 363                 * Setting VEX3.b (setting because it has inverted meaning).
 364                 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 365                 * is the 4th bit of MODRM.rm, and needs the same treatment.
 366                 * For VEX3-encoded insns, VEX3.x value has no effect in
 367                 * non-SIB encoding, the change is superfluous but harmless.
 368                 */
 369                cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 370                *cursor |= 0x60;
 371        }
 372
 373        /*
 374         * Convert from rip-relative addressing to register-relative addressing
 375         * via a scratch register.
 376         *
 377         * This is tricky since there are insns with modrm byte
 378         * which also use registers not encoded in modrm byte:
 379         * [i]div/[i]mul: implicitly use dx:ax
 380         * shift ops: implicitly use cx
 381         * cmpxchg: implicitly uses ax
 382         * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 383         *   Encoding: 0f c7/1 modrm
 384         *   The code below thinks that reg=1 (cx), chooses si as scratch.
 385         * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 386         *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 387         *   Example where none of bx,cx,dx can be used as scratch reg:
 388         *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 389         * [v]pcmpistri: implicitly uses cx, xmm0
 390         * [v]pcmpistrm: implicitly uses xmm0
 391         * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 392         * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 393         *   Evil SSE4.2 string comparison ops from hell.
 394         * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 395         *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 396         *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 397         *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 398         *   and that it can have only register operands, not mem
 399         *   (its modrm byte must have mode=11).
 400         *   If these restrictions will ever be lifted,
 401         *   we'll need code to prevent selection of di as scratch reg!
 402         *
 403         * Summary: I don't know any insns with modrm byte which
 404         * use SI register implicitly. DI register is used only
 405         * by one insn (maskmovq) and BX register is used
 406         * only by one too (cmpxchg8b).
 407         * BP is stack-segment based (may be a problem?).
 408         * AX, DX, CX are off-limits (many implicit users).
 409         * SP is unusable (it's stack pointer - think about "pop mem";
 410         * also, rsp+disp32 needs sib encoding -> insn length change).
 411         */
 412
 413        reg = MODRM_REG(insn);  /* Fetch modrm.reg */
 414        reg2 = 0xff;            /* Fetch vex.vvvv */
 415        if (insn->vex_prefix.nbytes)
 416                reg2 = insn->vex_prefix.bytes[2];
 417        /*
 418         * TODO: add XOP vvvv reading.
 419         *
 420         * vex.vvvv field is in bits 6-3, bits are inverted.
 421         * But in 32-bit mode, high-order bit may be ignored.
 422         * Therefore, let's consider only 3 low-order bits.
 423         */
 424        reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 425        /*
 426         * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 427         *
 428         * Choose scratch reg. Order is important: must not select bx
 429         * if we can use si (cmpxchg8b case!)
 430         */
 431        if (reg != 6 && reg2 != 6) {
 432                reg2 = 6;
 433                auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 434        } else if (reg != 7 && reg2 != 7) {
 435                reg2 = 7;
 436                auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 437                /* TODO (paranoia): force maskmovq to not use di */
 438        } else {
 439                reg2 = 3;
 440                auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 441        }
 442        /*
 443         * Point cursor at the modrm byte.  The next 4 bytes are the
 444         * displacement.  Beyond the displacement, for some instructions,
 445         * is the immediate operand.
 446         */
 447        cursor = auprobe->insn + insn_offset_modrm(insn);
 448        /*
 449         * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 450         * 89 05 disp32  mov %eax,disp32(%rip) becomes
 451         * 89 86 disp32  mov %eax,disp32(%rsi)
 452         */
 453        *cursor = 0x80 | (reg << 3) | reg2;
 454}
 455
 456static inline unsigned long *
 457scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 458{
 459        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 460                return &regs->si;
 461        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 462                return &regs->di;
 463        return &regs->bx;
 464}
 465
 466/*
 467 * If we're emulating a rip-relative instruction, save the contents
 468 * of the scratch register and store the target address in that register.
 469 */
 470static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 471{
 472        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 473                struct uprobe_task *utask = current->utask;
 474                unsigned long *sr = scratch_reg(auprobe, regs);
 475
 476                utask->autask.saved_scratch_register = *sr;
 477                *sr = utask->vaddr + auprobe->defparam.ilen;
 478        }
 479}
 480
 481static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 482{
 483        if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 484                struct uprobe_task *utask = current->utask;
 485                unsigned long *sr = scratch_reg(auprobe, regs);
 486
 487                *sr = utask->autask.saved_scratch_register;
 488        }
 489}
 490#else /* 32-bit: */
 491/*
 492 * No RIP-relative addressing on 32-bit
 493 */
 494static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 495{
 496}
 497static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 498{
 499}
 500static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 501{
 502}
 503#endif /* CONFIG_X86_64 */
 504
 505struct uprobe_xol_ops {
 506        bool    (*emulate)(struct arch_uprobe *, struct pt_regs *);
 507        int     (*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 508        int     (*post_xol)(struct arch_uprobe *, struct pt_regs *);
 509        void    (*abort)(struct arch_uprobe *, struct pt_regs *);
 510};
 511
 512static inline int sizeof_long(struct pt_regs *regs)
 513{
 514        /*
 515         * Check registers for mode as in_xxx_syscall() does not apply here.
 516         */
 517        return user_64bit_mode(regs) ? 8 : 4;
 518}
 519
 520static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 521{
 522        riprel_pre_xol(auprobe, regs);
 523        return 0;
 524}
 525
 526static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 527{
 528        unsigned long new_sp = regs->sp - sizeof_long(regs);
 529
 530        if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 531                return -EFAULT;
 532
 533        regs->sp = new_sp;
 534        return 0;
 535}
 536
 537/*
 538 * We have to fix things up as follows:
 539 *
 540 * Typically, the new ip is relative to the copied instruction.  We need
 541 * to make it relative to the original instruction (FIX_IP).  Exceptions
 542 * are return instructions and absolute or indirect jump or call instructions.
 543 *
 544 * If the single-stepped instruction was a call, the return address that
 545 * is atop the stack is the address following the copied instruction.  We
 546 * need to make it the address following the original instruction (FIX_CALL).
 547 *
 548 * If the original instruction was a rip-relative instruction such as
 549 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 550 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 551 * We need to restore the contents of the scratch register
 552 * (FIX_RIP_reg).
 553 */
 554static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 555{
 556        struct uprobe_task *utask = current->utask;
 557
 558        riprel_post_xol(auprobe, regs);
 559        if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 560                long correction = utask->vaddr - utask->xol_vaddr;
 561                regs->ip += correction;
 562        } else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 563                regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 564                if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 565                        return -ERESTART;
 566        }
 567        /* popf; tell the caller to not touch TF */
 568        if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 569                utask->autask.saved_tf = true;
 570
 571        return 0;
 572}
 573
 574static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576        riprel_post_xol(auprobe, regs);
 577}
 578
 579static const struct uprobe_xol_ops default_xol_ops = {
 580        .pre_xol  = default_pre_xol_op,
 581        .post_xol = default_post_xol_op,
 582        .abort    = default_abort_op,
 583};
 584
 585static bool branch_is_call(struct arch_uprobe *auprobe)
 586{
 587        return auprobe->branch.opc1 == 0xe8;
 588}
 589
 590#define CASE_COND                                       \
 591        COND(70, 71, XF(OF))                            \
 592        COND(72, 73, XF(CF))                            \
 593        COND(74, 75, XF(ZF))                            \
 594        COND(78, 79, XF(SF))                            \
 595        COND(7a, 7b, XF(PF))                            \
 596        COND(76, 77, XF(CF) || XF(ZF))                  \
 597        COND(7c, 7d, XF(SF) != XF(OF))                  \
 598        COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 599
 600#define COND(op_y, op_n, expr)                          \
 601        case 0x ## op_y: DO((expr) != 0)                \
 602        case 0x ## op_n: DO((expr) == 0)
 603
 604#define XF(xf)  (!!(flags & X86_EFLAGS_ ## xf))
 605
 606static bool is_cond_jmp_opcode(u8 opcode)
 607{
 608        switch (opcode) {
 609        #define DO(expr)        \
 610                return true;
 611        CASE_COND
 612        #undef  DO
 613
 614        default:
 615                return false;
 616        }
 617}
 618
 619static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 620{
 621        unsigned long flags = regs->flags;
 622
 623        switch (auprobe->branch.opc1) {
 624        #define DO(expr)        \
 625                return expr;
 626        CASE_COND
 627        #undef  DO
 628
 629        default:        /* not a conditional jmp */
 630                return true;
 631        }
 632}
 633
 634#undef  XF
 635#undef  COND
 636#undef  CASE_COND
 637
 638static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 639{
 640        unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 641        unsigned long offs = (long)auprobe->branch.offs;
 642
 643        if (branch_is_call(auprobe)) {
 644                /*
 645                 * If it fails we execute this (mangled, see the comment in
 646                 * branch_clear_offset) insn out-of-line. In the likely case
 647                 * this should trigger the trap, and the probed application
 648                 * should die or restart the same insn after it handles the
 649                 * signal, arch_uprobe_post_xol() won't be even called.
 650                 *
 651                 * But there is corner case, see the comment in ->post_xol().
 652                 */
 653                if (emulate_push_stack(regs, new_ip))
 654                        return false;
 655        } else if (!check_jmp_cond(auprobe, regs)) {
 656                offs = 0;
 657        }
 658
 659        regs->ip = new_ip + offs;
 660        return true;
 661}
 662
 663static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 664{
 665        unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 666
 667        if (emulate_push_stack(regs, *src_ptr))
 668                return false;
 669        regs->ip += auprobe->push.ilen;
 670        return true;
 671}
 672
 673static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 674{
 675        BUG_ON(!branch_is_call(auprobe));
 676        /*
 677         * We can only get here if branch_emulate_op() failed to push the ret
 678         * address _and_ another thread expanded our stack before the (mangled)
 679         * "call" insn was executed out-of-line. Just restore ->sp and restart.
 680         * We could also restore ->ip and try to call branch_emulate_op() again.
 681         */
 682        regs->sp += sizeof_long(regs);
 683        return -ERESTART;
 684}
 685
 686static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 687{
 688        /*
 689         * Turn this insn into "call 1f; 1:", this is what we will execute
 690         * out-of-line if ->emulate() fails. We only need this to generate
 691         * a trap, so that the probed task receives the correct signal with
 692         * the properly filled siginfo.
 693         *
 694         * But see the comment in ->post_xol(), in the unlikely case it can
 695         * succeed. So we need to ensure that the new ->ip can not fall into
 696         * the non-canonical area and trigger #GP.
 697         *
 698         * We could turn it into (say) "pushf", but then we would need to
 699         * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 700         * of ->insn[] for set_orig_insn().
 701         */
 702        memset(auprobe->insn + insn_offset_immediate(insn),
 703                0, insn->immediate.nbytes);
 704}
 705
 706static const struct uprobe_xol_ops branch_xol_ops = {
 707        .emulate  = branch_emulate_op,
 708        .post_xol = branch_post_xol_op,
 709};
 710
 711static const struct uprobe_xol_ops push_xol_ops = {
 712        .emulate  = push_emulate_op,
 713};
 714
 715/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 716static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 717{
 718        u8 opc1 = OPCODE1(insn);
 719        insn_byte_t p;
 720        int i;
 721
 722        switch (opc1) {
 723        case 0xeb:      /* jmp 8 */
 724        case 0xe9:      /* jmp 32 */
 725        case 0x90:      /* prefix* + nop; same as jmp with .offs = 0 */
 726                break;
 727
 728        case 0xe8:      /* call relative */
 729                branch_clear_offset(auprobe, insn);
 730                break;
 731
 732        case 0x0f:
 733                if (insn->opcode.nbytes != 2)
 734                        return -ENOSYS;
 735                /*
 736                 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 737                 * OPCODE1() of the "short" jmp which checks the same condition.
 738                 */
 739                opc1 = OPCODE2(insn) - 0x10;
 740                fallthrough;
 741        default:
 742                if (!is_cond_jmp_opcode(opc1))
 743                        return -ENOSYS;
 744        }
 745
 746        /*
 747         * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 748         * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 749         * No one uses these insns, reject any branch insns with such prefix.
 750         */
 751        for_each_insn_prefix(insn, i, p) {
 752                if (p == 0x66)
 753                        return -ENOTSUPP;
 754        }
 755
 756        auprobe->branch.opc1 = opc1;
 757        auprobe->branch.ilen = insn->length;
 758        auprobe->branch.offs = insn->immediate.value;
 759
 760        auprobe->ops = &branch_xol_ops;
 761        return 0;
 762}
 763
 764/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 765static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 766{
 767        u8 opc1 = OPCODE1(insn), reg_offset = 0;
 768
 769        if (opc1 < 0x50 || opc1 > 0x57)
 770                return -ENOSYS;
 771
 772        if (insn->length > 2)
 773                return -ENOSYS;
 774        if (insn->length == 2) {
 775                /* only support rex_prefix 0x41 (x64 only) */
 776#ifdef CONFIG_X86_64
 777                if (insn->rex_prefix.nbytes != 1 ||
 778                    insn->rex_prefix.bytes[0] != 0x41)
 779                        return -ENOSYS;
 780
 781                switch (opc1) {
 782                case 0x50:
 783                        reg_offset = offsetof(struct pt_regs, r8);
 784                        break;
 785                case 0x51:
 786                        reg_offset = offsetof(struct pt_regs, r9);
 787                        break;
 788                case 0x52:
 789                        reg_offset = offsetof(struct pt_regs, r10);
 790                        break;
 791                case 0x53:
 792                        reg_offset = offsetof(struct pt_regs, r11);
 793                        break;
 794                case 0x54:
 795                        reg_offset = offsetof(struct pt_regs, r12);
 796                        break;
 797                case 0x55:
 798                        reg_offset = offsetof(struct pt_regs, r13);
 799                        break;
 800                case 0x56:
 801                        reg_offset = offsetof(struct pt_regs, r14);
 802                        break;
 803                case 0x57:
 804                        reg_offset = offsetof(struct pt_regs, r15);
 805                        break;
 806                }
 807#else
 808                return -ENOSYS;
 809#endif
 810        } else {
 811                switch (opc1) {
 812                case 0x50:
 813                        reg_offset = offsetof(struct pt_regs, ax);
 814                        break;
 815                case 0x51:
 816                        reg_offset = offsetof(struct pt_regs, cx);
 817                        break;
 818                case 0x52:
 819                        reg_offset = offsetof(struct pt_regs, dx);
 820                        break;
 821                case 0x53:
 822                        reg_offset = offsetof(struct pt_regs, bx);
 823                        break;
 824                case 0x54:
 825                        reg_offset = offsetof(struct pt_regs, sp);
 826                        break;
 827                case 0x55:
 828                        reg_offset = offsetof(struct pt_regs, bp);
 829                        break;
 830                case 0x56:
 831                        reg_offset = offsetof(struct pt_regs, si);
 832                        break;
 833                case 0x57:
 834                        reg_offset = offsetof(struct pt_regs, di);
 835                        break;
 836                }
 837        }
 838
 839        auprobe->push.reg_offset = reg_offset;
 840        auprobe->push.ilen = insn->length;
 841        auprobe->ops = &push_xol_ops;
 842        return 0;
 843}
 844
 845/**
 846 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 847 * @auprobe: the probepoint information.
 848 * @mm: the probed address space.
 849 * @addr: virtual address at which to install the probepoint
 850 * Return 0 on success or a -ve number on error.
 851 */
 852int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 853{
 854        struct insn insn;
 855        u8 fix_ip_or_call = UPROBE_FIX_IP;
 856        int ret;
 857
 858        ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 859        if (ret)
 860                return ret;
 861
 862        ret = branch_setup_xol_ops(auprobe, &insn);
 863        if (ret != -ENOSYS)
 864                return ret;
 865
 866        ret = push_setup_xol_ops(auprobe, &insn);
 867        if (ret != -ENOSYS)
 868                return ret;
 869
 870        /*
 871         * Figure out which fixups default_post_xol_op() will need to perform,
 872         * and annotate defparam->fixups accordingly.
 873         */
 874        switch (OPCODE1(&insn)) {
 875        case 0x9d:              /* popf */
 876                auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 877                break;
 878        case 0xc3:              /* ret or lret -- ip is correct */
 879        case 0xcb:
 880        case 0xc2:
 881        case 0xca:
 882        case 0xea:              /* jmp absolute -- ip is correct */
 883                fix_ip_or_call = 0;
 884                break;
 885        case 0x9a:              /* call absolute - Fix return addr, not ip */
 886                fix_ip_or_call = UPROBE_FIX_CALL;
 887                break;
 888        case 0xff:
 889                switch (MODRM_REG(&insn)) {
 890                case 2: case 3:                 /* call or lcall, indirect */
 891                        fix_ip_or_call = UPROBE_FIX_CALL;
 892                        break;
 893                case 4: case 5:                 /* jmp or ljmp, indirect */
 894                        fix_ip_or_call = 0;
 895                        break;
 896                }
 897                fallthrough;
 898        default:
 899                riprel_analyze(auprobe, &insn);
 900        }
 901
 902        auprobe->defparam.ilen = insn.length;
 903        auprobe->defparam.fixups |= fix_ip_or_call;
 904
 905        auprobe->ops = &default_xol_ops;
 906        return 0;
 907}
 908
 909/*
 910 * arch_uprobe_pre_xol - prepare to execute out of line.
 911 * @auprobe: the probepoint information.
 912 * @regs: reflects the saved user state of current task.
 913 */
 914int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 915{
 916        struct uprobe_task *utask = current->utask;
 917
 918        if (auprobe->ops->pre_xol) {
 919                int err = auprobe->ops->pre_xol(auprobe, regs);
 920                if (err)
 921                        return err;
 922        }
 923
 924        regs->ip = utask->xol_vaddr;
 925        utask->autask.saved_trap_nr = current->thread.trap_nr;
 926        current->thread.trap_nr = UPROBE_TRAP_NR;
 927
 928        utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
 929        regs->flags |= X86_EFLAGS_TF;
 930        if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
 931                set_task_blockstep(current, false);
 932
 933        return 0;
 934}
 935
 936/*
 937 * If xol insn itself traps and generates a signal(Say,
 938 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 939 * instruction jumps back to its own address. It is assumed that anything
 940 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 941 *
 942 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 943 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 944 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 945 */
 946bool arch_uprobe_xol_was_trapped(struct task_struct *t)
 947{
 948        if (t->thread.trap_nr != UPROBE_TRAP_NR)
 949                return true;
 950
 951        return false;
 952}
 953
 954/*
 955 * Called after single-stepping. To avoid the SMP problems that can
 956 * occur when we temporarily put back the original opcode to
 957 * single-step, we single-stepped a copy of the instruction.
 958 *
 959 * This function prepares to resume execution after the single-step.
 960 */
 961int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 962{
 963        struct uprobe_task *utask = current->utask;
 964        bool send_sigtrap = utask->autask.saved_tf;
 965        int err = 0;
 966
 967        WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
 968        current->thread.trap_nr = utask->autask.saved_trap_nr;
 969
 970        if (auprobe->ops->post_xol) {
 971                err = auprobe->ops->post_xol(auprobe, regs);
 972                if (err) {
 973                        /*
 974                         * Restore ->ip for restart or post mortem analysis.
 975                         * ->post_xol() must not return -ERESTART unless this
 976                         * is really possible.
 977                         */
 978                        regs->ip = utask->vaddr;
 979                        if (err == -ERESTART)
 980                                err = 0;
 981                        send_sigtrap = false;
 982                }
 983        }
 984        /*
 985         * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
 986         * so we can get an extra SIGTRAP if we do not clear TF. We need
 987         * to examine the opcode to make it right.
 988         */
 989        if (send_sigtrap)
 990                send_sig(SIGTRAP, current, 0);
 991
 992        if (!utask->autask.saved_tf)
 993                regs->flags &= ~X86_EFLAGS_TF;
 994
 995        return err;
 996}
 997
 998/* callback routine for handling exceptions. */
 999int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1000{
1001        struct die_args *args = data;
1002        struct pt_regs *regs = args->regs;
1003        int ret = NOTIFY_DONE;
1004
1005        /* We are only interested in userspace traps */
1006        if (regs && !user_mode(regs))
1007                return NOTIFY_DONE;
1008
1009        switch (val) {
1010        case DIE_INT3:
1011                if (uprobe_pre_sstep_notifier(regs))
1012                        ret = NOTIFY_STOP;
1013
1014                break;
1015
1016        case DIE_DEBUG:
1017                if (uprobe_post_sstep_notifier(regs))
1018                        ret = NOTIFY_STOP;
1019
1020                break;
1021
1022        default:
1023                break;
1024        }
1025
1026        return ret;
1027}
1028
1029/*
1030 * This function gets called when XOL instruction either gets trapped or
1031 * the thread has a fatal signal. Reset the instruction pointer to its
1032 * probed address for the potential restart or for post mortem analysis.
1033 */
1034void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1035{
1036        struct uprobe_task *utask = current->utask;
1037
1038        if (auprobe->ops->abort)
1039                auprobe->ops->abort(auprobe, regs);
1040
1041        current->thread.trap_nr = utask->autask.saved_trap_nr;
1042        regs->ip = utask->vaddr;
1043        /* clear TF if it was set by us in arch_uprobe_pre_xol() */
1044        if (!utask->autask.saved_tf)
1045                regs->flags &= ~X86_EFLAGS_TF;
1046}
1047
1048static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1049{
1050        if (auprobe->ops->emulate)
1051                return auprobe->ops->emulate(auprobe, regs);
1052        return false;
1053}
1054
1055bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1056{
1057        bool ret = __skip_sstep(auprobe, regs);
1058        if (ret && (regs->flags & X86_EFLAGS_TF))
1059                send_sig(SIGTRAP, current, 0);
1060        return ret;
1061}
1062
1063unsigned long
1064arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1065{
1066        int rasize = sizeof_long(regs), nleft;
1067        unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1068
1069        if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1070                return -1;
1071
1072        /* check whether address has been already hijacked */
1073        if (orig_ret_vaddr == trampoline_vaddr)
1074                return orig_ret_vaddr;
1075
1076        nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1077        if (likely(!nleft))
1078                return orig_ret_vaddr;
1079
1080        if (nleft != rasize) {
1081                pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1082                       current->pid, regs->sp, regs->ip);
1083
1084                force_sig(SIGSEGV);
1085        }
1086
1087        return -1;
1088}
1089
1090bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1091                                struct pt_regs *regs)
1092{
1093        if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1094                return regs->sp < ret->stack;
1095        else
1096                return regs->sp <= ret->stack;
1097}
1098