linux/arch/x86/kvm/cpuid.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 * cpuid support routines
   5 *
   6 * derived from arch/x86/kvm/x86.c
   7 *
   8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
   9 * Copyright IBM Corporation, 2008
  10 */
  11
  12#include <linux/kvm_host.h>
  13#include <linux/export.h>
  14#include <linux/vmalloc.h>
  15#include <linux/uaccess.h>
  16#include <linux/sched/stat.h>
  17
  18#include <asm/processor.h>
  19#include <asm/user.h>
  20#include <asm/fpu/xstate.h>
  21#include <asm/sgx.h>
  22#include "cpuid.h"
  23#include "lapic.h"
  24#include "mmu.h"
  25#include "trace.h"
  26#include "pmu.h"
  27
  28/*
  29 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
  30 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
  31 */
  32u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
  33EXPORT_SYMBOL_GPL(kvm_cpu_caps);
  34
  35static u32 xstate_required_size(u64 xstate_bv, bool compacted)
  36{
  37        int feature_bit = 0;
  38        u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
  39
  40        xstate_bv &= XFEATURE_MASK_EXTEND;
  41        while (xstate_bv) {
  42                if (xstate_bv & 0x1) {
  43                        u32 eax, ebx, ecx, edx, offset;
  44                        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
  45                        offset = compacted ? ret : ebx;
  46                        ret = max(ret, offset + eax);
  47                }
  48
  49                xstate_bv >>= 1;
  50                feature_bit++;
  51        }
  52
  53        return ret;
  54}
  55
  56#define F feature_bit
  57#define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
  58
  59static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
  60        struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
  61{
  62        struct kvm_cpuid_entry2 *e;
  63        int i;
  64
  65        for (i = 0; i < nent; i++) {
  66                e = &entries[i];
  67
  68                if (e->function == function &&
  69                    (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
  70                        return e;
  71        }
  72
  73        return NULL;
  74}
  75
  76static int kvm_check_cpuid(struct kvm_cpuid_entry2 *entries, int nent)
  77{
  78        struct kvm_cpuid_entry2 *best;
  79
  80        /*
  81         * The existing code assumes virtual address is 48-bit or 57-bit in the
  82         * canonical address checks; exit if it is ever changed.
  83         */
  84        best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
  85        if (best) {
  86                int vaddr_bits = (best->eax & 0xff00) >> 8;
  87
  88                if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
  89                        return -EINVAL;
  90        }
  91
  92        return 0;
  93}
  94
  95void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
  96{
  97        struct kvm_cpuid_entry2 *best;
  98
  99        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 100
 101        /*
 102         * save the feature bitmap to avoid cpuid lookup for every PV
 103         * operation
 104         */
 105        if (best)
 106                vcpu->arch.pv_cpuid.features = best->eax;
 107}
 108
 109void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 110{
 111        struct kvm_cpuid_entry2 *best;
 112
 113        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 114        if (best) {
 115                /* Update OSXSAVE bit */
 116                if (boot_cpu_has(X86_FEATURE_XSAVE))
 117                        cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 118                                   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
 119
 120                cpuid_entry_change(best, X86_FEATURE_APIC,
 121                           vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 122        }
 123
 124        best = kvm_find_cpuid_entry(vcpu, 7, 0);
 125        if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 126                cpuid_entry_change(best, X86_FEATURE_OSPKE,
 127                                   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
 128
 129        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 130        if (best)
 131                best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 132
 133        best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
 134        if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 135                     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 136                best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 137
 138        best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
 139        if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 140                (best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 141                best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 142
 143        if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 144                best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
 145                if (best)
 146                        cpuid_entry_change(best, X86_FEATURE_MWAIT,
 147                                           vcpu->arch.ia32_misc_enable_msr &
 148                                           MSR_IA32_MISC_ENABLE_MWAIT);
 149        }
 150}
 151EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 152
 153static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 154{
 155        struct kvm_lapic *apic = vcpu->arch.apic;
 156        struct kvm_cpuid_entry2 *best;
 157
 158        best = kvm_find_cpuid_entry(vcpu, 1, 0);
 159        if (best && apic) {
 160                if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 161                        apic->lapic_timer.timer_mode_mask = 3 << 17;
 162                else
 163                        apic->lapic_timer.timer_mode_mask = 1 << 17;
 164
 165                kvm_apic_set_version(vcpu);
 166        }
 167
 168        best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
 169        if (!best)
 170                vcpu->arch.guest_supported_xcr0 = 0;
 171        else
 172                vcpu->arch.guest_supported_xcr0 =
 173                        (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 174
 175        /*
 176         * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
 177         * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
 178         * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
 179         * at the time of EENTER, thus adjust the allowed XFRM by the guest's
 180         * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
 181         * '1' even on CPUs that don't support XSAVE.
 182         */
 183        best = kvm_find_cpuid_entry(vcpu, 0x12, 0x1);
 184        if (best) {
 185                best->ecx &= vcpu->arch.guest_supported_xcr0 & 0xffffffff;
 186                best->edx &= vcpu->arch.guest_supported_xcr0 >> 32;
 187                best->ecx |= XFEATURE_MASK_FPSSE;
 188        }
 189
 190        kvm_update_pv_runtime(vcpu);
 191
 192        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 193        vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 194
 195        kvm_pmu_refresh(vcpu);
 196        vcpu->arch.cr4_guest_rsvd_bits =
 197            __cr4_reserved_bits(guest_cpuid_has, vcpu);
 198
 199        kvm_hv_set_cpuid(vcpu);
 200
 201        /* Invoke the vendor callback only after the above state is updated. */
 202        static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 203
 204        /*
 205         * Except for the MMU, which needs to do its thing any vendor specific
 206         * adjustments to the reserved GPA bits.
 207         */
 208        kvm_mmu_after_set_cpuid(vcpu);
 209}
 210
 211int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 212{
 213        struct kvm_cpuid_entry2 *best;
 214
 215        best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 216        if (!best || best->eax < 0x80000008)
 217                goto not_found;
 218        best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 219        if (best)
 220                return best->eax & 0xff;
 221not_found:
 222        return 36;
 223}
 224
 225/*
 226 * This "raw" version returns the reserved GPA bits without any adjustments for
 227 * encryption technologies that usurp bits.  The raw mask should be used if and
 228 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 229 */
 230u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 231{
 232        return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 233}
 234
 235/* when an old userspace process fills a new kernel module */
 236int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 237                             struct kvm_cpuid *cpuid,
 238                             struct kvm_cpuid_entry __user *entries)
 239{
 240        int r, i;
 241        struct kvm_cpuid_entry *e = NULL;
 242        struct kvm_cpuid_entry2 *e2 = NULL;
 243
 244        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 245                return -E2BIG;
 246
 247        if (cpuid->nent) {
 248                e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
 249                if (IS_ERR(e))
 250                        return PTR_ERR(e);
 251
 252                e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 253                if (!e2) {
 254                        r = -ENOMEM;
 255                        goto out_free_cpuid;
 256                }
 257        }
 258        for (i = 0; i < cpuid->nent; i++) {
 259                e2[i].function = e[i].function;
 260                e2[i].eax = e[i].eax;
 261                e2[i].ebx = e[i].ebx;
 262                e2[i].ecx = e[i].ecx;
 263                e2[i].edx = e[i].edx;
 264                e2[i].index = 0;
 265                e2[i].flags = 0;
 266                e2[i].padding[0] = 0;
 267                e2[i].padding[1] = 0;
 268                e2[i].padding[2] = 0;
 269        }
 270
 271        r = kvm_check_cpuid(e2, cpuid->nent);
 272        if (r) {
 273                kvfree(e2);
 274                goto out_free_cpuid;
 275        }
 276
 277        kvfree(vcpu->arch.cpuid_entries);
 278        vcpu->arch.cpuid_entries = e2;
 279        vcpu->arch.cpuid_nent = cpuid->nent;
 280
 281        kvm_update_cpuid_runtime(vcpu);
 282        kvm_vcpu_after_set_cpuid(vcpu);
 283
 284out_free_cpuid:
 285        kvfree(e);
 286
 287        return r;
 288}
 289
 290int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 291                              struct kvm_cpuid2 *cpuid,
 292                              struct kvm_cpuid_entry2 __user *entries)
 293{
 294        struct kvm_cpuid_entry2 *e2 = NULL;
 295        int r;
 296
 297        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 298                return -E2BIG;
 299
 300        if (cpuid->nent) {
 301                e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
 302                if (IS_ERR(e2))
 303                        return PTR_ERR(e2);
 304        }
 305
 306        r = kvm_check_cpuid(e2, cpuid->nent);
 307        if (r) {
 308                kvfree(e2);
 309                return r;
 310        }
 311
 312        kvfree(vcpu->arch.cpuid_entries);
 313        vcpu->arch.cpuid_entries = e2;
 314        vcpu->arch.cpuid_nent = cpuid->nent;
 315
 316        kvm_update_cpuid_runtime(vcpu);
 317        kvm_vcpu_after_set_cpuid(vcpu);
 318
 319        return 0;
 320}
 321
 322int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 323                              struct kvm_cpuid2 *cpuid,
 324                              struct kvm_cpuid_entry2 __user *entries)
 325{
 326        int r;
 327
 328        r = -E2BIG;
 329        if (cpuid->nent < vcpu->arch.cpuid_nent)
 330                goto out;
 331        r = -EFAULT;
 332        if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 333                         vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 334                goto out;
 335        return 0;
 336
 337out:
 338        cpuid->nent = vcpu->arch.cpuid_nent;
 339        return r;
 340}
 341
 342/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 343static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 344{
 345        const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 346        struct kvm_cpuid_entry2 entry;
 347
 348        reverse_cpuid_check(leaf);
 349
 350        cpuid_count(cpuid.function, cpuid.index,
 351                    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 352
 353        kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 354}
 355
 356static __always_inline
 357void kvm_cpu_cap_init_scattered(enum kvm_only_cpuid_leafs leaf, u32 mask)
 358{
 359        /* Use kvm_cpu_cap_mask for non-scattered leafs. */
 360        BUILD_BUG_ON(leaf < NCAPINTS);
 361
 362        kvm_cpu_caps[leaf] = mask;
 363
 364        __kvm_cpu_cap_mask(leaf);
 365}
 366
 367static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 368{
 369        /* Use kvm_cpu_cap_init_scattered for scattered leafs. */
 370        BUILD_BUG_ON(leaf >= NCAPINTS);
 371
 372        kvm_cpu_caps[leaf] &= mask;
 373
 374        __kvm_cpu_cap_mask(leaf);
 375}
 376
 377void kvm_set_cpu_caps(void)
 378{
 379#ifdef CONFIG_X86_64
 380        unsigned int f_gbpages = F(GBPAGES);
 381        unsigned int f_lm = F(LM);
 382#else
 383        unsigned int f_gbpages = 0;
 384        unsigned int f_lm = 0;
 385#endif
 386        memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 387
 388        BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 389                     sizeof(boot_cpu_data.x86_capability));
 390
 391        memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 392               sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 393
 394        kvm_cpu_cap_mask(CPUID_1_ECX,
 395                /*
 396                 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 397                 * advertised to guests via CPUID!
 398                 */
 399                F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 400                0 /* DS-CPL, VMX, SMX, EST */ |
 401                0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 402                F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 403                F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 404                F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 405                0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 406                F(F16C) | F(RDRAND)
 407        );
 408        /* KVM emulates x2apic in software irrespective of host support. */
 409        kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 410
 411        kvm_cpu_cap_mask(CPUID_1_EDX,
 412                F(FPU) | F(VME) | F(DE) | F(PSE) |
 413                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 414                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 415                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 416                F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 417                0 /* Reserved, DS, ACPI */ | F(MMX) |
 418                F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 419                0 /* HTT, TM, Reserved, PBE */
 420        );
 421
 422        kvm_cpu_cap_mask(CPUID_7_0_EBX,
 423                F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
 424                F(BMI2) | F(ERMS) | F(INVPCID) | F(RTM) | 0 /*MPX*/ | F(RDSEED) |
 425                F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
 426                F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
 427                F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | 0 /*INTEL_PT*/
 428        );
 429
 430        kvm_cpu_cap_mask(CPUID_7_ECX,
 431                F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 432                F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 433                F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 434                F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 435                F(SGX_LC) | F(BUS_LOCK_DETECT)
 436        );
 437        /* Set LA57 based on hardware capability. */
 438        if (cpuid_ecx(7) & F(LA57))
 439                kvm_cpu_cap_set(X86_FEATURE_LA57);
 440
 441        /*
 442         * PKU not yet implemented for shadow paging and requires OSPKE
 443         * to be set on the host. Clear it if that is not the case
 444         */
 445        if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 446                kvm_cpu_cap_clear(X86_FEATURE_PKU);
 447
 448        kvm_cpu_cap_mask(CPUID_7_EDX,
 449                F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 450                F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 451                F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 452                F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16)
 453        );
 454
 455        /* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 456        kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 457        kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 458
 459        if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 460                kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 461        if (boot_cpu_has(X86_FEATURE_STIBP))
 462                kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 463        if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 464                kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 465
 466        kvm_cpu_cap_mask(CPUID_7_1_EAX,
 467                F(AVX_VNNI) | F(AVX512_BF16)
 468        );
 469
 470        kvm_cpu_cap_mask(CPUID_D_1_EAX,
 471                F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES)
 472        );
 473
 474        kvm_cpu_cap_init_scattered(CPUID_12_EAX,
 475                SF(SGX1) | SF(SGX2)
 476        );
 477
 478        kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 479                F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 480                F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 481                F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 482                0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 483                F(TOPOEXT) | F(PERFCTR_CORE)
 484        );
 485
 486        kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 487                F(FPU) | F(VME) | F(DE) | F(PSE) |
 488                F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 489                F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 490                F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 491                F(PAT) | F(PSE36) | 0 /* Reserved */ |
 492                F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 493                F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 494                0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 495        );
 496
 497        if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 498                kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 499
 500        kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 501                F(CLZERO) | F(XSAVEERPTR) |
 502                F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 503                F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON)
 504        );
 505
 506        /*
 507         * AMD has separate bits for each SPEC_CTRL bit.
 508         * arch/x86/kernel/cpu/bugs.c is kind enough to
 509         * record that in cpufeatures so use them.
 510         */
 511        if (boot_cpu_has(X86_FEATURE_IBPB))
 512                kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 513        if (boot_cpu_has(X86_FEATURE_IBRS))
 514                kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 515        if (boot_cpu_has(X86_FEATURE_STIBP))
 516                kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 517        if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 518                kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 519        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 520                kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 521        /*
 522         * The preference is to use SPEC CTRL MSR instead of the
 523         * VIRT_SPEC MSR.
 524         */
 525        if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 526            !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 527                kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 528
 529        /*
 530         * Hide all SVM features by default, SVM will set the cap bits for
 531         * features it emulates and/or exposes for L1.
 532         */
 533        kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 534
 535        kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 536                0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 537                F(SME_COHERENT));
 538
 539        kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 540                F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 541                F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 542                F(PMM) | F(PMM_EN)
 543        );
 544
 545        /*
 546         * Hide RDTSCP and RDPID if either feature is reported as supported but
 547         * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 548         * should never happen, but the guest will likely crash if RDTSCP or
 549         * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 550         * the past.  For example, the sanity check may fire if this instance of
 551         * KVM is running as L1 on top of an older, broken KVM.
 552         */
 553        if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 554                     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 555                     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 556                kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 557                kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 558        }
 559}
 560EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 561
 562struct kvm_cpuid_array {
 563        struct kvm_cpuid_entry2 *entries;
 564        int maxnent;
 565        int nent;
 566};
 567
 568static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 569                                              u32 function, u32 index)
 570{
 571        struct kvm_cpuid_entry2 *entry;
 572
 573        if (array->nent >= array->maxnent)
 574                return NULL;
 575
 576        entry = &array->entries[array->nent++];
 577
 578        entry->function = function;
 579        entry->index = index;
 580        entry->flags = 0;
 581
 582        cpuid_count(entry->function, entry->index,
 583                    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 584
 585        switch (function) {
 586        case 4:
 587        case 7:
 588        case 0xb:
 589        case 0xd:
 590        case 0xf:
 591        case 0x10:
 592        case 0x12:
 593        case 0x14:
 594        case 0x17:
 595        case 0x18:
 596        case 0x1f:
 597        case 0x8000001d:
 598                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 599                break;
 600        }
 601
 602        return entry;
 603}
 604
 605static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 606{
 607        struct kvm_cpuid_entry2 *entry;
 608
 609        if (array->nent >= array->maxnent)
 610                return -E2BIG;
 611
 612        entry = &array->entries[array->nent];
 613        entry->function = func;
 614        entry->index = 0;
 615        entry->flags = 0;
 616
 617        switch (func) {
 618        case 0:
 619                entry->eax = 7;
 620                ++array->nent;
 621                break;
 622        case 1:
 623                entry->ecx = F(MOVBE);
 624                ++array->nent;
 625                break;
 626        case 7:
 627                entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 628                entry->eax = 0;
 629                if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 630                        entry->ecx = F(RDPID);
 631                ++array->nent;
 632                break;
 633        default:
 634                break;
 635        }
 636
 637        return 0;
 638}
 639
 640static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 641{
 642        struct kvm_cpuid_entry2 *entry;
 643        int r, i, max_idx;
 644
 645        /* all calls to cpuid_count() should be made on the same cpu */
 646        get_cpu();
 647
 648        r = -E2BIG;
 649
 650        entry = do_host_cpuid(array, function, 0);
 651        if (!entry)
 652                goto out;
 653
 654        switch (function) {
 655        case 0:
 656                /* Limited to the highest leaf implemented in KVM. */
 657                entry->eax = min(entry->eax, 0x1fU);
 658                break;
 659        case 1:
 660                cpuid_entry_override(entry, CPUID_1_EDX);
 661                cpuid_entry_override(entry, CPUID_1_ECX);
 662                break;
 663        case 2:
 664                /*
 665                 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 666                 * CPUID(function=2, index=0) may return different results each
 667                 * time, with the least-significant byte in EAX enumerating the
 668                 * number of times software should do CPUID(2, 0).
 669                 *
 670                 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 671                 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 672                 * return 01H. Software should ignore this value and not
 673                 * interpret it as an informational descriptor", while AMD's
 674                 * APM states that CPUID(2) is reserved.
 675                 *
 676                 * WARN if a frankenstein CPU that supports virtualization and
 677                 * a stateful CPUID.0x2 is encountered.
 678                 */
 679                WARN_ON_ONCE((entry->eax & 0xff) > 1);
 680                break;
 681        /* functions 4 and 0x8000001d have additional index. */
 682        case 4:
 683        case 0x8000001d:
 684                /*
 685                 * Read entries until the cache type in the previous entry is
 686                 * zero, i.e. indicates an invalid entry.
 687                 */
 688                for (i = 1; entry->eax & 0x1f; ++i) {
 689                        entry = do_host_cpuid(array, function, i);
 690                        if (!entry)
 691                                goto out;
 692                }
 693                break;
 694        case 6: /* Thermal management */
 695                entry->eax = 0x4; /* allow ARAT */
 696                entry->ebx = 0;
 697                entry->ecx = 0;
 698                entry->edx = 0;
 699                break;
 700        /* function 7 has additional index. */
 701        case 7:
 702                entry->eax = min(entry->eax, 1u);
 703                cpuid_entry_override(entry, CPUID_7_0_EBX);
 704                cpuid_entry_override(entry, CPUID_7_ECX);
 705                cpuid_entry_override(entry, CPUID_7_EDX);
 706
 707                /* KVM only supports 0x7.0 and 0x7.1, capped above via min(). */
 708                if (entry->eax == 1) {
 709                        entry = do_host_cpuid(array, function, 1);
 710                        if (!entry)
 711                                goto out;
 712
 713                        cpuid_entry_override(entry, CPUID_7_1_EAX);
 714                        entry->ebx = 0;
 715                        entry->ecx = 0;
 716                        entry->edx = 0;
 717                }
 718                break;
 719        case 9:
 720                break;
 721        case 0xa: { /* Architectural Performance Monitoring */
 722                struct x86_pmu_capability cap;
 723                union cpuid10_eax eax;
 724                union cpuid10_edx edx;
 725
 726                perf_get_x86_pmu_capability(&cap);
 727
 728                /*
 729                 * Only support guest architectural pmu on a host
 730                 * with architectural pmu.
 731                 */
 732                if (!cap.version)
 733                        memset(&cap, 0, sizeof(cap));
 734
 735                eax.split.version_id = min(cap.version, 2);
 736                eax.split.num_counters = cap.num_counters_gp;
 737                eax.split.bit_width = cap.bit_width_gp;
 738                eax.split.mask_length = cap.events_mask_len;
 739
 740                edx.split.num_counters_fixed = min(cap.num_counters_fixed, MAX_FIXED_COUNTERS);
 741                edx.split.bit_width_fixed = cap.bit_width_fixed;
 742                if (cap.version)
 743                        edx.split.anythread_deprecated = 1;
 744                edx.split.reserved1 = 0;
 745                edx.split.reserved2 = 0;
 746
 747                entry->eax = eax.full;
 748                entry->ebx = cap.events_mask;
 749                entry->ecx = 0;
 750                entry->edx = edx.full;
 751                break;
 752        }
 753        /*
 754         * Per Intel's SDM, the 0x1f is a superset of 0xb,
 755         * thus they can be handled by common code.
 756         */
 757        case 0x1f:
 758        case 0xb:
 759                /*
 760                 * Populate entries until the level type (ECX[15:8]) of the
 761                 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 762                 * the starting entry, filled by the primary do_host_cpuid().
 763                 */
 764                for (i = 1; entry->ecx & 0xff00; ++i) {
 765                        entry = do_host_cpuid(array, function, i);
 766                        if (!entry)
 767                                goto out;
 768                }
 769                break;
 770        case 0xd:
 771                entry->eax &= supported_xcr0;
 772                entry->ebx = xstate_required_size(supported_xcr0, false);
 773                entry->ecx = entry->ebx;
 774                entry->edx &= supported_xcr0 >> 32;
 775                if (!supported_xcr0)
 776                        break;
 777
 778                entry = do_host_cpuid(array, function, 1);
 779                if (!entry)
 780                        goto out;
 781
 782                cpuid_entry_override(entry, CPUID_D_1_EAX);
 783                if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 784                        entry->ebx = xstate_required_size(supported_xcr0 | supported_xss,
 785                                                          true);
 786                else {
 787                        WARN_ON_ONCE(supported_xss != 0);
 788                        entry->ebx = 0;
 789                }
 790                entry->ecx &= supported_xss;
 791                entry->edx &= supported_xss >> 32;
 792
 793                for (i = 2; i < 64; ++i) {
 794                        bool s_state;
 795                        if (supported_xcr0 & BIT_ULL(i))
 796                                s_state = false;
 797                        else if (supported_xss & BIT_ULL(i))
 798                                s_state = true;
 799                        else
 800                                continue;
 801
 802                        entry = do_host_cpuid(array, function, i);
 803                        if (!entry)
 804                                goto out;
 805
 806                        /*
 807                         * The supported check above should have filtered out
 808                         * invalid sub-leafs.  Only valid sub-leafs should
 809                         * reach this point, and they should have a non-zero
 810                         * save state size.  Furthermore, check whether the
 811                         * processor agrees with supported_xcr0/supported_xss
 812                         * on whether this is an XCR0- or IA32_XSS-managed area.
 813                         */
 814                        if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 815                                --array->nent;
 816                                continue;
 817                        }
 818                        entry->edx = 0;
 819                }
 820                break;
 821        case 0x12:
 822                /* Intel SGX */
 823                if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
 824                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 825                        break;
 826                }
 827
 828                /*
 829                 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
 830                 * and max enclave sizes.   The SGX sub-features and MISCSELECT
 831                 * are restricted by kernel and KVM capabilities (like most
 832                 * feature flags), while enclave size is unrestricted.
 833                 */
 834                cpuid_entry_override(entry, CPUID_12_EAX);
 835                entry->ebx &= SGX_MISC_EXINFO;
 836
 837                entry = do_host_cpuid(array, function, 1);
 838                if (!entry)
 839                        goto out;
 840
 841                /*
 842                 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
 843                 * feature flags.  Advertise all supported flags, including
 844                 * privileged attributes that require explicit opt-in from
 845                 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
 846                 * expected to derive it from supported XCR0.
 847                 */
 848                entry->eax &= SGX_ATTR_DEBUG | SGX_ATTR_MODE64BIT |
 849                              SGX_ATTR_PROVISIONKEY | SGX_ATTR_EINITTOKENKEY |
 850                              SGX_ATTR_KSS;
 851                entry->ebx &= 0;
 852                break;
 853        /* Intel PT */
 854        case 0x14:
 855                if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 856                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 857                        break;
 858                }
 859
 860                for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 861                        if (!do_host_cpuid(array, function, i))
 862                                goto out;
 863                }
 864                break;
 865        case KVM_CPUID_SIGNATURE: {
 866                static const char signature[12] = "KVMKVMKVM\0\0";
 867                const u32 *sigptr = (const u32 *)signature;
 868                entry->eax = KVM_CPUID_FEATURES;
 869                entry->ebx = sigptr[0];
 870                entry->ecx = sigptr[1];
 871                entry->edx = sigptr[2];
 872                break;
 873        }
 874        case KVM_CPUID_FEATURES:
 875                entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 876                             (1 << KVM_FEATURE_NOP_IO_DELAY) |
 877                             (1 << KVM_FEATURE_CLOCKSOURCE2) |
 878                             (1 << KVM_FEATURE_ASYNC_PF) |
 879                             (1 << KVM_FEATURE_PV_EOI) |
 880                             (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 881                             (1 << KVM_FEATURE_PV_UNHALT) |
 882                             (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 883                             (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 884                             (1 << KVM_FEATURE_PV_SEND_IPI) |
 885                             (1 << KVM_FEATURE_POLL_CONTROL) |
 886                             (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 887                             (1 << KVM_FEATURE_ASYNC_PF_INT);
 888
 889                if (sched_info_on())
 890                        entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 891
 892                entry->ebx = 0;
 893                entry->ecx = 0;
 894                entry->edx = 0;
 895                break;
 896        case 0x80000000:
 897                entry->eax = min(entry->eax, 0x8000001f);
 898                break;
 899        case 0x80000001:
 900                cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 901                cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 902                break;
 903        case 0x80000006:
 904                /* L2 cache and TLB: pass through host info. */
 905                break;
 906        case 0x80000007: /* Advanced power management */
 907                /* invariant TSC is CPUID.80000007H:EDX[8] */
 908                entry->edx &= (1 << 8);
 909                /* mask against host */
 910                entry->edx &= boot_cpu_data.x86_power;
 911                entry->eax = entry->ebx = entry->ecx = 0;
 912                break;
 913        case 0x80000008: {
 914                unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 915                unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 916                unsigned phys_as = entry->eax & 0xff;
 917
 918                /*
 919                 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
 920                 * the guest operates in the same PA space as the host, i.e.
 921                 * reductions in MAXPHYADDR for memory encryption affect shadow
 922                 * paging, too.
 923                 *
 924                 * If TDP is enabled but an explicit guest MAXPHYADDR is not
 925                 * provided, use the raw bare metal MAXPHYADDR as reductions to
 926                 * the HPAs do not affect GPAs.
 927                 */
 928                if (!tdp_enabled)
 929                        g_phys_as = boot_cpu_data.x86_phys_bits;
 930                else if (!g_phys_as)
 931                        g_phys_as = phys_as;
 932
 933                entry->eax = g_phys_as | (virt_as << 8);
 934                entry->edx = 0;
 935                cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 936                break;
 937        }
 938        case 0x8000000A:
 939                if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 940                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 941                        break;
 942                }
 943                entry->eax = 1; /* SVM revision 1 */
 944                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 945                                   ASID emulation to nested SVM */
 946                entry->ecx = 0; /* Reserved */
 947                cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 948                break;
 949        case 0x80000019:
 950                entry->ecx = entry->edx = 0;
 951                break;
 952        case 0x8000001a:
 953        case 0x8000001e:
 954                break;
 955        case 0x8000001F:
 956                if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
 957                        entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 958                } else {
 959                        cpuid_entry_override(entry, CPUID_8000_001F_EAX);
 960
 961                        /*
 962                         * Enumerate '0' for "PA bits reduction", the adjusted
 963                         * MAXPHYADDR is enumerated directly (see 0x80000008).
 964                         */
 965                        entry->ebx &= ~GENMASK(11, 6);
 966                }
 967                break;
 968        /*Add support for Centaur's CPUID instruction*/
 969        case 0xC0000000:
 970                /*Just support up to 0xC0000004 now*/
 971                entry->eax = min(entry->eax, 0xC0000004);
 972                break;
 973        case 0xC0000001:
 974                cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 975                break;
 976        case 3: /* Processor serial number */
 977        case 5: /* MONITOR/MWAIT */
 978        case 0xC0000002:
 979        case 0xC0000003:
 980        case 0xC0000004:
 981        default:
 982                entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 983                break;
 984        }
 985
 986        r = 0;
 987
 988out:
 989        put_cpu();
 990
 991        return r;
 992}
 993
 994static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 995                         unsigned int type)
 996{
 997        if (type == KVM_GET_EMULATED_CPUID)
 998                return __do_cpuid_func_emulated(array, func);
 999
1000        return __do_cpuid_func(array, func);
1001}
1002
1003#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1004
1005static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1006                          unsigned int type)
1007{
1008        u32 limit;
1009        int r;
1010
1011        if (func == CENTAUR_CPUID_SIGNATURE &&
1012            boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1013                return 0;
1014
1015        r = do_cpuid_func(array, func, type);
1016        if (r)
1017                return r;
1018
1019        limit = array->entries[array->nent - 1].eax;
1020        for (func = func + 1; func <= limit; ++func) {
1021                r = do_cpuid_func(array, func, type);
1022                if (r)
1023                        break;
1024        }
1025
1026        return r;
1027}
1028
1029static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1030                                 __u32 num_entries, unsigned int ioctl_type)
1031{
1032        int i;
1033        __u32 pad[3];
1034
1035        if (ioctl_type != KVM_GET_EMULATED_CPUID)
1036                return false;
1037
1038        /*
1039         * We want to make sure that ->padding is being passed clean from
1040         * userspace in case we want to use it for something in the future.
1041         *
1042         * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1043         * have to give ourselves satisfied only with the emulated side. /me
1044         * sheds a tear.
1045         */
1046        for (i = 0; i < num_entries; i++) {
1047                if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1048                        return true;
1049
1050                if (pad[0] || pad[1] || pad[2])
1051                        return true;
1052        }
1053        return false;
1054}
1055
1056int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1057                            struct kvm_cpuid_entry2 __user *entries,
1058                            unsigned int type)
1059{
1060        static const u32 funcs[] = {
1061                0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1062        };
1063
1064        struct kvm_cpuid_array array = {
1065                .nent = 0,
1066        };
1067        int r, i;
1068
1069        if (cpuid->nent < 1)
1070                return -E2BIG;
1071        if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1072                cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1073
1074        if (sanity_check_entries(entries, cpuid->nent, type))
1075                return -EINVAL;
1076
1077        array.entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
1078                                           cpuid->nent));
1079        if (!array.entries)
1080                return -ENOMEM;
1081
1082        array.maxnent = cpuid->nent;
1083
1084        for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1085                r = get_cpuid_func(&array, funcs[i], type);
1086                if (r)
1087                        goto out_free;
1088        }
1089        cpuid->nent = array.nent;
1090
1091        if (copy_to_user(entries, array.entries,
1092                         array.nent * sizeof(struct kvm_cpuid_entry2)))
1093                r = -EFAULT;
1094
1095out_free:
1096        vfree(array.entries);
1097        return r;
1098}
1099
1100struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1101                                              u32 function, u32 index)
1102{
1103        return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1104                                 function, index);
1105}
1106EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1107
1108/*
1109 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1110 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1111 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1112 * range.  Centaur/VIA follows Intel semantics.
1113 *
1114 * A leaf is considered out-of-range if its function is higher than the maximum
1115 * supported leaf of its associated class or if its associated class does not
1116 * exist.
1117 *
1118 * There are three primary classes to be considered, with their respective
1119 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1120 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1121 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1122 *
1123 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1124 *  - Hypervisor: 0x40000000 - 0x4fffffff
1125 *  - Extended:   0x80000000 - 0xbfffffff
1126 *  - Centaur:    0xc0000000 - 0xcfffffff
1127 *
1128 * The Hypervisor class is further subdivided into sub-classes that each act as
1129 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1130 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1131 * CPUID sub-classes are:
1132 *
1133 *  - HyperV:     0x40000000 - 0x400000ff
1134 *  - KVM:        0x40000100 - 0x400001ff
1135 */
1136static struct kvm_cpuid_entry2 *
1137get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1138{
1139        struct kvm_cpuid_entry2 *basic, *class;
1140        u32 function = *fn_ptr;
1141
1142        basic = kvm_find_cpuid_entry(vcpu, 0, 0);
1143        if (!basic)
1144                return NULL;
1145
1146        if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1147            is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1148                return NULL;
1149
1150        if (function >= 0x40000000 && function <= 0x4fffffff)
1151                class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
1152        else if (function >= 0xc0000000)
1153                class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
1154        else
1155                class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
1156
1157        if (class && function <= class->eax)
1158                return NULL;
1159
1160        /*
1161         * Leaf specific adjustments are also applied when redirecting to the
1162         * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1163         * entry for CPUID.0xb.index (see below), then the output value for EDX
1164         * needs to be pulled from CPUID.0xb.1.
1165         */
1166        *fn_ptr = basic->eax;
1167
1168        /*
1169         * The class does not exist or the requested function is out of range;
1170         * the effective CPUID entry is the max basic leaf.  Note, the index of
1171         * the original requested leaf is observed!
1172         */
1173        return kvm_find_cpuid_entry(vcpu, basic->eax, index);
1174}
1175
1176bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1177               u32 *ecx, u32 *edx, bool exact_only)
1178{
1179        u32 orig_function = *eax, function = *eax, index = *ecx;
1180        struct kvm_cpuid_entry2 *entry;
1181        bool exact, used_max_basic = false;
1182
1183        entry = kvm_find_cpuid_entry(vcpu, function, index);
1184        exact = !!entry;
1185
1186        if (!entry && !exact_only) {
1187                entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1188                used_max_basic = !!entry;
1189        }
1190
1191        if (entry) {
1192                *eax = entry->eax;
1193                *ebx = entry->ebx;
1194                *ecx = entry->ecx;
1195                *edx = entry->edx;
1196                if (function == 7 && index == 0) {
1197                        u64 data;
1198                        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1199                            (data & TSX_CTRL_CPUID_CLEAR))
1200                                *ebx &= ~(F(RTM) | F(HLE));
1201                }
1202        } else {
1203                *eax = *ebx = *ecx = *edx = 0;
1204                /*
1205                 * When leaf 0BH or 1FH is defined, CL is pass-through
1206                 * and EDX is always the x2APIC ID, even for undefined
1207                 * subleaves. Index 1 will exist iff the leaf is
1208                 * implemented, so we pass through CL iff leaf 1
1209                 * exists. EDX can be copied from any existing index.
1210                 */
1211                if (function == 0xb || function == 0x1f) {
1212                        entry = kvm_find_cpuid_entry(vcpu, function, 1);
1213                        if (entry) {
1214                                *ecx = index & 0xff;
1215                                *edx = entry->edx;
1216                        }
1217                }
1218        }
1219        trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1220                        used_max_basic);
1221        return exact;
1222}
1223EXPORT_SYMBOL_GPL(kvm_cpuid);
1224
1225int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1226{
1227        u32 eax, ebx, ecx, edx;
1228
1229        if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1230                return 1;
1231
1232        eax = kvm_rax_read(vcpu);
1233        ecx = kvm_rcx_read(vcpu);
1234        kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1235        kvm_rax_write(vcpu, eax);
1236        kvm_rbx_write(vcpu, ebx);
1237        kvm_rcx_write(vcpu, ecx);
1238        kvm_rdx_write(vcpu, edx);
1239        return kvm_skip_emulated_instruction(vcpu);
1240}
1241EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1242