linux/arch/x86/kvm/mmu.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __KVM_X86_MMU_H
   3#define __KVM_X86_MMU_H
   4
   5#include <linux/kvm_host.h>
   6#include "kvm_cache_regs.h"
   7#include "cpuid.h"
   8
   9#define PT64_PT_BITS 9
  10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  11#define PT32_PT_BITS 10
  12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  13
  14#define PT_WRITABLE_SHIFT 1
  15#define PT_USER_SHIFT 2
  16
  17#define PT_PRESENT_MASK (1ULL << 0)
  18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  20#define PT_PWT_MASK (1ULL << 3)
  21#define PT_PCD_MASK (1ULL << 4)
  22#define PT_ACCESSED_SHIFT 5
  23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  24#define PT_DIRTY_SHIFT 6
  25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  26#define PT_PAGE_SIZE_SHIFT 7
  27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  28#define PT_PAT_MASK (1ULL << 7)
  29#define PT_GLOBAL_MASK (1ULL << 8)
  30#define PT64_NX_SHIFT 63
  31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  32
  33#define PT_PAT_SHIFT 7
  34#define PT_DIR_PAT_SHIFT 12
  35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  36
  37#define PT32_DIR_PSE36_SIZE 4
  38#define PT32_DIR_PSE36_SHIFT 13
  39#define PT32_DIR_PSE36_MASK \
  40        (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  41
  42#define PT64_ROOT_5LEVEL 5
  43#define PT64_ROOT_4LEVEL 4
  44#define PT32_ROOT_LEVEL 2
  45#define PT32E_ROOT_LEVEL 3
  46
  47#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | \
  48                               X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE | \
  49                               X86_CR4_LA57)
  50
  51#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
  52
  53static __always_inline u64 rsvd_bits(int s, int e)
  54{
  55        BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
  56
  57        if (__builtin_constant_p(e))
  58                BUILD_BUG_ON(e > 63);
  59        else
  60                e &= 63;
  61
  62        if (e < s)
  63                return 0;
  64
  65        return ((2ULL << (e - s)) - 1) << s;
  66}
  67
  68void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
  69void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
  70
  71void kvm_init_mmu(struct kvm_vcpu *vcpu);
  72void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
  73                             unsigned long cr4, u64 efer, gpa_t nested_cr3);
  74void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
  75                             bool accessed_dirty, gpa_t new_eptp);
  76bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  77int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
  78                                u64 fault_address, char *insn, int insn_len);
  79
  80int kvm_mmu_load(struct kvm_vcpu *vcpu);
  81void kvm_mmu_unload(struct kvm_vcpu *vcpu);
  82void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
  83
  84static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  85{
  86        if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
  87                return 0;
  88
  89        return kvm_mmu_load(vcpu);
  90}
  91
  92static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
  93{
  94        BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
  95
  96        return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
  97               ? cr3 & X86_CR3_PCID_MASK
  98               : 0;
  99}
 100
 101static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 102{
 103        return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
 104}
 105
 106static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
 107{
 108        u64 root_hpa = vcpu->arch.mmu->root_hpa;
 109
 110        if (!VALID_PAGE(root_hpa))
 111                return;
 112
 113        static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
 114                                          vcpu->arch.mmu->shadow_root_level);
 115}
 116
 117int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
 118                       bool prefault);
 119
 120static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 121                                        u32 err, bool prefault)
 122{
 123#ifdef CONFIG_RETPOLINE
 124        if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
 125                return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
 126#endif
 127        return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
 128}
 129
 130/*
 131 * Currently, we have two sorts of write-protection, a) the first one
 132 * write-protects guest page to sync the guest modification, b) another one is
 133 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 134 * between these two sorts are:
 135 * 1) the first case clears MMU-writable bit.
 136 * 2) the first case requires flushing tlb immediately avoiding corrupting
 137 *    shadow page table between all vcpus so it should be in the protection of
 138 *    mmu-lock. And the another case does not need to flush tlb until returning
 139 *    the dirty bitmap to userspace since it only write-protects the page
 140 *    logged in the bitmap, that means the page in the dirty bitmap is not
 141 *    missed, so it can flush tlb out of mmu-lock.
 142 *
 143 * So, there is the problem: the first case can meet the corrupted tlb caused
 144 * by another case which write-protects pages but without flush tlb
 145 * immediately. In order to making the first case be aware this problem we let
 146 * it flush tlb if we try to write-protect a spte whose MMU-writable bit
 147 * is set, it works since another case never touches MMU-writable bit.
 148 *
 149 * Anyway, whenever a spte is updated (only permission and status bits are
 150 * changed) we need to check whether the spte with MMU-writable becomes
 151 * readonly, if that happens, we need to flush tlb. Fortunately,
 152 * mmu_spte_update() has already handled it perfectly.
 153 *
 154 * The rules to use MMU-writable and PT_WRITABLE_MASK:
 155 * - if we want to see if it has writable tlb entry or if the spte can be
 156 *   writable on the mmu mapping, check MMU-writable, this is the most
 157 *   case, otherwise
 158 * - if we fix page fault on the spte or do write-protection by dirty logging,
 159 *   check PT_WRITABLE_MASK.
 160 *
 161 * TODO: introduce APIs to split these two cases.
 162 */
 163static inline bool is_writable_pte(unsigned long pte)
 164{
 165        return pte & PT_WRITABLE_MASK;
 166}
 167
 168/*
 169 * Check if a given access (described through the I/D, W/R and U/S bits of a
 170 * page fault error code pfec) causes a permission fault with the given PTE
 171 * access rights (in ACC_* format).
 172 *
 173 * Return zero if the access does not fault; return the page fault error code
 174 * if the access faults.
 175 */
 176static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 177                                  unsigned pte_access, unsigned pte_pkey,
 178                                  unsigned pfec)
 179{
 180        int cpl = static_call(kvm_x86_get_cpl)(vcpu);
 181        unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
 182
 183        /*
 184         * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 185         *
 186         * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 187         * (these are implicit supervisor accesses) regardless of the value
 188         * of EFLAGS.AC.
 189         *
 190         * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 191         * the result in X86_EFLAGS_AC. We then insert it in place of
 192         * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 193         * but it will be one in index if SMAP checks are being overridden.
 194         * It is important to keep this branchless.
 195         */
 196        unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 197        int index = (pfec >> 1) +
 198                    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 199        bool fault = (mmu->permissions[index] >> pte_access) & 1;
 200        u32 errcode = PFERR_PRESENT_MASK;
 201
 202        WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 203        if (unlikely(mmu->pkru_mask)) {
 204                u32 pkru_bits, offset;
 205
 206                /*
 207                * PKRU defines 32 bits, there are 16 domains and 2
 208                * attribute bits per domain in pkru.  pte_pkey is the
 209                * index of the protection domain, so pte_pkey * 2 is
 210                * is the index of the first bit for the domain.
 211                */
 212                pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
 213
 214                /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 215                offset = (pfec & ~1) +
 216                        ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 217
 218                pkru_bits &= mmu->pkru_mask >> offset;
 219                errcode |= -pkru_bits & PFERR_PK_MASK;
 220                fault |= (pkru_bits != 0);
 221        }
 222
 223        return -(u32)fault & errcode;
 224}
 225
 226void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 227
 228int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
 229
 230int kvm_mmu_post_init_vm(struct kvm *kvm);
 231void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
 232
 233static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
 234{
 235        /*
 236         * Read memslot_have_rmaps before rmap pointers.  Hence, threads reading
 237         * memslots_have_rmaps in any lock context are guaranteed to see the
 238         * pointers.  Pairs with smp_store_release in alloc_all_memslots_rmaps.
 239         */
 240        return smp_load_acquire(&kvm->arch.memslots_have_rmaps);
 241}
 242
 243static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
 244{
 245        /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
 246        return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
 247                (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
 248}
 249
 250static inline unsigned long
 251__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
 252                      int level)
 253{
 254        return gfn_to_index(slot->base_gfn + npages - 1,
 255                            slot->base_gfn, level) + 1;
 256}
 257
 258static inline unsigned long
 259kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
 260{
 261        return __kvm_mmu_slot_lpages(slot, slot->npages, level);
 262}
 263
 264static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
 265{
 266        atomic64_add(count, &kvm->stat.pages[level - 1]);
 267}
 268#endif
 269