linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * derived from drivers/kvm/kvm_main.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Avi Kivity   <avi@qumranet.com>
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Amit Shah    <amit.shah@qumranet.com>
  16 *   Ben-Ami Yassour <benami@il.ibm.com>
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include "irq.h"
  21#include "ioapic.h"
  22#include "mmu.h"
  23#include "i8254.h"
  24#include "tss.h"
  25#include "kvm_cache_regs.h"
  26#include "kvm_emulate.h"
  27#include "x86.h"
  28#include "cpuid.h"
  29#include "pmu.h"
  30#include "hyperv.h"
  31#include "lapic.h"
  32#include "xen.h"
  33
  34#include <linux/clocksource.h>
  35#include <linux/interrupt.h>
  36#include <linux/kvm.h>
  37#include <linux/fs.h>
  38#include <linux/vmalloc.h>
  39#include <linux/export.h>
  40#include <linux/moduleparam.h>
  41#include <linux/mman.h>
  42#include <linux/highmem.h>
  43#include <linux/iommu.h>
  44#include <linux/intel-iommu.h>
  45#include <linux/cpufreq.h>
  46#include <linux/user-return-notifier.h>
  47#include <linux/srcu.h>
  48#include <linux/slab.h>
  49#include <linux/perf_event.h>
  50#include <linux/uaccess.h>
  51#include <linux/hash.h>
  52#include <linux/pci.h>
  53#include <linux/timekeeper_internal.h>
  54#include <linux/pvclock_gtod.h>
  55#include <linux/kvm_irqfd.h>
  56#include <linux/irqbypass.h>
  57#include <linux/sched/stat.h>
  58#include <linux/sched/isolation.h>
  59#include <linux/mem_encrypt.h>
  60#include <linux/entry-kvm.h>
  61#include <linux/suspend.h>
  62
  63#include <trace/events/kvm.h>
  64
  65#include <asm/debugreg.h>
  66#include <asm/msr.h>
  67#include <asm/desc.h>
  68#include <asm/mce.h>
  69#include <asm/pkru.h>
  70#include <linux/kernel_stat.h>
  71#include <asm/fpu/internal.h> /* Ugh! */
  72#include <asm/pvclock.h>
  73#include <asm/div64.h>
  74#include <asm/irq_remapping.h>
  75#include <asm/mshyperv.h>
  76#include <asm/hypervisor.h>
  77#include <asm/tlbflush.h>
  78#include <asm/intel_pt.h>
  79#include <asm/emulate_prefix.h>
  80#include <asm/sgx.h>
  81#include <clocksource/hyperv_timer.h>
  82
  83#define CREATE_TRACE_POINTS
  84#include "trace.h"
  85
  86#define MAX_IO_MSRS 256
  87#define KVM_MAX_MCE_BANKS 32
  88u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  89EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  90
  91#define emul_to_vcpu(ctxt) \
  92        ((struct kvm_vcpu *)(ctxt)->vcpu)
  93
  94/* EFER defaults:
  95 * - enable syscall per default because its emulated by KVM
  96 * - enable LME and LMA per default on 64 bit KVM
  97 */
  98#ifdef CONFIG_X86_64
  99static
 100u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
 101#else
 102static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
 103#endif
 104
 105static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
 106
 107#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
 108
 109#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 110                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 111
 112static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 113static void process_nmi(struct kvm_vcpu *vcpu);
 114static void process_smi(struct kvm_vcpu *vcpu);
 115static void enter_smm(struct kvm_vcpu *vcpu);
 116static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 117static void store_regs(struct kvm_vcpu *vcpu);
 118static int sync_regs(struct kvm_vcpu *vcpu);
 119
 120static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 121static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 122
 123struct kvm_x86_ops kvm_x86_ops __read_mostly;
 124EXPORT_SYMBOL_GPL(kvm_x86_ops);
 125
 126#define KVM_X86_OP(func)                                             \
 127        DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
 128                                *(((struct kvm_x86_ops *)0)->func));
 129#define KVM_X86_OP_NULL KVM_X86_OP
 130#include <asm/kvm-x86-ops.h>
 131EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
 132EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
 133EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
 134
 135static bool __read_mostly ignore_msrs = 0;
 136module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 137
 138bool __read_mostly report_ignored_msrs = true;
 139module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 140EXPORT_SYMBOL_GPL(report_ignored_msrs);
 141
 142unsigned int min_timer_period_us = 200;
 143module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 144
 145static bool __read_mostly kvmclock_periodic_sync = true;
 146module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 147
 148bool __read_mostly kvm_has_tsc_control;
 149EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 150u32  __read_mostly kvm_max_guest_tsc_khz;
 151EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 152u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 153EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 154u64  __read_mostly kvm_max_tsc_scaling_ratio;
 155EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 156u64 __read_mostly kvm_default_tsc_scaling_ratio;
 157EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 158bool __read_mostly kvm_has_bus_lock_exit;
 159EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
 160
 161/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 162static u32 __read_mostly tsc_tolerance_ppm = 250;
 163module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 164
 165/*
 166 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 167 * adaptive tuning starting from default advancement of 1000ns.  '0' disables
 168 * advancement entirely.  Any other value is used as-is and disables adaptive
 169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
 170 */
 171static int __read_mostly lapic_timer_advance_ns = -1;
 172module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 173
 174static bool __read_mostly vector_hashing = true;
 175module_param(vector_hashing, bool, S_IRUGO);
 176
 177bool __read_mostly enable_vmware_backdoor = false;
 178module_param(enable_vmware_backdoor, bool, S_IRUGO);
 179EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 180
 181static bool __read_mostly force_emulation_prefix = false;
 182module_param(force_emulation_prefix, bool, S_IRUGO);
 183
 184int __read_mostly pi_inject_timer = -1;
 185module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 186
 187/*
 188 * Restoring the host value for MSRs that are only consumed when running in
 189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
 190 * returns to userspace, i.e. the kernel can run with the guest's value.
 191 */
 192#define KVM_MAX_NR_USER_RETURN_MSRS 16
 193
 194struct kvm_user_return_msrs {
 195        struct user_return_notifier urn;
 196        bool registered;
 197        struct kvm_user_return_msr_values {
 198                u64 host;
 199                u64 curr;
 200        } values[KVM_MAX_NR_USER_RETURN_MSRS];
 201};
 202
 203u32 __read_mostly kvm_nr_uret_msrs;
 204EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
 205static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
 206static struct kvm_user_return_msrs __percpu *user_return_msrs;
 207
 208#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
 209                                | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
 210                                | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
 211                                | XFEATURE_MASK_PKRU)
 212
 213u64 __read_mostly host_efer;
 214EXPORT_SYMBOL_GPL(host_efer);
 215
 216bool __read_mostly allow_smaller_maxphyaddr = 0;
 217EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
 218
 219bool __read_mostly enable_apicv = true;
 220EXPORT_SYMBOL_GPL(enable_apicv);
 221
 222u64 __read_mostly host_xss;
 223EXPORT_SYMBOL_GPL(host_xss);
 224u64 __read_mostly supported_xss;
 225EXPORT_SYMBOL_GPL(supported_xss);
 226
 227const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 228        KVM_GENERIC_VM_STATS(),
 229        STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
 230        STATS_DESC_COUNTER(VM, mmu_pte_write),
 231        STATS_DESC_COUNTER(VM, mmu_pde_zapped),
 232        STATS_DESC_COUNTER(VM, mmu_flooded),
 233        STATS_DESC_COUNTER(VM, mmu_recycled),
 234        STATS_DESC_COUNTER(VM, mmu_cache_miss),
 235        STATS_DESC_ICOUNTER(VM, mmu_unsync),
 236        STATS_DESC_ICOUNTER(VM, pages_4k),
 237        STATS_DESC_ICOUNTER(VM, pages_2m),
 238        STATS_DESC_ICOUNTER(VM, pages_1g),
 239        STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
 240        STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
 241        STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
 242};
 243
 244const struct kvm_stats_header kvm_vm_stats_header = {
 245        .name_size = KVM_STATS_NAME_SIZE,
 246        .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 247        .id_offset = sizeof(struct kvm_stats_header),
 248        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 249        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 250                       sizeof(kvm_vm_stats_desc),
 251};
 252
 253const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 254        KVM_GENERIC_VCPU_STATS(),
 255        STATS_DESC_COUNTER(VCPU, pf_fixed),
 256        STATS_DESC_COUNTER(VCPU, pf_guest),
 257        STATS_DESC_COUNTER(VCPU, tlb_flush),
 258        STATS_DESC_COUNTER(VCPU, invlpg),
 259        STATS_DESC_COUNTER(VCPU, exits),
 260        STATS_DESC_COUNTER(VCPU, io_exits),
 261        STATS_DESC_COUNTER(VCPU, mmio_exits),
 262        STATS_DESC_COUNTER(VCPU, signal_exits),
 263        STATS_DESC_COUNTER(VCPU, irq_window_exits),
 264        STATS_DESC_COUNTER(VCPU, nmi_window_exits),
 265        STATS_DESC_COUNTER(VCPU, l1d_flush),
 266        STATS_DESC_COUNTER(VCPU, halt_exits),
 267        STATS_DESC_COUNTER(VCPU, request_irq_exits),
 268        STATS_DESC_COUNTER(VCPU, irq_exits),
 269        STATS_DESC_COUNTER(VCPU, host_state_reload),
 270        STATS_DESC_COUNTER(VCPU, fpu_reload),
 271        STATS_DESC_COUNTER(VCPU, insn_emulation),
 272        STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
 273        STATS_DESC_COUNTER(VCPU, hypercalls),
 274        STATS_DESC_COUNTER(VCPU, irq_injections),
 275        STATS_DESC_COUNTER(VCPU, nmi_injections),
 276        STATS_DESC_COUNTER(VCPU, req_event),
 277        STATS_DESC_COUNTER(VCPU, nested_run),
 278        STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
 279        STATS_DESC_COUNTER(VCPU, directed_yield_successful),
 280        STATS_DESC_ICOUNTER(VCPU, guest_mode)
 281};
 282
 283const struct kvm_stats_header kvm_vcpu_stats_header = {
 284        .name_size = KVM_STATS_NAME_SIZE,
 285        .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 286        .id_offset = sizeof(struct kvm_stats_header),
 287        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 288        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 289                       sizeof(kvm_vcpu_stats_desc),
 290};
 291
 292u64 __read_mostly host_xcr0;
 293u64 __read_mostly supported_xcr0;
 294EXPORT_SYMBOL_GPL(supported_xcr0);
 295
 296static struct kmem_cache *x86_fpu_cache;
 297
 298static struct kmem_cache *x86_emulator_cache;
 299
 300/*
 301 * When called, it means the previous get/set msr reached an invalid msr.
 302 * Return true if we want to ignore/silent this failed msr access.
 303 */
 304static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
 305{
 306        const char *op = write ? "wrmsr" : "rdmsr";
 307
 308        if (ignore_msrs) {
 309                if (report_ignored_msrs)
 310                        kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
 311                                      op, msr, data);
 312                /* Mask the error */
 313                return true;
 314        } else {
 315                kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
 316                                      op, msr, data);
 317                return false;
 318        }
 319}
 320
 321static struct kmem_cache *kvm_alloc_emulator_cache(void)
 322{
 323        unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
 324        unsigned int size = sizeof(struct x86_emulate_ctxt);
 325
 326        return kmem_cache_create_usercopy("x86_emulator", size,
 327                                          __alignof__(struct x86_emulate_ctxt),
 328                                          SLAB_ACCOUNT, useroffset,
 329                                          size - useroffset, NULL);
 330}
 331
 332static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 333
 334static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 335{
 336        int i;
 337        for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
 338                vcpu->arch.apf.gfns[i] = ~0;
 339}
 340
 341static void kvm_on_user_return(struct user_return_notifier *urn)
 342{
 343        unsigned slot;
 344        struct kvm_user_return_msrs *msrs
 345                = container_of(urn, struct kvm_user_return_msrs, urn);
 346        struct kvm_user_return_msr_values *values;
 347        unsigned long flags;
 348
 349        /*
 350         * Disabling irqs at this point since the following code could be
 351         * interrupted and executed through kvm_arch_hardware_disable()
 352         */
 353        local_irq_save(flags);
 354        if (msrs->registered) {
 355                msrs->registered = false;
 356                user_return_notifier_unregister(urn);
 357        }
 358        local_irq_restore(flags);
 359        for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
 360                values = &msrs->values[slot];
 361                if (values->host != values->curr) {
 362                        wrmsrl(kvm_uret_msrs_list[slot], values->host);
 363                        values->curr = values->host;
 364                }
 365        }
 366}
 367
 368static int kvm_probe_user_return_msr(u32 msr)
 369{
 370        u64 val;
 371        int ret;
 372
 373        preempt_disable();
 374        ret = rdmsrl_safe(msr, &val);
 375        if (ret)
 376                goto out;
 377        ret = wrmsrl_safe(msr, val);
 378out:
 379        preempt_enable();
 380        return ret;
 381}
 382
 383int kvm_add_user_return_msr(u32 msr)
 384{
 385        BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
 386
 387        if (kvm_probe_user_return_msr(msr))
 388                return -1;
 389
 390        kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
 391        return kvm_nr_uret_msrs++;
 392}
 393EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
 394
 395int kvm_find_user_return_msr(u32 msr)
 396{
 397        int i;
 398
 399        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 400                if (kvm_uret_msrs_list[i] == msr)
 401                        return i;
 402        }
 403        return -1;
 404}
 405EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
 406
 407static void kvm_user_return_msr_cpu_online(void)
 408{
 409        unsigned int cpu = smp_processor_id();
 410        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 411        u64 value;
 412        int i;
 413
 414        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 415                rdmsrl_safe(kvm_uret_msrs_list[i], &value);
 416                msrs->values[i].host = value;
 417                msrs->values[i].curr = value;
 418        }
 419}
 420
 421int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
 422{
 423        unsigned int cpu = smp_processor_id();
 424        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 425        int err;
 426
 427        value = (value & mask) | (msrs->values[slot].host & ~mask);
 428        if (value == msrs->values[slot].curr)
 429                return 0;
 430        err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
 431        if (err)
 432                return 1;
 433
 434        msrs->values[slot].curr = value;
 435        if (!msrs->registered) {
 436                msrs->urn.on_user_return = kvm_on_user_return;
 437                user_return_notifier_register(&msrs->urn);
 438                msrs->registered = true;
 439        }
 440        return 0;
 441}
 442EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
 443
 444static void drop_user_return_notifiers(void)
 445{
 446        unsigned int cpu = smp_processor_id();
 447        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 448
 449        if (msrs->registered)
 450                kvm_on_user_return(&msrs->urn);
 451}
 452
 453u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 454{
 455        return vcpu->arch.apic_base;
 456}
 457EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 458
 459enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 460{
 461        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 462}
 463EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 464
 465int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 466{
 467        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 468        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 469        u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
 470                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 471
 472        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 473                return 1;
 474        if (!msr_info->host_initiated) {
 475                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 476                        return 1;
 477                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 478                        return 1;
 479        }
 480
 481        kvm_lapic_set_base(vcpu, msr_info->data);
 482        kvm_recalculate_apic_map(vcpu->kvm);
 483        return 0;
 484}
 485EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 486
 487/*
 488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
 489 *
 490 * Hardware virtualization extension instructions may fault if a reboot turns
 491 * off virtualization while processes are running.  Usually after catching the
 492 * fault we just panic; during reboot instead the instruction is ignored.
 493 */
 494noinstr void kvm_spurious_fault(void)
 495{
 496        /* Fault while not rebooting.  We want the trace. */
 497        BUG_ON(!kvm_rebooting);
 498}
 499EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 500
 501#define EXCPT_BENIGN            0
 502#define EXCPT_CONTRIBUTORY      1
 503#define EXCPT_PF                2
 504
 505static int exception_class(int vector)
 506{
 507        switch (vector) {
 508        case PF_VECTOR:
 509                return EXCPT_PF;
 510        case DE_VECTOR:
 511        case TS_VECTOR:
 512        case NP_VECTOR:
 513        case SS_VECTOR:
 514        case GP_VECTOR:
 515                return EXCPT_CONTRIBUTORY;
 516        default:
 517                break;
 518        }
 519        return EXCPT_BENIGN;
 520}
 521
 522#define EXCPT_FAULT             0
 523#define EXCPT_TRAP              1
 524#define EXCPT_ABORT             2
 525#define EXCPT_INTERRUPT         3
 526
 527static int exception_type(int vector)
 528{
 529        unsigned int mask;
 530
 531        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 532                return EXCPT_INTERRUPT;
 533
 534        mask = 1 << vector;
 535
 536        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 537        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 538                return EXCPT_TRAP;
 539
 540        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 541                return EXCPT_ABORT;
 542
 543        /* Reserved exceptions will result in fault */
 544        return EXCPT_FAULT;
 545}
 546
 547void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 548{
 549        unsigned nr = vcpu->arch.exception.nr;
 550        bool has_payload = vcpu->arch.exception.has_payload;
 551        unsigned long payload = vcpu->arch.exception.payload;
 552
 553        if (!has_payload)
 554                return;
 555
 556        switch (nr) {
 557        case DB_VECTOR:
 558                /*
 559                 * "Certain debug exceptions may clear bit 0-3.  The
 560                 * remaining contents of the DR6 register are never
 561                 * cleared by the processor".
 562                 */
 563                vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 564                /*
 565                 * In order to reflect the #DB exception payload in guest
 566                 * dr6, three components need to be considered: active low
 567                 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
 568                 * DR6_BS and DR6_BT)
 569                 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
 570                 * In the target guest dr6:
 571                 * FIXED_1 bits should always be set.
 572                 * Active low bits should be cleared if 1-setting in payload.
 573                 * Active high bits should be set if 1-setting in payload.
 574                 *
 575                 * Note, the payload is compatible with the pending debug
 576                 * exceptions/exit qualification under VMX, that active_low bits
 577                 * are active high in payload.
 578                 * So they need to be flipped for DR6.
 579                 */
 580                vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
 581                vcpu->arch.dr6 |= payload;
 582                vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
 583
 584                /*
 585                 * The #DB payload is defined as compatible with the 'pending
 586                 * debug exceptions' field under VMX, not DR6. While bit 12 is
 587                 * defined in the 'pending debug exceptions' field (enabled
 588                 * breakpoint), it is reserved and must be zero in DR6.
 589                 */
 590                vcpu->arch.dr6 &= ~BIT(12);
 591                break;
 592        case PF_VECTOR:
 593                vcpu->arch.cr2 = payload;
 594                break;
 595        }
 596
 597        vcpu->arch.exception.has_payload = false;
 598        vcpu->arch.exception.payload = 0;
 599}
 600EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 601
 602static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 603                unsigned nr, bool has_error, u32 error_code,
 604                bool has_payload, unsigned long payload, bool reinject)
 605{
 606        u32 prev_nr;
 607        int class1, class2;
 608
 609        kvm_make_request(KVM_REQ_EVENT, vcpu);
 610
 611        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 612        queue:
 613                if (reinject) {
 614                        /*
 615                         * On vmentry, vcpu->arch.exception.pending is only
 616                         * true if an event injection was blocked by
 617                         * nested_run_pending.  In that case, however,
 618                         * vcpu_enter_guest requests an immediate exit,
 619                         * and the guest shouldn't proceed far enough to
 620                         * need reinjection.
 621                         */
 622                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 623                        vcpu->arch.exception.injected = true;
 624                        if (WARN_ON_ONCE(has_payload)) {
 625                                /*
 626                                 * A reinjected event has already
 627                                 * delivered its payload.
 628                                 */
 629                                has_payload = false;
 630                                payload = 0;
 631                        }
 632                } else {
 633                        vcpu->arch.exception.pending = true;
 634                        vcpu->arch.exception.injected = false;
 635                }
 636                vcpu->arch.exception.has_error_code = has_error;
 637                vcpu->arch.exception.nr = nr;
 638                vcpu->arch.exception.error_code = error_code;
 639                vcpu->arch.exception.has_payload = has_payload;
 640                vcpu->arch.exception.payload = payload;
 641                if (!is_guest_mode(vcpu))
 642                        kvm_deliver_exception_payload(vcpu);
 643                return;
 644        }
 645
 646        /* to check exception */
 647        prev_nr = vcpu->arch.exception.nr;
 648        if (prev_nr == DF_VECTOR) {
 649                /* triple fault -> shutdown */
 650                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 651                return;
 652        }
 653        class1 = exception_class(prev_nr);
 654        class2 = exception_class(nr);
 655        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 656                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 657                /*
 658                 * Generate double fault per SDM Table 5-5.  Set
 659                 * exception.pending = true so that the double fault
 660                 * can trigger a nested vmexit.
 661                 */
 662                vcpu->arch.exception.pending = true;
 663                vcpu->arch.exception.injected = false;
 664                vcpu->arch.exception.has_error_code = true;
 665                vcpu->arch.exception.nr = DF_VECTOR;
 666                vcpu->arch.exception.error_code = 0;
 667                vcpu->arch.exception.has_payload = false;
 668                vcpu->arch.exception.payload = 0;
 669        } else
 670                /* replace previous exception with a new one in a hope
 671                   that instruction re-execution will regenerate lost
 672                   exception */
 673                goto queue;
 674}
 675
 676void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 677{
 678        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 679}
 680EXPORT_SYMBOL_GPL(kvm_queue_exception);
 681
 682void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 683{
 684        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 685}
 686EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 687
 688void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 689                           unsigned long payload)
 690{
 691        kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 692}
 693EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
 694
 695static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 696                                    u32 error_code, unsigned long payload)
 697{
 698        kvm_multiple_exception(vcpu, nr, true, error_code,
 699                               true, payload, false);
 700}
 701
 702int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 703{
 704        if (err)
 705                kvm_inject_gp(vcpu, 0);
 706        else
 707                return kvm_skip_emulated_instruction(vcpu);
 708
 709        return 1;
 710}
 711EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 712
 713void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 714{
 715        ++vcpu->stat.pf_guest;
 716        vcpu->arch.exception.nested_apf =
 717                is_guest_mode(vcpu) && fault->async_page_fault;
 718        if (vcpu->arch.exception.nested_apf) {
 719                vcpu->arch.apf.nested_apf_token = fault->address;
 720                kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 721        } else {
 722                kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 723                                        fault->address);
 724        }
 725}
 726EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 727
 728bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
 729                                    struct x86_exception *fault)
 730{
 731        struct kvm_mmu *fault_mmu;
 732        WARN_ON_ONCE(fault->vector != PF_VECTOR);
 733
 734        fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
 735                                               vcpu->arch.walk_mmu;
 736
 737        /*
 738         * Invalidate the TLB entry for the faulting address, if it exists,
 739         * else the access will fault indefinitely (and to emulate hardware).
 740         */
 741        if ((fault->error_code & PFERR_PRESENT_MASK) &&
 742            !(fault->error_code & PFERR_RSVD_MASK))
 743                kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
 744                                       fault_mmu->root_hpa);
 745
 746        fault_mmu->inject_page_fault(vcpu, fault);
 747        return fault->nested_page_fault;
 748}
 749EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
 750
 751void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 752{
 753        atomic_inc(&vcpu->arch.nmi_queued);
 754        kvm_make_request(KVM_REQ_NMI, vcpu);
 755}
 756EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 757
 758void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 759{
 760        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 761}
 762EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 763
 764void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 765{
 766        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 767}
 768EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 769
 770/*
 771 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 772 * a #GP and return false.
 773 */
 774bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 775{
 776        if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
 777                return true;
 778        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 779        return false;
 780}
 781EXPORT_SYMBOL_GPL(kvm_require_cpl);
 782
 783bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 784{
 785        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 786                return true;
 787
 788        kvm_queue_exception(vcpu, UD_VECTOR);
 789        return false;
 790}
 791EXPORT_SYMBOL_GPL(kvm_require_dr);
 792
 793/*
 794 * This function will be used to read from the physical memory of the currently
 795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 796 * can read from guest physical or from the guest's guest physical memory.
 797 */
 798int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 799                            gfn_t ngfn, void *data, int offset, int len,
 800                            u32 access)
 801{
 802        struct x86_exception exception;
 803        gfn_t real_gfn;
 804        gpa_t ngpa;
 805
 806        ngpa     = gfn_to_gpa(ngfn);
 807        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 808        if (real_gfn == UNMAPPED_GVA)
 809                return -EFAULT;
 810
 811        real_gfn = gpa_to_gfn(real_gfn);
 812
 813        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 814}
 815EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 816
 817static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 818{
 819        return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
 820}
 821
 822/*
 823 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 824 */
 825int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 826{
 827        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 828        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 829        int i;
 830        int ret;
 831        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 832
 833        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 834                                      offset * sizeof(u64), sizeof(pdpte),
 835                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 836        if (ret < 0) {
 837                ret = 0;
 838                goto out;
 839        }
 840        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 841                if ((pdpte[i] & PT_PRESENT_MASK) &&
 842                    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 843                        ret = 0;
 844                        goto out;
 845                }
 846        }
 847        ret = 1;
 848
 849        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 850        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 851        vcpu->arch.pdptrs_from_userspace = false;
 852
 853out:
 854
 855        return ret;
 856}
 857EXPORT_SYMBOL_GPL(load_pdptrs);
 858
 859void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
 860{
 861        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 862                kvm_clear_async_pf_completion_queue(vcpu);
 863                kvm_async_pf_hash_reset(vcpu);
 864        }
 865
 866        if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
 867                kvm_mmu_reset_context(vcpu);
 868
 869        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 870            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 871            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 872                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 873}
 874EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
 875
 876int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 877{
 878        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 879        unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
 880
 881        cr0 |= X86_CR0_ET;
 882
 883#ifdef CONFIG_X86_64
 884        if (cr0 & 0xffffffff00000000UL)
 885                return 1;
 886#endif
 887
 888        cr0 &= ~CR0_RESERVED_BITS;
 889
 890        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 891                return 1;
 892
 893        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 894                return 1;
 895
 896#ifdef CONFIG_X86_64
 897        if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
 898            (cr0 & X86_CR0_PG)) {
 899                int cs_db, cs_l;
 900
 901                if (!is_pae(vcpu))
 902                        return 1;
 903                static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
 904                if (cs_l)
 905                        return 1;
 906        }
 907#endif
 908        if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
 909            is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
 910            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
 911                return 1;
 912
 913        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 914                return 1;
 915
 916        static_call(kvm_x86_set_cr0)(vcpu, cr0);
 917
 918        kvm_post_set_cr0(vcpu, old_cr0, cr0);
 919
 920        return 0;
 921}
 922EXPORT_SYMBOL_GPL(kvm_set_cr0);
 923
 924void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 925{
 926        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 927}
 928EXPORT_SYMBOL_GPL(kvm_lmsw);
 929
 930void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 931{
 932        if (vcpu->arch.guest_state_protected)
 933                return;
 934
 935        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 936
 937                if (vcpu->arch.xcr0 != host_xcr0)
 938                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 939
 940                if (vcpu->arch.xsaves_enabled &&
 941                    vcpu->arch.ia32_xss != host_xss)
 942                        wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 943        }
 944
 945        if (static_cpu_has(X86_FEATURE_PKU) &&
 946            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 947             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
 948            vcpu->arch.pkru != vcpu->arch.host_pkru)
 949                write_pkru(vcpu->arch.pkru);
 950}
 951EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 952
 953void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 954{
 955        if (vcpu->arch.guest_state_protected)
 956                return;
 957
 958        if (static_cpu_has(X86_FEATURE_PKU) &&
 959            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 960             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
 961                vcpu->arch.pkru = rdpkru();
 962                if (vcpu->arch.pkru != vcpu->arch.host_pkru)
 963                        write_pkru(vcpu->arch.host_pkru);
 964        }
 965
 966        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 967
 968                if (vcpu->arch.xcr0 != host_xcr0)
 969                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 970
 971                if (vcpu->arch.xsaves_enabled &&
 972                    vcpu->arch.ia32_xss != host_xss)
 973                        wrmsrl(MSR_IA32_XSS, host_xss);
 974        }
 975
 976}
 977EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 978
 979static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 980{
 981        u64 xcr0 = xcr;
 982        u64 old_xcr0 = vcpu->arch.xcr0;
 983        u64 valid_bits;
 984
 985        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 986        if (index != XCR_XFEATURE_ENABLED_MASK)
 987                return 1;
 988        if (!(xcr0 & XFEATURE_MASK_FP))
 989                return 1;
 990        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 991                return 1;
 992
 993        /*
 994         * Do not allow the guest to set bits that we do not support
 995         * saving.  However, xcr0 bit 0 is always set, even if the
 996         * emulated CPU does not support XSAVE (see fx_init).
 997         */
 998        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 999        if (xcr0 & ~valid_bits)
1000                return 1;
1001
1002        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004                return 1;
1005
1006        if (xcr0 & XFEATURE_MASK_AVX512) {
1007                if (!(xcr0 & XFEATURE_MASK_YMM))
1008                        return 1;
1009                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010                        return 1;
1011        }
1012        vcpu->arch.xcr0 = xcr0;
1013
1014        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015                kvm_update_cpuid_runtime(vcpu);
1016        return 0;
1017}
1018
1019int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020{
1021        if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022            __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023                kvm_inject_gp(vcpu, 0);
1024                return 1;
1025        }
1026
1027        return kvm_skip_emulated_instruction(vcpu);
1028}
1029EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032{
1033        if (cr4 & cr4_reserved_bits)
1034                return false;
1035
1036        if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037                return false;
1038
1039        return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040}
1041EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044{
1045        if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047                kvm_mmu_reset_context(vcpu);
1048}
1049EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052{
1053        unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055                                   X86_CR4_SMEP;
1056
1057        if (!kvm_is_valid_cr4(vcpu, cr4))
1058                return 1;
1059
1060        if (is_long_mode(vcpu)) {
1061                if (!(cr4 & X86_CR4_PAE))
1062                        return 1;
1063                if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064                        return 1;
1065        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066                   && ((cr4 ^ old_cr4) & pdptr_bits)
1067                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068                                   kvm_read_cr3(vcpu)))
1069                return 1;
1070
1071        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073                        return 1;
1074
1075                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077                        return 1;
1078        }
1079
1080        static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082        kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084        return 0;
1085}
1086EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089{
1090        struct kvm_mmu *mmu = vcpu->arch.mmu;
1091        unsigned long roots_to_free = 0;
1092        int i;
1093
1094        /*
1095         * If neither the current CR3 nor any of the prev_roots use the given
1096         * PCID, then nothing needs to be done here because a resync will
1097         * happen anyway before switching to any other CR3.
1098         */
1099        if (kvm_get_active_pcid(vcpu) == pcid) {
1100                kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102        }
1103
1104        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105                if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106                        roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108        kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109}
1110
1111int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112{
1113        bool skip_tlb_flush = false;
1114        unsigned long pcid = 0;
1115#ifdef CONFIG_X86_64
1116        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118        if (pcid_enabled) {
1119                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120                cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121                pcid = cr3 & X86_CR3_PCID_MASK;
1122        }
1123#endif
1124
1125        /* PDPTRs are always reloaded for PAE paging. */
1126        if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127                goto handle_tlb_flush;
1128
1129        /*
1130         * Do not condition the GPA check on long mode, this helper is used to
1131         * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132         * the current vCPU mode is accurate.
1133         */
1134        if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135                return 1;
1136
1137        if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138                return 1;
1139
1140        if (cr3 != kvm_read_cr3(vcpu))
1141                kvm_mmu_new_pgd(vcpu, cr3);
1142
1143        vcpu->arch.cr3 = cr3;
1144        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146handle_tlb_flush:
1147        /*
1148         * A load of CR3 that flushes the TLB flushes only the current PCID,
1149         * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1150         * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151         * and it's impossible to use a non-zero PCID when PCID is disabled,
1152         * i.e. only PCID=0 can be relevant.
1153         */
1154        if (!skip_tlb_flush)
1155                kvm_invalidate_pcid(vcpu, pcid);
1156
1157        return 0;
1158}
1159EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162{
1163        if (cr8 & CR8_RESERVED_BITS)
1164                return 1;
1165        if (lapic_in_kernel(vcpu))
1166                kvm_lapic_set_tpr(vcpu, cr8);
1167        else
1168                vcpu->arch.cr8 = cr8;
1169        return 0;
1170}
1171EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174{
1175        if (lapic_in_kernel(vcpu))
1176                return kvm_lapic_get_cr8(vcpu);
1177        else
1178                return vcpu->arch.cr8;
1179}
1180EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183{
1184        int i;
1185
1186        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187                for (i = 0; i < KVM_NR_DB_REGS; i++)
1188                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189        }
1190}
1191
1192void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193{
1194        unsigned long dr7;
1195
1196        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197                dr7 = vcpu->arch.guest_debug_dr7;
1198        else
1199                dr7 = vcpu->arch.dr7;
1200        static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202        if (dr7 & DR7_BP_EN_MASK)
1203                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204}
1205EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208{
1209        u64 fixed = DR6_FIXED_1;
1210
1211        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212                fixed |= DR6_RTM;
1213
1214        if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215                fixed |= DR6_BUS_LOCK;
1216        return fixed;
1217}
1218
1219int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220{
1221        size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223        switch (dr) {
1224        case 0 ... 3:
1225                vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227                        vcpu->arch.eff_db[dr] = val;
1228                break;
1229        case 4:
1230        case 6:
1231                if (!kvm_dr6_valid(val))
1232                        return 1; /* #GP */
1233                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234                break;
1235        case 5:
1236        default: /* 7 */
1237                if (!kvm_dr7_valid(val))
1238                        return 1; /* #GP */
1239                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240                kvm_update_dr7(vcpu);
1241                break;
1242        }
1243
1244        return 0;
1245}
1246EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249{
1250        size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252        switch (dr) {
1253        case 0 ... 3:
1254                *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255                break;
1256        case 4:
1257        case 6:
1258                *val = vcpu->arch.dr6;
1259                break;
1260        case 5:
1261        default: /* 7 */
1262                *val = vcpu->arch.dr7;
1263                break;
1264        }
1265}
1266EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269{
1270        u32 ecx = kvm_rcx_read(vcpu);
1271        u64 data;
1272
1273        if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274                kvm_inject_gp(vcpu, 0);
1275                return 1;
1276        }
1277
1278        kvm_rax_write(vcpu, (u32)data);
1279        kvm_rdx_write(vcpu, data >> 32);
1280        return kvm_skip_emulated_instruction(vcpu);
1281}
1282EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284/*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296static const u32 msrs_to_save_all[] = {
1297        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298        MSR_STAR,
1299#ifdef CONFIG_X86_64
1300        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301#endif
1302        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303        MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304        MSR_IA32_SPEC_CTRL,
1305        MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306        MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307        MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308        MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309        MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310        MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311        MSR_IA32_UMWAIT_CONTROL,
1312
1313        MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314        MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315        MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316        MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317        MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318        MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319        MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320        MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321        MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322        MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323        MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324        MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325        MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326        MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327        MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328        MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329        MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330        MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331        MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332        MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333        MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334        MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336        MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337        MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338        MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339        MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340        MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341        MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342};
1343
1344static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345static unsigned num_msrs_to_save;
1346
1347static const u32 emulated_msrs_all[] = {
1348        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355        HV_X64_MSR_RESET,
1356        HV_X64_MSR_VP_INDEX,
1357        HV_X64_MSR_VP_RUNTIME,
1358        HV_X64_MSR_SCONTROL,
1359        HV_X64_MSR_STIMER0_CONFIG,
1360        HV_X64_MSR_VP_ASSIST_PAGE,
1361        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362        HV_X64_MSR_TSC_EMULATION_STATUS,
1363        HV_X64_MSR_SYNDBG_OPTIONS,
1364        HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365        HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366        HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369        MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371        MSR_IA32_TSC_ADJUST,
1372        MSR_IA32_TSC_DEADLINE,
1373        MSR_IA32_ARCH_CAPABILITIES,
1374        MSR_IA32_PERF_CAPABILITIES,
1375        MSR_IA32_MISC_ENABLE,
1376        MSR_IA32_MCG_STATUS,
1377        MSR_IA32_MCG_CTL,
1378        MSR_IA32_MCG_EXT_CTL,
1379        MSR_IA32_SMBASE,
1380        MSR_SMI_COUNT,
1381        MSR_PLATFORM_INFO,
1382        MSR_MISC_FEATURES_ENABLES,
1383        MSR_AMD64_VIRT_SPEC_CTRL,
1384        MSR_IA32_POWER_CTL,
1385        MSR_IA32_UCODE_REV,
1386
1387        /*
1388         * The following list leaves out MSRs whose values are determined
1389         * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390         * We always support the "true" VMX control MSRs, even if the host
1391         * processor does not, so I am putting these registers here rather
1392         * than in msrs_to_save_all.
1393         */
1394        MSR_IA32_VMX_BASIC,
1395        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399        MSR_IA32_VMX_MISC,
1400        MSR_IA32_VMX_CR0_FIXED0,
1401        MSR_IA32_VMX_CR4_FIXED0,
1402        MSR_IA32_VMX_VMCS_ENUM,
1403        MSR_IA32_VMX_PROCBASED_CTLS2,
1404        MSR_IA32_VMX_EPT_VPID_CAP,
1405        MSR_IA32_VMX_VMFUNC,
1406
1407        MSR_K7_HWCR,
1408        MSR_KVM_POLL_CONTROL,
1409};
1410
1411static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412static unsigned num_emulated_msrs;
1413
1414/*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418static const u32 msr_based_features_all[] = {
1419        MSR_IA32_VMX_BASIC,
1420        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421        MSR_IA32_VMX_PINBASED_CTLS,
1422        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423        MSR_IA32_VMX_PROCBASED_CTLS,
1424        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425        MSR_IA32_VMX_EXIT_CTLS,
1426        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427        MSR_IA32_VMX_ENTRY_CTLS,
1428        MSR_IA32_VMX_MISC,
1429        MSR_IA32_VMX_CR0_FIXED0,
1430        MSR_IA32_VMX_CR0_FIXED1,
1431        MSR_IA32_VMX_CR4_FIXED0,
1432        MSR_IA32_VMX_CR4_FIXED1,
1433        MSR_IA32_VMX_VMCS_ENUM,
1434        MSR_IA32_VMX_PROCBASED_CTLS2,
1435        MSR_IA32_VMX_EPT_VPID_CAP,
1436        MSR_IA32_VMX_VMFUNC,
1437
1438        MSR_F10H_DECFG,
1439        MSR_IA32_UCODE_REV,
1440        MSR_IA32_ARCH_CAPABILITIES,
1441        MSR_IA32_PERF_CAPABILITIES,
1442};
1443
1444static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445static unsigned int num_msr_based_features;
1446
1447static u64 kvm_get_arch_capabilities(void)
1448{
1449        u64 data = 0;
1450
1451        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454        /*
1455         * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456         * the nested hypervisor runs with NX huge pages.  If it is not,
1457         * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458         * L1 guests, so it need not worry about its own (L2) guests.
1459         */
1460        data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462        /*
1463         * If we're doing cache flushes (either "always" or "cond")
1464         * we will do one whenever the guest does a vmlaunch/vmresume.
1465         * If an outer hypervisor is doing the cache flush for us
1466         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467         * capability to the guest too, and if EPT is disabled we're not
1468         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1469         * require a nested hypervisor to do a flush of its own.
1470         */
1471        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474        if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475                data |= ARCH_CAP_RDCL_NO;
1476        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477                data |= ARCH_CAP_SSB_NO;
1478        if (!boot_cpu_has_bug(X86_BUG_MDS))
1479                data |= ARCH_CAP_MDS_NO;
1480
1481        if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482                /*
1483                 * If RTM=0 because the kernel has disabled TSX, the host might
1484                 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1485                 * and therefore knows that there cannot be TAA) but keep
1486                 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487                 * and we want to allow migrating those guests to tsx=off hosts.
1488                 */
1489                data &= ~ARCH_CAP_TAA_NO;
1490        } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491                data |= ARCH_CAP_TAA_NO;
1492        } else {
1493                /*
1494                 * Nothing to do here; we emulate TSX_CTRL if present on the
1495                 * host so the guest can choose between disabling TSX or
1496                 * using VERW to clear CPU buffers.
1497                 */
1498        }
1499
1500        return data;
1501}
1502
1503static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504{
1505        switch (msr->index) {
1506        case MSR_IA32_ARCH_CAPABILITIES:
1507                msr->data = kvm_get_arch_capabilities();
1508                break;
1509        case MSR_IA32_UCODE_REV:
1510                rdmsrl_safe(msr->index, &msr->data);
1511                break;
1512        default:
1513                return static_call(kvm_x86_get_msr_feature)(msr);
1514        }
1515        return 0;
1516}
1517
1518static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519{
1520        struct kvm_msr_entry msr;
1521        int r;
1522
1523        msr.index = index;
1524        r = kvm_get_msr_feature(&msr);
1525
1526        if (r == KVM_MSR_RET_INVALID) {
1527                /* Unconditionally clear the output for simplicity */
1528                *data = 0;
1529                if (kvm_msr_ignored_check(index, 0, false))
1530                        r = 0;
1531        }
1532
1533        if (r)
1534                return r;
1535
1536        *data = msr.data;
1537
1538        return 0;
1539}
1540
1541static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542{
1543        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544                return false;
1545
1546        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547                return false;
1548
1549        if (efer & (EFER_LME | EFER_LMA) &&
1550            !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551                return false;
1552
1553        if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554                return false;
1555
1556        return true;
1557
1558}
1559bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560{
1561        if (efer & efer_reserved_bits)
1562                return false;
1563
1564        return __kvm_valid_efer(vcpu, efer);
1565}
1566EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569{
1570        u64 old_efer = vcpu->arch.efer;
1571        u64 efer = msr_info->data;
1572        int r;
1573
1574        if (efer & efer_reserved_bits)
1575                return 1;
1576
1577        if (!msr_info->host_initiated) {
1578                if (!__kvm_valid_efer(vcpu, efer))
1579                        return 1;
1580
1581                if (is_paging(vcpu) &&
1582                    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583                        return 1;
1584        }
1585
1586        efer &= ~EFER_LMA;
1587        efer |= vcpu->arch.efer & EFER_LMA;
1588
1589        r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590        if (r) {
1591                WARN_ON(r > 0);
1592                return r;
1593        }
1594
1595        /* Update reserved bits */
1596        if ((efer ^ old_efer) & EFER_NX)
1597                kvm_mmu_reset_context(vcpu);
1598
1599        return 0;
1600}
1601
1602void kvm_enable_efer_bits(u64 mask)
1603{
1604       efer_reserved_bits &= ~mask;
1605}
1606EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609{
1610        struct kvm_x86_msr_filter *msr_filter;
1611        struct msr_bitmap_range *ranges;
1612        struct kvm *kvm = vcpu->kvm;
1613        bool allowed;
1614        int idx;
1615        u32 i;
1616
1617        /* x2APIC MSRs do not support filtering. */
1618        if (index >= 0x800 && index <= 0x8ff)
1619                return true;
1620
1621        idx = srcu_read_lock(&kvm->srcu);
1622
1623        msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624        if (!msr_filter) {
1625                allowed = true;
1626                goto out;
1627        }
1628
1629        allowed = msr_filter->default_allow;
1630        ranges = msr_filter->ranges;
1631
1632        for (i = 0; i < msr_filter->count; i++) {
1633                u32 start = ranges[i].base;
1634                u32 end = start + ranges[i].nmsrs;
1635                u32 flags = ranges[i].flags;
1636                unsigned long *bitmap = ranges[i].bitmap;
1637
1638                if ((index >= start) && (index < end) && (flags & type)) {
1639                        allowed = !!test_bit(index - start, bitmap);
1640                        break;
1641                }
1642        }
1643
1644out:
1645        srcu_read_unlock(&kvm->srcu, idx);
1646
1647        return allowed;
1648}
1649EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651/*
1652 * Write @data into the MSR specified by @index.  Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658                         bool host_initiated)
1659{
1660        struct msr_data msr;
1661
1662        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663                return KVM_MSR_RET_FILTERED;
1664
1665        switch (index) {
1666        case MSR_FS_BASE:
1667        case MSR_GS_BASE:
1668        case MSR_KERNEL_GS_BASE:
1669        case MSR_CSTAR:
1670        case MSR_LSTAR:
1671                if (is_noncanonical_address(data, vcpu))
1672                        return 1;
1673                break;
1674        case MSR_IA32_SYSENTER_EIP:
1675        case MSR_IA32_SYSENTER_ESP:
1676                /*
1677                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678                 * non-canonical address is written on Intel but not on
1679                 * AMD (which ignores the top 32-bits, because it does
1680                 * not implement 64-bit SYSENTER).
1681                 *
1682                 * 64-bit code should hence be able to write a non-canonical
1683                 * value on AMD.  Making the address canonical ensures that
1684                 * vmentry does not fail on Intel after writing a non-canonical
1685                 * value, and that something deterministic happens if the guest
1686                 * invokes 64-bit SYSENTER.
1687                 */
1688                data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689                break;
1690        case MSR_TSC_AUX:
1691                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692                        return 1;
1693
1694                if (!host_initiated &&
1695                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697                        return 1;
1698
1699                /*
1700                 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701                 * incomplete and conflicting architectural behavior.  Current
1702                 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703                 * reserved and always read as zeros.  Enforce Intel's reserved
1704                 * bits check if and only if the guest CPU is Intel, and clear
1705                 * the bits in all other cases.  This ensures cross-vendor
1706                 * migration will provide consistent behavior for the guest.
1707                 */
1708                if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709                        return 1;
1710
1711                data = (u32)data;
1712                break;
1713        }
1714
1715        msr.data = data;
1716        msr.index = index;
1717        msr.host_initiated = host_initiated;
1718
1719        return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720}
1721
1722static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723                                     u32 index, u64 data, bool host_initiated)
1724{
1725        int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727        if (ret == KVM_MSR_RET_INVALID)
1728                if (kvm_msr_ignored_check(index, data, true))
1729                        ret = 0;
1730
1731        return ret;
1732}
1733
1734/*
1735 * Read the MSR specified by @index into @data.  Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741                  bool host_initiated)
1742{
1743        struct msr_data msr;
1744        int ret;
1745
1746        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747                return KVM_MSR_RET_FILTERED;
1748
1749        switch (index) {
1750        case MSR_TSC_AUX:
1751                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752                        return 1;
1753
1754                if (!host_initiated &&
1755                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757                        return 1;
1758                break;
1759        }
1760
1761        msr.index = index;
1762        msr.host_initiated = host_initiated;
1763
1764        ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765        if (!ret)
1766                *data = msr.data;
1767        return ret;
1768}
1769
1770static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771                                     u32 index, u64 *data, bool host_initiated)
1772{
1773        int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775        if (ret == KVM_MSR_RET_INVALID) {
1776                /* Unconditionally clear *data for simplicity */
1777                *data = 0;
1778                if (kvm_msr_ignored_check(index, 0, false))
1779                        ret = 0;
1780        }
1781
1782        return ret;
1783}
1784
1785int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786{
1787        return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788}
1789EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792{
1793        return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794}
1795EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798{
1799        int err = vcpu->run->msr.error;
1800        if (!err) {
1801                kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802                kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803        }
1804
1805        return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806}
1807
1808static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809{
1810        return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811}
1812
1813static u64 kvm_msr_reason(int r)
1814{
1815        switch (r) {
1816        case KVM_MSR_RET_INVALID:
1817                return KVM_MSR_EXIT_REASON_UNKNOWN;
1818        case KVM_MSR_RET_FILTERED:
1819                return KVM_MSR_EXIT_REASON_FILTER;
1820        default:
1821                return KVM_MSR_EXIT_REASON_INVAL;
1822        }
1823}
1824
1825static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826                              u32 exit_reason, u64 data,
1827                              int (*completion)(struct kvm_vcpu *vcpu),
1828                              int r)
1829{
1830        u64 msr_reason = kvm_msr_reason(r);
1831
1832        /* Check if the user wanted to know about this MSR fault */
1833        if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834                return 0;
1835
1836        vcpu->run->exit_reason = exit_reason;
1837        vcpu->run->msr.error = 0;
1838        memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839        vcpu->run->msr.reason = msr_reason;
1840        vcpu->run->msr.index = index;
1841        vcpu->run->msr.data = data;
1842        vcpu->arch.complete_userspace_io = completion;
1843
1844        return 1;
1845}
1846
1847static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848{
1849        return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850                                   complete_emulated_rdmsr, r);
1851}
1852
1853static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854{
1855        return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856                                   complete_emulated_wrmsr, r);
1857}
1858
1859int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860{
1861        u32 ecx = kvm_rcx_read(vcpu);
1862        u64 data;
1863        int r;
1864
1865        r = kvm_get_msr(vcpu, ecx, &data);
1866
1867        /* MSR read failed? See if we should ask user space */
1868        if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869                /* Bounce to user space */
1870                return 0;
1871        }
1872
1873        if (!r) {
1874                trace_kvm_msr_read(ecx, data);
1875
1876                kvm_rax_write(vcpu, data & -1u);
1877                kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878        } else {
1879                trace_kvm_msr_read_ex(ecx);
1880        }
1881
1882        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883}
1884EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887{
1888        u32 ecx = kvm_rcx_read(vcpu);
1889        u64 data = kvm_read_edx_eax(vcpu);
1890        int r;
1891
1892        r = kvm_set_msr(vcpu, ecx, data);
1893
1894        /* MSR write failed? See if we should ask user space */
1895        if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896                /* Bounce to user space */
1897                return 0;
1898
1899        /* Signal all other negative errors to userspace */
1900        if (r < 0)
1901                return r;
1902
1903        if (!r)
1904                trace_kvm_msr_write(ecx, data);
1905        else
1906                trace_kvm_msr_write_ex(ecx, data);
1907
1908        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909}
1910EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913{
1914        return kvm_skip_emulated_instruction(vcpu);
1915}
1916EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919{
1920        /* Treat an INVD instruction as a NOP and just skip it. */
1921        return kvm_emulate_as_nop(vcpu);
1922}
1923EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926{
1927        pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928        return kvm_emulate_as_nop(vcpu);
1929}
1930EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933{
1934        kvm_queue_exception(vcpu, UD_VECTOR);
1935        return 1;
1936}
1937EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940{
1941        pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942        return kvm_emulate_as_nop(vcpu);
1943}
1944EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947{
1948        xfer_to_guest_mode_prepare();
1949        return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950                xfer_to_guest_mode_work_pending();
1951}
1952
1953/*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961{
1962        if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963                return 1;
1964
1965        if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966                ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967                ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968                ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970                data &= ~(1 << 12);
1971                kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974                trace_kvm_apic_write(APIC_ICR, (u32)data);
1975                return 0;
1976        }
1977
1978        return 1;
1979}
1980
1981static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982{
1983        if (!kvm_can_use_hv_timer(vcpu))
1984                return 1;
1985
1986        kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987        return 0;
1988}
1989
1990fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991{
1992        u32 msr = kvm_rcx_read(vcpu);
1993        u64 data;
1994        fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996        switch (msr) {
1997        case APIC_BASE_MSR + (APIC_ICR >> 4):
1998                data = kvm_read_edx_eax(vcpu);
1999                if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000                        kvm_skip_emulated_instruction(vcpu);
2001                        ret = EXIT_FASTPATH_EXIT_HANDLED;
2002                }
2003                break;
2004        case MSR_IA32_TSC_DEADLINE:
2005                data = kvm_read_edx_eax(vcpu);
2006                if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007                        kvm_skip_emulated_instruction(vcpu);
2008                        ret = EXIT_FASTPATH_REENTER_GUEST;
2009                }
2010                break;
2011        default:
2012                break;
2013        }
2014
2015        if (ret != EXIT_FASTPATH_NONE)
2016                trace_kvm_msr_write(msr, data);
2017
2018        return ret;
2019}
2020EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022/*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026{
2027        return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028}
2029
2030static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031{
2032        return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033}
2034
2035#ifdef CONFIG_X86_64
2036struct pvclock_clock {
2037        int vclock_mode;
2038        u64 cycle_last;
2039        u64 mask;
2040        u32 mult;
2041        u32 shift;
2042        u64 base_cycles;
2043        u64 offset;
2044};
2045
2046struct pvclock_gtod_data {
2047        seqcount_t      seq;
2048
2049        struct pvclock_clock clock; /* extract of a clocksource struct */
2050        struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052        ktime_t         offs_boot;
2053        u64             wall_time_sec;
2054};
2055
2056static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058static void update_pvclock_gtod(struct timekeeper *tk)
2059{
2060        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062        write_seqcount_begin(&vdata->seq);
2063
2064        /* copy pvclock gtod data */
2065        vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2066        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2067        vdata->clock.mask               = tk->tkr_mono.mask;
2068        vdata->clock.mult               = tk->tkr_mono.mult;
2069        vdata->clock.shift              = tk->tkr_mono.shift;
2070        vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2071        vdata->clock.offset             = tk->tkr_mono.base;
2072
2073        vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2074        vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2075        vdata->raw_clock.mask           = tk->tkr_raw.mask;
2076        vdata->raw_clock.mult           = tk->tkr_raw.mult;
2077        vdata->raw_clock.shift          = tk->tkr_raw.shift;
2078        vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2079        vdata->raw_clock.offset         = tk->tkr_raw.base;
2080
2081        vdata->wall_time_sec            = tk->xtime_sec;
2082
2083        vdata->offs_boot                = tk->offs_boot;
2084
2085        write_seqcount_end(&vdata->seq);
2086}
2087
2088static s64 get_kvmclock_base_ns(void)
2089{
2090        /* Count up from boot time, but with the frequency of the raw clock.  */
2091        return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092}
2093#else
2094static s64 get_kvmclock_base_ns(void)
2095{
2096        /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2097        return ktime_get_boottime_ns();
2098}
2099#endif
2100
2101void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102{
2103        int version;
2104        int r;
2105        struct pvclock_wall_clock wc;
2106        u32 wc_sec_hi;
2107        u64 wall_nsec;
2108
2109        if (!wall_clock)
2110                return;
2111
2112        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113        if (r)
2114                return;
2115
2116        if (version & 1)
2117                ++version;  /* first time write, random junk */
2118
2119        ++version;
2120
2121        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122                return;
2123
2124        /*
2125         * The guest calculates current wall clock time by adding
2126         * system time (updated by kvm_guest_time_update below) to the
2127         * wall clock specified here.  We do the reverse here.
2128         */
2129        wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131        wc.nsec = do_div(wall_nsec, 1000000000);
2132        wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133        wc.version = version;
2134
2135        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137        if (sec_hi_ofs) {
2138                wc_sec_hi = wall_nsec >> 32;
2139                kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140                                &wc_sec_hi, sizeof(wc_sec_hi));
2141        }
2142
2143        version++;
2144        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145}
2146
2147static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148                                  bool old_msr, bool host_initiated)
2149{
2150        struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152        if (vcpu->vcpu_id == 0 && !host_initiated) {
2153                if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156                ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157        }
2158
2159        vcpu->arch.time = system_time;
2160        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162        /* we verify if the enable bit is set... */
2163        vcpu->arch.pv_time_enabled = false;
2164        if (!(system_time & 1))
2165                return;
2166
2167        if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168                                       &vcpu->arch.pv_time, system_time & ~1ULL,
2169                                       sizeof(struct pvclock_vcpu_time_info)))
2170                vcpu->arch.pv_time_enabled = true;
2171
2172        return;
2173}
2174
2175static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176{
2177        do_shl32_div32(dividend, divisor);
2178        return dividend;
2179}
2180
2181static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182                               s8 *pshift, u32 *pmultiplier)
2183{
2184        uint64_t scaled64;
2185        int32_t  shift = 0;
2186        uint64_t tps64;
2187        uint32_t tps32;
2188
2189        tps64 = base_hz;
2190        scaled64 = scaled_hz;
2191        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192                tps64 >>= 1;
2193                shift--;
2194        }
2195
2196        tps32 = (uint32_t)tps64;
2197        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199                        scaled64 >>= 1;
2200                else
2201                        tps32 <<= 1;
2202                shift++;
2203        }
2204
2205        *pshift = shift;
2206        *pmultiplier = div_frac(scaled64, tps32);
2207}
2208
2209#ifdef CONFIG_X86_64
2210static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211#endif
2212
2213static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214static unsigned long max_tsc_khz;
2215
2216static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217{
2218        u64 v = (u64)khz * (1000000 + ppm);
2219        do_div(v, 1000000);
2220        return v;
2221}
2222
2223static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226{
2227        u64 ratio;
2228
2229        /* Guest TSC same frequency as host TSC? */
2230        if (!scale) {
2231                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232                return 0;
2233        }
2234
2235        /* TSC scaling supported? */
2236        if (!kvm_has_tsc_control) {
2237                if (user_tsc_khz > tsc_khz) {
2238                        vcpu->arch.tsc_catchup = 1;
2239                        vcpu->arch.tsc_always_catchup = 1;
2240                        return 0;
2241                } else {
2242                        pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243                        return -1;
2244                }
2245        }
2246
2247        /* TSC scaling required  - calculate ratio */
2248        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249                                user_tsc_khz, tsc_khz);
2250
2251        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252                pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253                                    user_tsc_khz);
2254                return -1;
2255        }
2256
2257        kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258        return 0;
2259}
2260
2261static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262{
2263        u32 thresh_lo, thresh_hi;
2264        int use_scaling = 0;
2265
2266        /* tsc_khz can be zero if TSC calibration fails */
2267        if (user_tsc_khz == 0) {
2268                /* set tsc_scaling_ratio to a safe value */
2269                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270                return -1;
2271        }
2272
2273        /* Compute a scale to convert nanoseconds in TSC cycles */
2274        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275                           &vcpu->arch.virtual_tsc_shift,
2276                           &vcpu->arch.virtual_tsc_mult);
2277        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279        /*
2280         * Compute the variation in TSC rate which is acceptable
2281         * within the range of tolerance and decide if the
2282         * rate being applied is within that bounds of the hardware
2283         * rate.  If so, no scaling or compensation need be done.
2284         */
2285        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289                use_scaling = 1;
2290        }
2291        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292}
2293
2294static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295{
2296        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297                                      vcpu->arch.virtual_tsc_mult,
2298                                      vcpu->arch.virtual_tsc_shift);
2299        tsc += vcpu->arch.this_tsc_write;
2300        return tsc;
2301}
2302
2303static inline int gtod_is_based_on_tsc(int mode)
2304{
2305        return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306}
2307
2308static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309{
2310#ifdef CONFIG_X86_64
2311        bool vcpus_matched;
2312        struct kvm_arch *ka = &vcpu->kvm->arch;
2313        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316                         atomic_read(&vcpu->kvm->online_vcpus));
2317
2318        /*
2319         * Once the masterclock is enabled, always perform request in
2320         * order to update it.
2321         *
2322         * In order to enable masterclock, the host clocksource must be TSC
2323         * and the vcpus need to have matched TSCs.  When that happens,
2324         * perform request to enable masterclock.
2325         */
2326        if (ka->use_master_clock ||
2327            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331                            atomic_read(&vcpu->kvm->online_vcpus),
2332                            ka->use_master_clock, gtod->clock.vclock_mode);
2333#endif
2334}
2335
2336/*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347{
2348        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349}
2350
2351u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352{
2353        u64 _tsc = tsc;
2354
2355        if (ratio != kvm_default_tsc_scaling_ratio)
2356                _tsc = __scale_tsc(ratio, tsc);
2357
2358        return _tsc;
2359}
2360EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363{
2364        u64 tsc;
2365
2366        tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368        return target_tsc - tsc;
2369}
2370
2371u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372{
2373        return vcpu->arch.l1_tsc_offset +
2374                kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375}
2376EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379{
2380        u64 nested_offset;
2381
2382        if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383                nested_offset = l1_offset;
2384        else
2385                nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386                                                kvm_tsc_scaling_ratio_frac_bits);
2387
2388        nested_offset += l2_offset;
2389        return nested_offset;
2390}
2391EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394{
2395        if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396                return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397                                       kvm_tsc_scaling_ratio_frac_bits);
2398
2399        return l1_multiplier;
2400}
2401EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404{
2405        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406                                   vcpu->arch.l1_tsc_offset,
2407                                   l1_offset);
2408
2409        vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411        /*
2412         * If we are here because L1 chose not to trap WRMSR to TSC then
2413         * according to the spec this should set L1's TSC (as opposed to
2414         * setting L1's offset for L2).
2415         */
2416        if (is_guest_mode(vcpu))
2417                vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418                        l1_offset,
2419                        static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421        else
2422                vcpu->arch.tsc_offset = l1_offset;
2423
2424        static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425}
2426
2427static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428{
2429        vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431        /* Userspace is changing the multiplier while L2 is active */
2432        if (is_guest_mode(vcpu))
2433                vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434                        l1_multiplier,
2435                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436        else
2437                vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439        if (kvm_has_tsc_control)
2440                static_call(kvm_x86_write_tsc_multiplier)(
2441                        vcpu, vcpu->arch.tsc_scaling_ratio);
2442}
2443
2444static inline bool kvm_check_tsc_unstable(void)
2445{
2446#ifdef CONFIG_X86_64
2447        /*
2448         * TSC is marked unstable when we're running on Hyper-V,
2449         * 'TSC page' clocksource is good.
2450         */
2451        if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452                return false;
2453#endif
2454        return check_tsc_unstable();
2455}
2456
2457static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458{
2459        struct kvm *kvm = vcpu->kvm;
2460        u64 offset, ns, elapsed;
2461        unsigned long flags;
2462        bool matched;
2463        bool already_matched;
2464        bool synchronizing = false;
2465
2466        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468        ns = get_kvmclock_base_ns();
2469        elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471        if (vcpu->arch.virtual_tsc_khz) {
2472                if (data == 0) {
2473                        /*
2474                         * detection of vcpu initialization -- need to sync
2475                         * with other vCPUs. This particularly helps to keep
2476                         * kvm_clock stable after CPU hotplug
2477                         */
2478                        synchronizing = true;
2479                } else {
2480                        u64 tsc_exp = kvm->arch.last_tsc_write +
2481                                                nsec_to_cycles(vcpu, elapsed);
2482                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483                        /*
2484                         * Special case: TSC write with a small delta (1 second)
2485                         * of virtual cycle time against real time is
2486                         * interpreted as an attempt to synchronize the CPU.
2487                         */
2488                        synchronizing = data < tsc_exp + tsc_hz &&
2489                                        data + tsc_hz > tsc_exp;
2490                }
2491        }
2492
2493        /*
2494         * For a reliable TSC, we can match TSC offsets, and for an unstable
2495         * TSC, we add elapsed time in this computation.  We could let the
2496         * compensation code attempt to catch up if we fall behind, but
2497         * it's better to try to match offsets from the beginning.
2498         */
2499        if (synchronizing &&
2500            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501                if (!kvm_check_tsc_unstable()) {
2502                        offset = kvm->arch.cur_tsc_offset;
2503                } else {
2504                        u64 delta = nsec_to_cycles(vcpu, elapsed);
2505                        data += delta;
2506                        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507                }
2508                matched = true;
2509                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510        } else {
2511                /*
2512                 * We split periods of matched TSC writes into generations.
2513                 * For each generation, we track the original measured
2514                 * nanosecond time, offset, and write, so if TSCs are in
2515                 * sync, we can match exact offset, and if not, we can match
2516                 * exact software computation in compute_guest_tsc()
2517                 *
2518                 * These values are tracked in kvm->arch.cur_xxx variables.
2519                 */
2520                kvm->arch.cur_tsc_generation++;
2521                kvm->arch.cur_tsc_nsec = ns;
2522                kvm->arch.cur_tsc_write = data;
2523                kvm->arch.cur_tsc_offset = offset;
2524                matched = false;
2525        }
2526
2527        /*
2528         * We also track th most recent recorded KHZ, write and time to
2529         * allow the matching interval to be extended at each write.
2530         */
2531        kvm->arch.last_tsc_nsec = ns;
2532        kvm->arch.last_tsc_write = data;
2533        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535        vcpu->arch.last_guest_tsc = data;
2536
2537        /* Keep track of which generation this VCPU has synchronized to */
2538        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542        kvm_vcpu_write_tsc_offset(vcpu, offset);
2543        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545        raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546        if (!matched) {
2547                kvm->arch.nr_vcpus_matched_tsc = 0;
2548        } else if (!already_matched) {
2549                kvm->arch.nr_vcpus_matched_tsc++;
2550        }
2551
2552        kvm_track_tsc_matching(vcpu);
2553        raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554}
2555
2556static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557                                           s64 adjustment)
2558{
2559        u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560        kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561}
2562
2563static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564{
2565        if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566                WARN_ON(adjustment < 0);
2567        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568                                   vcpu->arch.l1_tsc_scaling_ratio);
2569        adjust_tsc_offset_guest(vcpu, adjustment);
2570}
2571
2572#ifdef CONFIG_X86_64
2573
2574static u64 read_tsc(void)
2575{
2576        u64 ret = (u64)rdtsc_ordered();
2577        u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579        if (likely(ret >= last))
2580                return ret;
2581
2582        /*
2583         * GCC likes to generate cmov here, but this branch is extremely
2584         * predictable (it's just a function of time and the likely is
2585         * very likely) and there's a data dependence, so force GCC
2586         * to generate a branch instead.  I don't barrier() because
2587         * we don't actually need a barrier, and if this function
2588         * ever gets inlined it will generate worse code.
2589         */
2590        asm volatile ("");
2591        return last;
2592}
2593
2594static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595                          int *mode)
2596{
2597        long v;
2598        u64 tsc_pg_val;
2599
2600        switch (clock->vclock_mode) {
2601        case VDSO_CLOCKMODE_HVCLOCK:
2602                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603                                                  tsc_timestamp);
2604                if (tsc_pg_val != U64_MAX) {
2605                        /* TSC page valid */
2606                        *mode = VDSO_CLOCKMODE_HVCLOCK;
2607                        v = (tsc_pg_val - clock->cycle_last) &
2608                                clock->mask;
2609                } else {
2610                        /* TSC page invalid */
2611                        *mode = VDSO_CLOCKMODE_NONE;
2612                }
2613                break;
2614        case VDSO_CLOCKMODE_TSC:
2615                *mode = VDSO_CLOCKMODE_TSC;
2616                *tsc_timestamp = read_tsc();
2617                v = (*tsc_timestamp - clock->cycle_last) &
2618                        clock->mask;
2619                break;
2620        default:
2621                *mode = VDSO_CLOCKMODE_NONE;
2622        }
2623
2624        if (*mode == VDSO_CLOCKMODE_NONE)
2625                *tsc_timestamp = v = 0;
2626
2627        return v * clock->mult;
2628}
2629
2630static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631{
2632        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633        unsigned long seq;
2634        int mode;
2635        u64 ns;
2636
2637        do {
2638                seq = read_seqcount_begin(&gtod->seq);
2639                ns = gtod->raw_clock.base_cycles;
2640                ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641                ns >>= gtod->raw_clock.shift;
2642                ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644        *t = ns;
2645
2646        return mode;
2647}
2648
2649static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650{
2651        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652        unsigned long seq;
2653        int mode;
2654        u64 ns;
2655
2656        do {
2657                seq = read_seqcount_begin(&gtod->seq);
2658                ts->tv_sec = gtod->wall_time_sec;
2659                ns = gtod->clock.base_cycles;
2660                ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661                ns >>= gtod->clock.shift;
2662        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665        ts->tv_nsec = ns;
2666
2667        return mode;
2668}
2669
2670/* returns true if host is using TSC based clocksource */
2671static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672{
2673        /* checked again under seqlock below */
2674        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675                return false;
2676
2677        return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678                                                      tsc_timestamp));
2679}
2680
2681/* returns true if host is using TSC based clocksource */
2682static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683                                           u64 *tsc_timestamp)
2684{
2685        /* checked again under seqlock below */
2686        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687                return false;
2688
2689        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690}
2691#endif
2692
2693/*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 *              VCPU0 on CPU0           |       VCPU1 on CPU1
2704 *
2705 * 1.  read timespec0,tsc0
2706 * 2.                                   | timespec1 = timespec0 + N
2707 *                                      | tsc1 = tsc0 + M
2708 * 3. transition to guest               | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2711 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 *      - ret0 < ret1
2716 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 *              ...
2718 *      - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735{
2736#ifdef CONFIG_X86_64
2737        struct kvm_arch *ka = &kvm->arch;
2738        int vclock_mode;
2739        bool host_tsc_clocksource, vcpus_matched;
2740
2741        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742                        atomic_read(&kvm->online_vcpus));
2743
2744        /*
2745         * If the host uses TSC clock, then passthrough TSC as stable
2746         * to the guest.
2747         */
2748        host_tsc_clocksource = kvm_get_time_and_clockread(
2749                                        &ka->master_kernel_ns,
2750                                        &ka->master_cycle_now);
2751
2752        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753                                && !ka->backwards_tsc_observed
2754                                && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756        if (ka->use_master_clock)
2757                atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761                                        vcpus_matched);
2762#endif
2763}
2764
2765void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766{
2767        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768}
2769
2770static void kvm_gen_update_masterclock(struct kvm *kvm)
2771{
2772#ifdef CONFIG_X86_64
2773        int i;
2774        struct kvm_vcpu *vcpu;
2775        struct kvm_arch *ka = &kvm->arch;
2776        unsigned long flags;
2777
2778        kvm_hv_invalidate_tsc_page(kvm);
2779
2780        kvm_make_mclock_inprogress_request(kvm);
2781
2782        /* no guest entries from this point */
2783        raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784        pvclock_update_vm_gtod_copy(kvm);
2785        raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787        kvm_for_each_vcpu(i, vcpu, kvm)
2788                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790        /* guest entries allowed */
2791        kvm_for_each_vcpu(i, vcpu, kvm)
2792                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793#endif
2794}
2795
2796u64 get_kvmclock_ns(struct kvm *kvm)
2797{
2798        struct kvm_arch *ka = &kvm->arch;
2799        struct pvclock_vcpu_time_info hv_clock;
2800        unsigned long flags;
2801        u64 ret;
2802
2803        raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804        if (!ka->use_master_clock) {
2805                raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806                return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807        }
2808
2809        hv_clock.tsc_timestamp = ka->master_cycle_now;
2810        hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811        raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814        get_cpu();
2815
2816        if (__this_cpu_read(cpu_tsc_khz)) {
2817                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818                                   &hv_clock.tsc_shift,
2819                                   &hv_clock.tsc_to_system_mul);
2820                ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821        } else
2822                ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824        put_cpu();
2825
2826        return ret;
2827}
2828
2829static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830                                   struct gfn_to_hva_cache *cache,
2831                                   unsigned int offset)
2832{
2833        struct kvm_vcpu_arch *vcpu = &v->arch;
2834        struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836        if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837                &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838                return;
2839
2840        /* This VCPU is paused, but it's legal for a guest to read another
2841         * VCPU's kvmclock, so we really have to follow the specification where
2842         * it says that version is odd if data is being modified, and even after
2843         * it is consistent.
2844         *
2845         * Version field updates must be kept separate.  This is because
2846         * kvm_write_guest_cached might use a "rep movs" instruction, and
2847         * writes within a string instruction are weakly ordered.  So there
2848         * are three writes overall.
2849         *
2850         * As a small optimization, only write the version field in the first
2851         * and third write.  The vcpu->pv_time cache is still valid, because the
2852         * version field is the first in the struct.
2853         */
2854        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856        if (guest_hv_clock.version & 1)
2857                ++guest_hv_clock.version;  /* first time write, random junk */
2858
2859        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860        kvm_write_guest_offset_cached(v->kvm, cache,
2861                                      &vcpu->hv_clock, offset,
2862                                      sizeof(vcpu->hv_clock.version));
2863
2864        smp_wmb();
2865
2866        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869        if (vcpu->pvclock_set_guest_stopped_request) {
2870                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871                vcpu->pvclock_set_guest_stopped_request = false;
2872        }
2873
2874        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876        kvm_write_guest_offset_cached(v->kvm, cache,
2877                                      &vcpu->hv_clock, offset,
2878                                      sizeof(vcpu->hv_clock));
2879
2880        smp_wmb();
2881
2882        vcpu->hv_clock.version++;
2883        kvm_write_guest_offset_cached(v->kvm, cache,
2884                                     &vcpu->hv_clock, offset,
2885                                     sizeof(vcpu->hv_clock.version));
2886}
2887
2888static int kvm_guest_time_update(struct kvm_vcpu *v)
2889{
2890        unsigned long flags, tgt_tsc_khz;
2891        struct kvm_vcpu_arch *vcpu = &v->arch;
2892        struct kvm_arch *ka = &v->kvm->arch;
2893        s64 kernel_ns;
2894        u64 tsc_timestamp, host_tsc;
2895        u8 pvclock_flags;
2896        bool use_master_clock;
2897
2898        kernel_ns = 0;
2899        host_tsc = 0;
2900
2901        /*
2902         * If the host uses TSC clock, then passthrough TSC as stable
2903         * to the guest.
2904         */
2905        raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906        use_master_clock = ka->use_master_clock;
2907        if (use_master_clock) {
2908                host_tsc = ka->master_cycle_now;
2909                kernel_ns = ka->master_kernel_ns;
2910        }
2911        raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913        /* Keep irq disabled to prevent changes to the clock */
2914        local_irq_save(flags);
2915        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916        if (unlikely(tgt_tsc_khz == 0)) {
2917                local_irq_restore(flags);
2918                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919                return 1;
2920        }
2921        if (!use_master_clock) {
2922                host_tsc = rdtsc();
2923                kernel_ns = get_kvmclock_base_ns();
2924        }
2925
2926        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928        /*
2929         * We may have to catch up the TSC to match elapsed wall clock
2930         * time for two reasons, even if kvmclock is used.
2931         *   1) CPU could have been running below the maximum TSC rate
2932         *   2) Broken TSC compensation resets the base at each VCPU
2933         *      entry to avoid unknown leaps of TSC even when running
2934         *      again on the same CPU.  This may cause apparent elapsed
2935         *      time to disappear, and the guest to stand still or run
2936         *      very slowly.
2937         */
2938        if (vcpu->tsc_catchup) {
2939                u64 tsc = compute_guest_tsc(v, kernel_ns);
2940                if (tsc > tsc_timestamp) {
2941                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942                        tsc_timestamp = tsc;
2943                }
2944        }
2945
2946        local_irq_restore(flags);
2947
2948        /* With all the info we got, fill in the values */
2949
2950        if (kvm_has_tsc_control)
2951                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952                                            v->arch.l1_tsc_scaling_ratio);
2953
2954        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956                                   &vcpu->hv_clock.tsc_shift,
2957                                   &vcpu->hv_clock.tsc_to_system_mul);
2958                vcpu->hw_tsc_khz = tgt_tsc_khz;
2959        }
2960
2961        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963        vcpu->last_guest_tsc = tsc_timestamp;
2964
2965        /* If the host uses TSC clocksource, then it is stable */
2966        pvclock_flags = 0;
2967        if (use_master_clock)
2968                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970        vcpu->hv_clock.flags = pvclock_flags;
2971
2972        if (vcpu->pv_time_enabled)
2973                kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974        if (vcpu->xen.vcpu_info_set)
2975                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976                                       offsetof(struct compat_vcpu_info, time));
2977        if (vcpu->xen.vcpu_time_info_set)
2978                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979        if (!v->vcpu_idx)
2980                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981        return 0;
2982}
2983
2984/*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000static void kvmclock_update_fn(struct work_struct *work)
3001{
3002        int i;
3003        struct delayed_work *dwork = to_delayed_work(work);
3004        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005                                           kvmclock_update_work);
3006        struct kvm *kvm = container_of(ka, struct kvm, arch);
3007        struct kvm_vcpu *vcpu;
3008
3009        kvm_for_each_vcpu(i, vcpu, kvm) {
3010                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011                kvm_vcpu_kick(vcpu);
3012        }
3013}
3014
3015static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016{
3017        struct kvm *kvm = v->kvm;
3018
3019        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021                                        KVMCLOCK_UPDATE_DELAY);
3022}
3023
3024#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026static void kvmclock_sync_fn(struct work_struct *work)
3027{
3028        struct delayed_work *dwork = to_delayed_work(work);
3029        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030                                           kvmclock_sync_work);
3031        struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033        if (!kvmclock_periodic_sync)
3034                return;
3035
3036        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038                                        KVMCLOCK_SYNC_PERIOD);
3039}
3040
3041/*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045{
3046        /* McStatusWrEn enabled? */
3047        if (guest_cpuid_is_amd_or_hygon(vcpu))
3048                return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050        return false;
3051}
3052
3053static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054{
3055        u64 mcg_cap = vcpu->arch.mcg_cap;
3056        unsigned bank_num = mcg_cap & 0xff;
3057        u32 msr = msr_info->index;
3058        u64 data = msr_info->data;
3059
3060        switch (msr) {
3061        case MSR_IA32_MCG_STATUS:
3062                vcpu->arch.mcg_status = data;
3063                break;
3064        case MSR_IA32_MCG_CTL:
3065                if (!(mcg_cap & MCG_CTL_P) &&
3066                    (data || !msr_info->host_initiated))
3067                        return 1;
3068                if (data != 0 && data != ~(u64)0)
3069                        return 1;
3070                vcpu->arch.mcg_ctl = data;
3071                break;
3072        default:
3073                if (msr >= MSR_IA32_MC0_CTL &&
3074                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3075                        u32 offset = array_index_nospec(
3076                                msr - MSR_IA32_MC0_CTL,
3077                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079                        /* only 0 or all 1s can be written to IA32_MCi_CTL
3080                         * some Linux kernels though clear bit 10 in bank 4 to
3081                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082                         * this to avoid an uncatched #GP in the guest
3083                         */
3084                        if ((offset & 0x3) == 0 &&
3085                            data != 0 && (data | (1 << 10)) != ~(u64)0)
3086                                return -1;
3087
3088                        /* MCi_STATUS */
3089                        if (!msr_info->host_initiated &&
3090                            (offset & 0x3) == 1 && data != 0) {
3091                                if (!can_set_mci_status(vcpu))
3092                                        return -1;
3093                        }
3094
3095                        vcpu->arch.mce_banks[offset] = data;
3096                        break;
3097                }
3098                return 1;
3099        }
3100        return 0;
3101}
3102
3103static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104{
3105        u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107        return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108}
3109
3110static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111{
3112        gpa_t gpa = data & ~0x3f;
3113
3114        /* Bits 4:5 are reserved, Should be zero */
3115        if (data & 0x30)
3116                return 1;
3117
3118        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119            (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120                return 1;
3121
3122        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123            (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124                return 1;
3125
3126        if (!lapic_in_kernel(vcpu))
3127                return data ? 1 : 0;
3128
3129        vcpu->arch.apf.msr_en_val = data;
3130
3131        if (!kvm_pv_async_pf_enabled(vcpu)) {
3132                kvm_clear_async_pf_completion_queue(vcpu);
3133                kvm_async_pf_hash_reset(vcpu);
3134                return 0;
3135        }
3136
3137        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138                                        sizeof(u64)))
3139                return 1;
3140
3141        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144        kvm_async_pf_wakeup_all(vcpu);
3145
3146        return 0;
3147}
3148
3149static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150{
3151        /* Bits 8-63 are reserved */
3152        if (data >> 8)
3153                return 1;
3154
3155        if (!lapic_in_kernel(vcpu))
3156                return 1;
3157
3158        vcpu->arch.apf.msr_int_val = data;
3159
3160        vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162        return 0;
3163}
3164
3165static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166{
3167        vcpu->arch.pv_time_enabled = false;
3168        vcpu->arch.time = 0;
3169}
3170
3171static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172{
3173        ++vcpu->stat.tlb_flush;
3174        static_call(kvm_x86_tlb_flush_all)(vcpu);
3175}
3176
3177static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178{
3179        ++vcpu->stat.tlb_flush;
3180
3181        if (!tdp_enabled) {
3182               /*
3183                 * A TLB flush on behalf of the guest is equivalent to
3184                 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185                 * a forced sync of the shadow page tables.  Unload the
3186                 * entire MMU here and the subsequent load will sync the
3187                 * shadow page tables, and also flush the TLB.
3188                 */
3189                kvm_mmu_unload(vcpu);
3190                return;
3191        }
3192
3193        static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194}
3195
3196static void record_steal_time(struct kvm_vcpu *vcpu)
3197{
3198        struct kvm_host_map map;
3199        struct kvm_steal_time *st;
3200
3201        if (kvm_xen_msr_enabled(vcpu->kvm)) {
3202                kvm_xen_runstate_set_running(vcpu);
3203                return;
3204        }
3205
3206        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3207                return;
3208
3209        /* -EAGAIN is returned in atomic context so we can just return. */
3210        if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3211                        &map, &vcpu->arch.st.cache, false))
3212                return;
3213
3214        st = map.hva +
3215                offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3216
3217        /*
3218         * Doing a TLB flush here, on the guest's behalf, can avoid
3219         * expensive IPIs.
3220         */
3221        if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3222                u8 st_preempted = xchg(&st->preempted, 0);
3223
3224                trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3225                                       st_preempted & KVM_VCPU_FLUSH_TLB);
3226                if (st_preempted & KVM_VCPU_FLUSH_TLB)
3227                        kvm_vcpu_flush_tlb_guest(vcpu);
3228        } else {
3229                st->preempted = 0;
3230        }
3231
3232        vcpu->arch.st.preempted = 0;
3233
3234        if (st->version & 1)
3235                st->version += 1;  /* first time write, random junk */
3236
3237        st->version += 1;
3238
3239        smp_wmb();
3240
3241        st->steal += current->sched_info.run_delay -
3242                vcpu->arch.st.last_steal;
3243        vcpu->arch.st.last_steal = current->sched_info.run_delay;
3244
3245        smp_wmb();
3246
3247        st->version += 1;
3248
3249        kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3250}
3251
3252int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3253{
3254        bool pr = false;
3255        u32 msr = msr_info->index;
3256        u64 data = msr_info->data;
3257
3258        if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3259                return kvm_xen_write_hypercall_page(vcpu, data);
3260
3261        switch (msr) {
3262        case MSR_AMD64_NB_CFG:
3263        case MSR_IA32_UCODE_WRITE:
3264        case MSR_VM_HSAVE_PA:
3265        case MSR_AMD64_PATCH_LOADER:
3266        case MSR_AMD64_BU_CFG2:
3267        case MSR_AMD64_DC_CFG:
3268        case MSR_F15H_EX_CFG:
3269                break;
3270
3271        case MSR_IA32_UCODE_REV:
3272                if (msr_info->host_initiated)
3273                        vcpu->arch.microcode_version = data;
3274                break;
3275        case MSR_IA32_ARCH_CAPABILITIES:
3276                if (!msr_info->host_initiated)
3277                        return 1;
3278                vcpu->arch.arch_capabilities = data;
3279                break;
3280        case MSR_IA32_PERF_CAPABILITIES: {
3281                struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3282
3283                if (!msr_info->host_initiated)
3284                        return 1;
3285                if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3286                        return 1;
3287                if (data & ~msr_ent.data)
3288                        return 1;
3289
3290                vcpu->arch.perf_capabilities = data;
3291
3292                return 0;
3293                }
3294        case MSR_EFER:
3295                return set_efer(vcpu, msr_info);
3296        case MSR_K7_HWCR:
3297                data &= ~(u64)0x40;     /* ignore flush filter disable */
3298                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3299                data &= ~(u64)0x8;      /* ignore TLB cache disable */
3300
3301                /* Handle McStatusWrEn */
3302                if (data == BIT_ULL(18)) {
3303                        vcpu->arch.msr_hwcr = data;
3304                } else if (data != 0) {
3305                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3306                                    data);
3307                        return 1;
3308                }
3309                break;
3310        case MSR_FAM10H_MMIO_CONF_BASE:
3311                if (data != 0) {
3312                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3313                                    "0x%llx\n", data);
3314                        return 1;
3315                }
3316                break;
3317        case 0x200 ... 0x2ff:
3318                return kvm_mtrr_set_msr(vcpu, msr, data);
3319        case MSR_IA32_APICBASE:
3320                return kvm_set_apic_base(vcpu, msr_info);
3321        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3322                return kvm_x2apic_msr_write(vcpu, msr, data);
3323        case MSR_IA32_TSC_DEADLINE:
3324                kvm_set_lapic_tscdeadline_msr(vcpu, data);
3325                break;
3326        case MSR_IA32_TSC_ADJUST:
3327                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3328                        if (!msr_info->host_initiated) {
3329                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3330                                adjust_tsc_offset_guest(vcpu, adj);
3331                                /* Before back to guest, tsc_timestamp must be adjusted
3332                                 * as well, otherwise guest's percpu pvclock time could jump.
3333                                 */
3334                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3335                        }
3336                        vcpu->arch.ia32_tsc_adjust_msr = data;
3337                }
3338                break;
3339        case MSR_IA32_MISC_ENABLE:
3340                if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3341                    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3342                        if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3343                                return 1;
3344                        vcpu->arch.ia32_misc_enable_msr = data;
3345                        kvm_update_cpuid_runtime(vcpu);
3346                } else {
3347                        vcpu->arch.ia32_misc_enable_msr = data;
3348                }
3349                break;
3350        case MSR_IA32_SMBASE:
3351                if (!msr_info->host_initiated)
3352                        return 1;
3353                vcpu->arch.smbase = data;
3354                break;
3355        case MSR_IA32_POWER_CTL:
3356                vcpu->arch.msr_ia32_power_ctl = data;
3357                break;
3358        case MSR_IA32_TSC:
3359                if (msr_info->host_initiated) {
3360                        kvm_synchronize_tsc(vcpu, data);
3361                } else {
3362                        u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3363                        adjust_tsc_offset_guest(vcpu, adj);
3364                        vcpu->arch.ia32_tsc_adjust_msr += adj;
3365                }
3366                break;
3367        case MSR_IA32_XSS:
3368                if (!msr_info->host_initiated &&
3369                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3370                        return 1;
3371                /*
3372                 * KVM supports exposing PT to the guest, but does not support
3373                 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3374                 * XSAVES/XRSTORS to save/restore PT MSRs.
3375                 */
3376                if (data & ~supported_xss)
3377                        return 1;
3378                vcpu->arch.ia32_xss = data;
3379                break;
3380        case MSR_SMI_COUNT:
3381                if (!msr_info->host_initiated)
3382                        return 1;
3383                vcpu->arch.smi_count = data;
3384                break;
3385        case MSR_KVM_WALL_CLOCK_NEW:
3386                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3387                        return 1;
3388
3389                vcpu->kvm->arch.wall_clock = data;
3390                kvm_write_wall_clock(vcpu->kvm, data, 0);
3391                break;
3392        case MSR_KVM_WALL_CLOCK:
3393                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3394                        return 1;
3395
3396                vcpu->kvm->arch.wall_clock = data;
3397                kvm_write_wall_clock(vcpu->kvm, data, 0);
3398                break;
3399        case MSR_KVM_SYSTEM_TIME_NEW:
3400                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3401                        return 1;
3402
3403                kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3404                break;
3405        case MSR_KVM_SYSTEM_TIME:
3406                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3407                        return 1;
3408
3409                kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3410                break;
3411        case MSR_KVM_ASYNC_PF_EN:
3412                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3413                        return 1;
3414
3415                if (kvm_pv_enable_async_pf(vcpu, data))
3416                        return 1;
3417                break;
3418        case MSR_KVM_ASYNC_PF_INT:
3419                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3420                        return 1;
3421
3422                if (kvm_pv_enable_async_pf_int(vcpu, data))
3423                        return 1;
3424                break;
3425        case MSR_KVM_ASYNC_PF_ACK:
3426                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3427                        return 1;
3428                if (data & 0x1) {
3429                        vcpu->arch.apf.pageready_pending = false;
3430                        kvm_check_async_pf_completion(vcpu);
3431                }
3432                break;
3433        case MSR_KVM_STEAL_TIME:
3434                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3435                        return 1;
3436
3437                if (unlikely(!sched_info_on()))
3438                        return 1;
3439
3440                if (data & KVM_STEAL_RESERVED_MASK)
3441                        return 1;
3442
3443                vcpu->arch.st.msr_val = data;
3444
3445                if (!(data & KVM_MSR_ENABLED))
3446                        break;
3447
3448                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3449
3450                break;
3451        case MSR_KVM_PV_EOI_EN:
3452                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3453                        return 1;
3454
3455                if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3456                        return 1;
3457                break;
3458
3459        case MSR_KVM_POLL_CONTROL:
3460                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3461                        return 1;
3462
3463                /* only enable bit supported */
3464                if (data & (-1ULL << 1))
3465                        return 1;
3466
3467                vcpu->arch.msr_kvm_poll_control = data;
3468                break;
3469
3470        case MSR_IA32_MCG_CTL:
3471        case MSR_IA32_MCG_STATUS:
3472        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3473                return set_msr_mce(vcpu, msr_info);
3474
3475        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3476        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3477                pr = true;
3478                fallthrough;
3479        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3480        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3481                if (kvm_pmu_is_valid_msr(vcpu, msr))
3482                        return kvm_pmu_set_msr(vcpu, msr_info);
3483
3484                if (pr || data != 0)
3485                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3486                                    "0x%x data 0x%llx\n", msr, data);
3487                break;
3488        case MSR_K7_CLK_CTL:
3489                /*
3490                 * Ignore all writes to this no longer documented MSR.
3491                 * Writes are only relevant for old K7 processors,
3492                 * all pre-dating SVM, but a recommended workaround from
3493                 * AMD for these chips. It is possible to specify the
3494                 * affected processor models on the command line, hence
3495                 * the need to ignore the workaround.
3496                 */
3497                break;
3498        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3499        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3500        case HV_X64_MSR_SYNDBG_OPTIONS:
3501        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3502        case HV_X64_MSR_CRASH_CTL:
3503        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3504        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3505        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3506        case HV_X64_MSR_TSC_EMULATION_STATUS:
3507                return kvm_hv_set_msr_common(vcpu, msr, data,
3508                                             msr_info->host_initiated);
3509        case MSR_IA32_BBL_CR_CTL3:
3510                /* Drop writes to this legacy MSR -- see rdmsr
3511                 * counterpart for further detail.
3512                 */
3513                if (report_ignored_msrs)
3514                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3515                                msr, data);
3516                break;
3517        case MSR_AMD64_OSVW_ID_LENGTH:
3518                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3519                        return 1;
3520                vcpu->arch.osvw.length = data;
3521                break;
3522        case MSR_AMD64_OSVW_STATUS:
3523                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3524                        return 1;
3525                vcpu->arch.osvw.status = data;
3526                break;
3527        case MSR_PLATFORM_INFO:
3528                if (!msr_info->host_initiated ||
3529                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3530                     cpuid_fault_enabled(vcpu)))
3531                        return 1;
3532                vcpu->arch.msr_platform_info = data;
3533                break;
3534        case MSR_MISC_FEATURES_ENABLES:
3535                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3536                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3537                     !supports_cpuid_fault(vcpu)))
3538                        return 1;
3539                vcpu->arch.msr_misc_features_enables = data;
3540                break;
3541        default:
3542                if (kvm_pmu_is_valid_msr(vcpu, msr))
3543                        return kvm_pmu_set_msr(vcpu, msr_info);
3544                return KVM_MSR_RET_INVALID;
3545        }
3546        return 0;
3547}
3548EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3549
3550static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3551{
3552        u64 data;
3553        u64 mcg_cap = vcpu->arch.mcg_cap;
3554        unsigned bank_num = mcg_cap & 0xff;
3555
3556        switch (msr) {
3557        case MSR_IA32_P5_MC_ADDR:
3558        case MSR_IA32_P5_MC_TYPE:
3559                data = 0;
3560                break;
3561        case MSR_IA32_MCG_CAP:
3562                data = vcpu->arch.mcg_cap;
3563                break;
3564        case MSR_IA32_MCG_CTL:
3565                if (!(mcg_cap & MCG_CTL_P) && !host)
3566                        return 1;
3567                data = vcpu->arch.mcg_ctl;
3568                break;
3569        case MSR_IA32_MCG_STATUS:
3570                data = vcpu->arch.mcg_status;
3571                break;
3572        default:
3573                if (msr >= MSR_IA32_MC0_CTL &&
3574                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3575                        u32 offset = array_index_nospec(
3576                                msr - MSR_IA32_MC0_CTL,
3577                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3578
3579                        data = vcpu->arch.mce_banks[offset];
3580                        break;
3581                }
3582                return 1;
3583        }
3584        *pdata = data;
3585        return 0;
3586}
3587
3588int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3589{
3590        switch (msr_info->index) {
3591        case MSR_IA32_PLATFORM_ID:
3592        case MSR_IA32_EBL_CR_POWERON:
3593        case MSR_IA32_LASTBRANCHFROMIP:
3594        case MSR_IA32_LASTBRANCHTOIP:
3595        case MSR_IA32_LASTINTFROMIP:
3596        case MSR_IA32_LASTINTTOIP:
3597        case MSR_AMD64_SYSCFG:
3598        case MSR_K8_TSEG_ADDR:
3599        case MSR_K8_TSEG_MASK:
3600        case MSR_VM_HSAVE_PA:
3601        case MSR_K8_INT_PENDING_MSG:
3602        case MSR_AMD64_NB_CFG:
3603        case MSR_FAM10H_MMIO_CONF_BASE:
3604        case MSR_AMD64_BU_CFG2:
3605        case MSR_IA32_PERF_CTL:
3606        case MSR_AMD64_DC_CFG:
3607        case MSR_F15H_EX_CFG:
3608        /*
3609         * Intel Sandy Bridge CPUs must support the RAPL (running average power
3610         * limit) MSRs. Just return 0, as we do not want to expose the host
3611         * data here. Do not conditionalize this on CPUID, as KVM does not do
3612         * so for existing CPU-specific MSRs.
3613         */
3614        case MSR_RAPL_POWER_UNIT:
3615        case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3616        case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3617        case MSR_PKG_ENERGY_STATUS:     /* Total package */
3618        case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3619                msr_info->data = 0;
3620                break;
3621        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3622                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3623                        return kvm_pmu_get_msr(vcpu, msr_info);
3624                if (!msr_info->host_initiated)
3625                        return 1;
3626                msr_info->data = 0;
3627                break;
3628        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3629        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3630        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3631        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3632                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3633                        return kvm_pmu_get_msr(vcpu, msr_info);
3634                msr_info->data = 0;
3635                break;
3636        case MSR_IA32_UCODE_REV:
3637                msr_info->data = vcpu->arch.microcode_version;
3638                break;
3639        case MSR_IA32_ARCH_CAPABILITIES:
3640                if (!msr_info->host_initiated &&
3641                    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3642                        return 1;
3643                msr_info->data = vcpu->arch.arch_capabilities;
3644                break;
3645        case MSR_IA32_PERF_CAPABILITIES:
3646                if (!msr_info->host_initiated &&
3647                    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3648                        return 1;
3649                msr_info->data = vcpu->arch.perf_capabilities;
3650                break;
3651        case MSR_IA32_POWER_CTL:
3652                msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3653                break;
3654        case MSR_IA32_TSC: {
3655                /*
3656                 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3657                 * even when not intercepted. AMD manual doesn't explicitly
3658                 * state this but appears to behave the same.
3659                 *
3660                 * On userspace reads and writes, however, we unconditionally
3661                 * return L1's TSC value to ensure backwards-compatible
3662                 * behavior for migration.
3663                 */
3664                u64 offset, ratio;
3665
3666                if (msr_info->host_initiated) {
3667                        offset = vcpu->arch.l1_tsc_offset;
3668                        ratio = vcpu->arch.l1_tsc_scaling_ratio;
3669                } else {
3670                        offset = vcpu->arch.tsc_offset;
3671                        ratio = vcpu->arch.tsc_scaling_ratio;
3672                }
3673
3674                msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3675                break;
3676        }
3677        case MSR_MTRRcap:
3678        case 0x200 ... 0x2ff:
3679                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3680        case 0xcd: /* fsb frequency */
3681                msr_info->data = 3;
3682                break;
3683                /*
3684                 * MSR_EBC_FREQUENCY_ID
3685                 * Conservative value valid for even the basic CPU models.
3686                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3687                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3688                 * and 266MHz for model 3, or 4. Set Core Clock
3689                 * Frequency to System Bus Frequency Ratio to 1 (bits
3690                 * 31:24) even though these are only valid for CPU
3691                 * models > 2, however guests may end up dividing or
3692                 * multiplying by zero otherwise.
3693                 */
3694        case MSR_EBC_FREQUENCY_ID:
3695                msr_info->data = 1 << 24;
3696                break;
3697        case MSR_IA32_APICBASE:
3698                msr_info->data = kvm_get_apic_base(vcpu);
3699                break;
3700        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3701                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3702        case MSR_IA32_TSC_DEADLINE:
3703                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3704                break;
3705        case MSR_IA32_TSC_ADJUST:
3706                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3707                break;
3708        case MSR_IA32_MISC_ENABLE:
3709                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3710                break;
3711        case MSR_IA32_SMBASE:
3712                if (!msr_info->host_initiated)
3713                        return 1;
3714                msr_info->data = vcpu->arch.smbase;
3715                break;
3716        case MSR_SMI_COUNT:
3717                msr_info->data = vcpu->arch.smi_count;
3718                break;
3719        case MSR_IA32_PERF_STATUS:
3720                /* TSC increment by tick */
3721                msr_info->data = 1000ULL;
3722                /* CPU multiplier */
3723                msr_info->data |= (((uint64_t)4ULL) << 40);
3724                break;
3725        case MSR_EFER:
3726                msr_info->data = vcpu->arch.efer;
3727                break;
3728        case MSR_KVM_WALL_CLOCK:
3729                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3730                        return 1;
3731
3732                msr_info->data = vcpu->kvm->arch.wall_clock;
3733                break;
3734        case MSR_KVM_WALL_CLOCK_NEW:
3735                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3736                        return 1;
3737
3738                msr_info->data = vcpu->kvm->arch.wall_clock;
3739                break;
3740        case MSR_KVM_SYSTEM_TIME:
3741                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3742                        return 1;
3743
3744                msr_info->data = vcpu->arch.time;
3745                break;
3746        case MSR_KVM_SYSTEM_TIME_NEW:
3747                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3748                        return 1;
3749
3750                msr_info->data = vcpu->arch.time;
3751                break;
3752        case MSR_KVM_ASYNC_PF_EN:
3753                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3754                        return 1;
3755
3756                msr_info->data = vcpu->arch.apf.msr_en_val;
3757                break;
3758        case MSR_KVM_ASYNC_PF_INT:
3759                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3760                        return 1;
3761
3762                msr_info->data = vcpu->arch.apf.msr_int_val;
3763                break;
3764        case MSR_KVM_ASYNC_PF_ACK:
3765                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3766                        return 1;
3767
3768                msr_info->data = 0;
3769                break;
3770        case MSR_KVM_STEAL_TIME:
3771                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3772                        return 1;
3773
3774                msr_info->data = vcpu->arch.st.msr_val;
3775                break;
3776        case MSR_KVM_PV_EOI_EN:
3777                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3778                        return 1;
3779
3780                msr_info->data = vcpu->arch.pv_eoi.msr_val;
3781                break;
3782        case MSR_KVM_POLL_CONTROL:
3783                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3784                        return 1;
3785
3786                msr_info->data = vcpu->arch.msr_kvm_poll_control;
3787                break;
3788        case MSR_IA32_P5_MC_ADDR:
3789        case MSR_IA32_P5_MC_TYPE:
3790        case MSR_IA32_MCG_CAP:
3791        case MSR_IA32_MCG_CTL:
3792        case MSR_IA32_MCG_STATUS:
3793        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3794                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3795                                   msr_info->host_initiated);
3796        case MSR_IA32_XSS:
3797                if (!msr_info->host_initiated &&
3798                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3799                        return 1;
3800                msr_info->data = vcpu->arch.ia32_xss;
3801                break;
3802        case MSR_K7_CLK_CTL:
3803                /*
3804                 * Provide expected ramp-up count for K7. All other
3805                 * are set to zero, indicating minimum divisors for
3806                 * every field.
3807                 *
3808                 * This prevents guest kernels on AMD host with CPU
3809                 * type 6, model 8 and higher from exploding due to
3810                 * the rdmsr failing.
3811                 */
3812                msr_info->data = 0x20000000;
3813                break;
3814        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3815        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3816        case HV_X64_MSR_SYNDBG_OPTIONS:
3817        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3818        case HV_X64_MSR_CRASH_CTL:
3819        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3820        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3821        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3822        case HV_X64_MSR_TSC_EMULATION_STATUS:
3823                return kvm_hv_get_msr_common(vcpu,
3824                                             msr_info->index, &msr_info->data,
3825                                             msr_info->host_initiated);
3826        case MSR_IA32_BBL_CR_CTL3:
3827                /* This legacy MSR exists but isn't fully documented in current
3828                 * silicon.  It is however accessed by winxp in very narrow
3829                 * scenarios where it sets bit #19, itself documented as
3830                 * a "reserved" bit.  Best effort attempt to source coherent
3831                 * read data here should the balance of the register be
3832                 * interpreted by the guest:
3833                 *
3834                 * L2 cache control register 3: 64GB range, 256KB size,
3835                 * enabled, latency 0x1, configured
3836                 */
3837                msr_info->data = 0xbe702111;
3838                break;
3839        case MSR_AMD64_OSVW_ID_LENGTH:
3840                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3841                        return 1;
3842                msr_info->data = vcpu->arch.osvw.length;
3843                break;
3844        case MSR_AMD64_OSVW_STATUS:
3845                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3846                        return 1;
3847                msr_info->data = vcpu->arch.osvw.status;
3848                break;
3849        case MSR_PLATFORM_INFO:
3850                if (!msr_info->host_initiated &&
3851                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3852                        return 1;
3853                msr_info->data = vcpu->arch.msr_platform_info;
3854                break;
3855        case MSR_MISC_FEATURES_ENABLES:
3856                msr_info->data = vcpu->arch.msr_misc_features_enables;
3857                break;
3858        case MSR_K7_HWCR:
3859                msr_info->data = vcpu->arch.msr_hwcr;
3860                break;
3861        default:
3862                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3863                        return kvm_pmu_get_msr(vcpu, msr_info);
3864                return KVM_MSR_RET_INVALID;
3865        }
3866        return 0;
3867}
3868EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3869
3870/*
3871 * Read or write a bunch of msrs. All parameters are kernel addresses.
3872 *
3873 * @return number of msrs set successfully.
3874 */
3875static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3876                    struct kvm_msr_entry *entries,
3877                    int (*do_msr)(struct kvm_vcpu *vcpu,
3878                                  unsigned index, u64 *data))
3879{
3880        int i;
3881
3882        for (i = 0; i < msrs->nmsrs; ++i)
3883                if (do_msr(vcpu, entries[i].index, &entries[i].data))
3884                        break;
3885
3886        return i;
3887}
3888
3889/*
3890 * Read or write a bunch of msrs. Parameters are user addresses.
3891 *
3892 * @return number of msrs set successfully.
3893 */
3894static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3895                  int (*do_msr)(struct kvm_vcpu *vcpu,
3896                                unsigned index, u64 *data),
3897                  int writeback)
3898{
3899        struct kvm_msrs msrs;
3900        struct kvm_msr_entry *entries;
3901        int r, n;
3902        unsigned size;
3903
3904        r = -EFAULT;
3905        if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3906                goto out;
3907
3908        r = -E2BIG;
3909        if (msrs.nmsrs >= MAX_IO_MSRS)
3910                goto out;
3911
3912        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3913        entries = memdup_user(user_msrs->entries, size);
3914        if (IS_ERR(entries)) {
3915                r = PTR_ERR(entries);
3916                goto out;
3917        }
3918
3919        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3920        if (r < 0)
3921                goto out_free;
3922
3923        r = -EFAULT;
3924        if (writeback && copy_to_user(user_msrs->entries, entries, size))
3925                goto out_free;
3926
3927        r = n;
3928
3929out_free:
3930        kfree(entries);
3931out:
3932        return r;
3933}
3934
3935static inline bool kvm_can_mwait_in_guest(void)
3936{
3937        return boot_cpu_has(X86_FEATURE_MWAIT) &&
3938                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3939                boot_cpu_has(X86_FEATURE_ARAT);
3940}
3941
3942static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3943                                            struct kvm_cpuid2 __user *cpuid_arg)
3944{
3945        struct kvm_cpuid2 cpuid;
3946        int r;
3947
3948        r = -EFAULT;
3949        if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3950                return r;
3951
3952        r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3953        if (r)
3954                return r;
3955
3956        r = -EFAULT;
3957        if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3958                return r;
3959
3960        return 0;
3961}
3962
3963int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3964{
3965        int r = 0;
3966
3967        switch (ext) {
3968        case KVM_CAP_IRQCHIP:
3969        case KVM_CAP_HLT:
3970        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3971        case KVM_CAP_SET_TSS_ADDR:
3972        case KVM_CAP_EXT_CPUID:
3973        case KVM_CAP_EXT_EMUL_CPUID:
3974        case KVM_CAP_CLOCKSOURCE:
3975        case KVM_CAP_PIT:
3976        case KVM_CAP_NOP_IO_DELAY:
3977        case KVM_CAP_MP_STATE:
3978        case KVM_CAP_SYNC_MMU:
3979        case KVM_CAP_USER_NMI:
3980        case KVM_CAP_REINJECT_CONTROL:
3981        case KVM_CAP_IRQ_INJECT_STATUS:
3982        case KVM_CAP_IOEVENTFD:
3983        case KVM_CAP_IOEVENTFD_NO_LENGTH:
3984        case KVM_CAP_PIT2:
3985        case KVM_CAP_PIT_STATE2:
3986        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3987        case KVM_CAP_VCPU_EVENTS:
3988        case KVM_CAP_HYPERV:
3989        case KVM_CAP_HYPERV_VAPIC:
3990        case KVM_CAP_HYPERV_SPIN:
3991        case KVM_CAP_HYPERV_SYNIC:
3992        case KVM_CAP_HYPERV_SYNIC2:
3993        case KVM_CAP_HYPERV_VP_INDEX:
3994        case KVM_CAP_HYPERV_EVENTFD:
3995        case KVM_CAP_HYPERV_TLBFLUSH:
3996        case KVM_CAP_HYPERV_SEND_IPI:
3997        case KVM_CAP_HYPERV_CPUID:
3998        case KVM_CAP_HYPERV_ENFORCE_CPUID:
3999        case KVM_CAP_SYS_HYPERV_CPUID:
4000        case KVM_CAP_PCI_SEGMENT:
4001        case KVM_CAP_DEBUGREGS:
4002        case KVM_CAP_X86_ROBUST_SINGLESTEP:
4003        case KVM_CAP_XSAVE:
4004        case KVM_CAP_ASYNC_PF:
4005        case KVM_CAP_ASYNC_PF_INT:
4006        case KVM_CAP_GET_TSC_KHZ:
4007        case KVM_CAP_KVMCLOCK_CTRL:
4008        case KVM_CAP_READONLY_MEM:
4009        case KVM_CAP_HYPERV_TIME:
4010        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4011        case KVM_CAP_TSC_DEADLINE_TIMER:
4012        case KVM_CAP_DISABLE_QUIRKS:
4013        case KVM_CAP_SET_BOOT_CPU_ID:
4014        case KVM_CAP_SPLIT_IRQCHIP:
4015        case KVM_CAP_IMMEDIATE_EXIT:
4016        case KVM_CAP_PMU_EVENT_FILTER:
4017        case KVM_CAP_GET_MSR_FEATURES:
4018        case KVM_CAP_MSR_PLATFORM_INFO:
4019        case KVM_CAP_EXCEPTION_PAYLOAD:
4020        case KVM_CAP_SET_GUEST_DEBUG:
4021        case KVM_CAP_LAST_CPU:
4022        case KVM_CAP_X86_USER_SPACE_MSR:
4023        case KVM_CAP_X86_MSR_FILTER:
4024        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4025#ifdef CONFIG_X86_SGX_KVM
4026        case KVM_CAP_SGX_ATTRIBUTE:
4027#endif
4028        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4029        case KVM_CAP_SREGS2:
4030        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4031                r = 1;
4032                break;
4033        case KVM_CAP_EXIT_HYPERCALL:
4034                r = KVM_EXIT_HYPERCALL_VALID_MASK;
4035                break;
4036        case KVM_CAP_SET_GUEST_DEBUG2:
4037                return KVM_GUESTDBG_VALID_MASK;
4038#ifdef CONFIG_KVM_XEN
4039        case KVM_CAP_XEN_HVM:
4040                r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4041                    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4042                    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4043                if (sched_info_on())
4044                        r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4045                break;
4046#endif
4047        case KVM_CAP_SYNC_REGS:
4048                r = KVM_SYNC_X86_VALID_FIELDS;
4049                break;
4050        case KVM_CAP_ADJUST_CLOCK:
4051                r = KVM_CLOCK_TSC_STABLE;
4052                break;
4053        case KVM_CAP_X86_DISABLE_EXITS:
4054                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4055                      KVM_X86_DISABLE_EXITS_CSTATE;
4056                if(kvm_can_mwait_in_guest())
4057                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
4058                break;
4059        case KVM_CAP_X86_SMM:
4060                /* SMBASE is usually relocated above 1M on modern chipsets,
4061                 * and SMM handlers might indeed rely on 4G segment limits,
4062                 * so do not report SMM to be available if real mode is
4063                 * emulated via vm86 mode.  Still, do not go to great lengths
4064                 * to avoid userspace's usage of the feature, because it is a
4065                 * fringe case that is not enabled except via specific settings
4066                 * of the module parameters.
4067                 */
4068                r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4069                break;
4070        case KVM_CAP_VAPIC:
4071                r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4072                break;
4073        case KVM_CAP_NR_VCPUS:
4074                r = KVM_SOFT_MAX_VCPUS;
4075                break;
4076        case KVM_CAP_MAX_VCPUS:
4077                r = KVM_MAX_VCPUS;
4078                break;
4079        case KVM_CAP_MAX_VCPU_ID:
4080                r = KVM_MAX_VCPU_ID;
4081                break;
4082        case KVM_CAP_PV_MMU:    /* obsolete */
4083                r = 0;
4084                break;
4085        case KVM_CAP_MCE:
4086                r = KVM_MAX_MCE_BANKS;
4087                break;
4088        case KVM_CAP_XCRS:
4089                r = boot_cpu_has(X86_FEATURE_XSAVE);
4090                break;
4091        case KVM_CAP_TSC_CONTROL:
4092                r = kvm_has_tsc_control;
4093                break;
4094        case KVM_CAP_X2APIC_API:
4095                r = KVM_X2APIC_API_VALID_FLAGS;
4096                break;
4097        case KVM_CAP_NESTED_STATE:
4098                r = kvm_x86_ops.nested_ops->get_state ?
4099                        kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4100                break;
4101        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4102                r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4103                break;
4104        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4105                r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4106                break;
4107        case KVM_CAP_SMALLER_MAXPHYADDR:
4108                r = (int) allow_smaller_maxphyaddr;
4109                break;
4110        case KVM_CAP_STEAL_TIME:
4111                r = sched_info_on();
4112                break;
4113        case KVM_CAP_X86_BUS_LOCK_EXIT:
4114                if (kvm_has_bus_lock_exit)
4115                        r = KVM_BUS_LOCK_DETECTION_OFF |
4116                            KVM_BUS_LOCK_DETECTION_EXIT;
4117                else
4118                        r = 0;
4119                break;
4120        default:
4121                break;
4122        }
4123        return r;
4124
4125}
4126
4127long kvm_arch_dev_ioctl(struct file *filp,
4128                        unsigned int ioctl, unsigned long arg)
4129{
4130        void __user *argp = (void __user *)arg;
4131        long r;
4132
4133        switch (ioctl) {
4134        case KVM_GET_MSR_INDEX_LIST: {
4135                struct kvm_msr_list __user *user_msr_list = argp;
4136                struct kvm_msr_list msr_list;
4137                unsigned n;
4138
4139                r = -EFAULT;
4140                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4141                        goto out;
4142                n = msr_list.nmsrs;
4143                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4144                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4145                        goto out;
4146                r = -E2BIG;
4147                if (n < msr_list.nmsrs)
4148                        goto out;
4149                r = -EFAULT;
4150                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4151                                 num_msrs_to_save * sizeof(u32)))
4152                        goto out;
4153                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4154                                 &emulated_msrs,
4155                                 num_emulated_msrs * sizeof(u32)))
4156                        goto out;
4157                r = 0;
4158                break;
4159        }
4160        case KVM_GET_SUPPORTED_CPUID:
4161        case KVM_GET_EMULATED_CPUID: {
4162                struct kvm_cpuid2 __user *cpuid_arg = argp;
4163                struct kvm_cpuid2 cpuid;
4164
4165                r = -EFAULT;
4166                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4167                        goto out;
4168
4169                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4170                                            ioctl);
4171                if (r)
4172                        goto out;
4173
4174                r = -EFAULT;
4175                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4176                        goto out;
4177                r = 0;
4178                break;
4179        }
4180        case KVM_X86_GET_MCE_CAP_SUPPORTED:
4181                r = -EFAULT;
4182                if (copy_to_user(argp, &kvm_mce_cap_supported,
4183                                 sizeof(kvm_mce_cap_supported)))
4184                        goto out;
4185                r = 0;
4186                break;
4187        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4188                struct kvm_msr_list __user *user_msr_list = argp;
4189                struct kvm_msr_list msr_list;
4190                unsigned int n;
4191
4192                r = -EFAULT;
4193                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4194                        goto out;
4195                n = msr_list.nmsrs;
4196                msr_list.nmsrs = num_msr_based_features;
4197                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4198                        goto out;
4199                r = -E2BIG;
4200                if (n < msr_list.nmsrs)
4201                        goto out;
4202                r = -EFAULT;
4203                if (copy_to_user(user_msr_list->indices, &msr_based_features,
4204                                 num_msr_based_features * sizeof(u32)))
4205                        goto out;
4206                r = 0;
4207                break;
4208        }
4209        case KVM_GET_MSRS:
4210                r = msr_io(NULL, argp, do_get_msr_feature, 1);
4211                break;
4212        case KVM_GET_SUPPORTED_HV_CPUID:
4213                r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4214                break;
4215        default:
4216                r = -EINVAL;
4217                break;
4218        }
4219out:
4220        return r;
4221}
4222
4223static void wbinvd_ipi(void *garbage)
4224{
4225        wbinvd();
4226}
4227
4228static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4229{
4230        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4231}
4232
4233void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4234{
4235        /* Address WBINVD may be executed by guest */
4236        if (need_emulate_wbinvd(vcpu)) {
4237                if (static_call(kvm_x86_has_wbinvd_exit)())
4238                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4239                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4240                        smp_call_function_single(vcpu->cpu,
4241                                        wbinvd_ipi, NULL, 1);
4242        }
4243
4244        static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4245
4246        /* Save host pkru register if supported */
4247        vcpu->arch.host_pkru = read_pkru();
4248
4249        /* Apply any externally detected TSC adjustments (due to suspend) */
4250        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4251                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4252                vcpu->arch.tsc_offset_adjustment = 0;
4253                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4254        }
4255
4256        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4257                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4258                                rdtsc() - vcpu->arch.last_host_tsc;
4259                if (tsc_delta < 0)
4260                        mark_tsc_unstable("KVM discovered backwards TSC");
4261
4262                if (kvm_check_tsc_unstable()) {
4263                        u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4264                                                vcpu->arch.last_guest_tsc);
4265                        kvm_vcpu_write_tsc_offset(vcpu, offset);
4266                        vcpu->arch.tsc_catchup = 1;
4267                }
4268
4269                if (kvm_lapic_hv_timer_in_use(vcpu))
4270                        kvm_lapic_restart_hv_timer(vcpu);
4271
4272                /*
4273                 * On a host with synchronized TSC, there is no need to update
4274                 * kvmclock on vcpu->cpu migration
4275                 */
4276                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4277                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4278                if (vcpu->cpu != cpu)
4279                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4280                vcpu->cpu = cpu;
4281        }
4282
4283        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4284}
4285
4286static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4287{
4288        struct kvm_host_map map;
4289        struct kvm_steal_time *st;
4290
4291        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4292                return;
4293
4294        if (vcpu->arch.st.preempted)
4295                return;
4296
4297        if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4298                        &vcpu->arch.st.cache, true))
4299                return;
4300
4301        st = map.hva +
4302                offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4303
4304        st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4305
4306        kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4307}
4308
4309void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4310{
4311        int idx;
4312
4313        if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4314                vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4315
4316        /*
4317         * Take the srcu lock as memslots will be accessed to check the gfn
4318         * cache generation against the memslots generation.
4319         */
4320        idx = srcu_read_lock(&vcpu->kvm->srcu);
4321        if (kvm_xen_msr_enabled(vcpu->kvm))
4322                kvm_xen_runstate_set_preempted(vcpu);
4323        else
4324                kvm_steal_time_set_preempted(vcpu);
4325        srcu_read_unlock(&vcpu->kvm->srcu, idx);
4326
4327        static_call(kvm_x86_vcpu_put)(vcpu);
4328        vcpu->arch.last_host_tsc = rdtsc();
4329}
4330
4331static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4332                                    struct kvm_lapic_state *s)
4333{
4334        if (vcpu->arch.apicv_active)
4335                static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4336
4337        return kvm_apic_get_state(vcpu, s);
4338}
4339
4340static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4341                                    struct kvm_lapic_state *s)
4342{
4343        int r;
4344
4345        r = kvm_apic_set_state(vcpu, s);
4346        if (r)
4347                return r;
4348        update_cr8_intercept(vcpu);
4349
4350        return 0;
4351}
4352
4353static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4354{
4355        /*
4356         * We can accept userspace's request for interrupt injection
4357         * as long as we have a place to store the interrupt number.
4358         * The actual injection will happen when the CPU is able to
4359         * deliver the interrupt.
4360         */
4361        if (kvm_cpu_has_extint(vcpu))
4362                return false;
4363
4364        /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4365        return (!lapic_in_kernel(vcpu) ||
4366                kvm_apic_accept_pic_intr(vcpu));
4367}
4368
4369static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4370{
4371        /*
4372         * Do not cause an interrupt window exit if an exception
4373         * is pending or an event needs reinjection; userspace
4374         * might want to inject the interrupt manually using KVM_SET_REGS
4375         * or KVM_SET_SREGS.  For that to work, we must be at an
4376         * instruction boundary and with no events half-injected.
4377         */
4378        return (kvm_arch_interrupt_allowed(vcpu) &&
4379                kvm_cpu_accept_dm_intr(vcpu) &&
4380                !kvm_event_needs_reinjection(vcpu) &&
4381                !vcpu->arch.exception.pending);
4382}
4383
4384static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4385                                    struct kvm_interrupt *irq)
4386{
4387        if (irq->irq >= KVM_NR_INTERRUPTS)
4388                return -EINVAL;
4389
4390        if (!irqchip_in_kernel(vcpu->kvm)) {
4391                kvm_queue_interrupt(vcpu, irq->irq, false);
4392                kvm_make_request(KVM_REQ_EVENT, vcpu);
4393                return 0;
4394        }
4395
4396        /*
4397         * With in-kernel LAPIC, we only use this to inject EXTINT, so
4398         * fail for in-kernel 8259.
4399         */
4400        if (pic_in_kernel(vcpu->kvm))
4401                return -ENXIO;
4402
4403        if (vcpu->arch.pending_external_vector != -1)
4404                return -EEXIST;
4405
4406        vcpu->arch.pending_external_vector = irq->irq;
4407        kvm_make_request(KVM_REQ_EVENT, vcpu);
4408        return 0;
4409}
4410
4411static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4412{
4413        kvm_inject_nmi(vcpu);
4414
4415        return 0;
4416}
4417
4418static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4419{
4420        kvm_make_request(KVM_REQ_SMI, vcpu);
4421
4422        return 0;
4423}
4424
4425static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4426                                           struct kvm_tpr_access_ctl *tac)
4427{
4428        if (tac->flags)
4429                return -EINVAL;
4430        vcpu->arch.tpr_access_reporting = !!tac->enabled;
4431        return 0;
4432}
4433
4434static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4435                                        u64 mcg_cap)
4436{
4437        int r;
4438        unsigned bank_num = mcg_cap & 0xff, bank;
4439
4440        r = -EINVAL;
4441        if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4442                goto out;
4443        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4444                goto out;
4445        r = 0;
4446        vcpu->arch.mcg_cap = mcg_cap;
4447        /* Init IA32_MCG_CTL to all 1s */
4448        if (mcg_cap & MCG_CTL_P)
4449                vcpu->arch.mcg_ctl = ~(u64)0;
4450        /* Init IA32_MCi_CTL to all 1s */
4451        for (bank = 0; bank < bank_num; bank++)
4452                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4453
4454        static_call(kvm_x86_setup_mce)(vcpu);
4455out:
4456        return r;
4457}
4458
4459static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4460                                      struct kvm_x86_mce *mce)
4461{
4462        u64 mcg_cap = vcpu->arch.mcg_cap;
4463        unsigned bank_num = mcg_cap & 0xff;
4464        u64 *banks = vcpu->arch.mce_banks;
4465
4466        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4467                return -EINVAL;
4468        /*
4469         * if IA32_MCG_CTL is not all 1s, the uncorrected error
4470         * reporting is disabled
4471         */
4472        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4473            vcpu->arch.mcg_ctl != ~(u64)0)
4474                return 0;
4475        banks += 4 * mce->bank;
4476        /*
4477         * if IA32_MCi_CTL is not all 1s, the uncorrected error
4478         * reporting is disabled for the bank
4479         */
4480        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4481                return 0;
4482        if (mce->status & MCI_STATUS_UC) {
4483                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4484                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4485                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4486                        return 0;
4487                }
4488                if (banks[1] & MCI_STATUS_VAL)
4489                        mce->status |= MCI_STATUS_OVER;
4490                banks[2] = mce->addr;
4491                banks[3] = mce->misc;
4492                vcpu->arch.mcg_status = mce->mcg_status;
4493                banks[1] = mce->status;
4494                kvm_queue_exception(vcpu, MC_VECTOR);
4495        } else if (!(banks[1] & MCI_STATUS_VAL)
4496                   || !(banks[1] & MCI_STATUS_UC)) {
4497                if (banks[1] & MCI_STATUS_VAL)
4498                        mce->status |= MCI_STATUS_OVER;
4499                banks[2] = mce->addr;
4500                banks[3] = mce->misc;
4501                banks[1] = mce->status;
4502        } else
4503                banks[1] |= MCI_STATUS_OVER;
4504        return 0;
4505}
4506
4507static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4508                                               struct kvm_vcpu_events *events)
4509{
4510        process_nmi(vcpu);
4511
4512        if (kvm_check_request(KVM_REQ_SMI, vcpu))
4513                process_smi(vcpu);
4514
4515        /*
4516         * In guest mode, payload delivery should be deferred,
4517         * so that the L1 hypervisor can intercept #PF before
4518         * CR2 is modified (or intercept #DB before DR6 is
4519         * modified under nVMX). Unless the per-VM capability,
4520         * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4521         * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4522         * opportunistically defer the exception payload, deliver it if the
4523         * capability hasn't been requested before processing a
4524         * KVM_GET_VCPU_EVENTS.
4525         */
4526        if (!vcpu->kvm->arch.exception_payload_enabled &&
4527            vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4528                kvm_deliver_exception_payload(vcpu);
4529
4530        /*
4531         * The API doesn't provide the instruction length for software
4532         * exceptions, so don't report them. As long as the guest RIP
4533         * isn't advanced, we should expect to encounter the exception
4534         * again.
4535         */
4536        if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4537                events->exception.injected = 0;
4538                events->exception.pending = 0;
4539        } else {
4540                events->exception.injected = vcpu->arch.exception.injected;
4541                events->exception.pending = vcpu->arch.exception.pending;
4542                /*
4543                 * For ABI compatibility, deliberately conflate
4544                 * pending and injected exceptions when
4545                 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4546                 */
4547                if (!vcpu->kvm->arch.exception_payload_enabled)
4548                        events->exception.injected |=
4549                                vcpu->arch.exception.pending;
4550        }
4551        events->exception.nr = vcpu->arch.exception.nr;
4552        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4553        events->exception.error_code = vcpu->arch.exception.error_code;
4554        events->exception_has_payload = vcpu->arch.exception.has_payload;
4555        events->exception_payload = vcpu->arch.exception.payload;
4556
4557        events->interrupt.injected =
4558                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4559        events->interrupt.nr = vcpu->arch.interrupt.nr;
4560        events->interrupt.soft = 0;
4561        events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4562
4563        events->nmi.injected = vcpu->arch.nmi_injected;
4564        events->nmi.pending = vcpu->arch.nmi_pending != 0;
4565        events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4566        events->nmi.pad = 0;
4567
4568        events->sipi_vector = 0; /* never valid when reporting to user space */
4569
4570        events->smi.smm = is_smm(vcpu);
4571        events->smi.pending = vcpu->arch.smi_pending;
4572        events->smi.smm_inside_nmi =
4573                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4574        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4575
4576        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4577                         | KVM_VCPUEVENT_VALID_SHADOW
4578                         | KVM_VCPUEVENT_VALID_SMM);
4579        if (vcpu->kvm->arch.exception_payload_enabled)
4580                events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4581
4582        memset(&events->reserved, 0, sizeof(events->reserved));
4583}
4584
4585static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4586
4587static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4588                                              struct kvm_vcpu_events *events)
4589{
4590        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4591                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4592                              | KVM_VCPUEVENT_VALID_SHADOW
4593                              | KVM_VCPUEVENT_VALID_SMM
4594                              | KVM_VCPUEVENT_VALID_PAYLOAD))
4595                return -EINVAL;
4596
4597        if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4598                if (!vcpu->kvm->arch.exception_payload_enabled)
4599                        return -EINVAL;
4600                if (events->exception.pending)
4601                        events->exception.injected = 0;
4602                else
4603                        events->exception_has_payload = 0;
4604        } else {
4605                events->exception.pending = 0;
4606                events->exception_has_payload = 0;
4607        }
4608
4609        if ((events->exception.injected || events->exception.pending) &&
4610            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4611                return -EINVAL;
4612
4613        /* INITs are latched while in SMM */
4614        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4615            (events->smi.smm || events->smi.pending) &&
4616            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4617                return -EINVAL;
4618
4619        process_nmi(vcpu);
4620        vcpu->arch.exception.injected = events->exception.injected;
4621        vcpu->arch.exception.pending = events->exception.pending;
4622        vcpu->arch.exception.nr = events->exception.nr;
4623        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4624        vcpu->arch.exception.error_code = events->exception.error_code;
4625        vcpu->arch.exception.has_payload = events->exception_has_payload;
4626        vcpu->arch.exception.payload = events->exception_payload;
4627
4628        vcpu->arch.interrupt.injected = events->interrupt.injected;
4629        vcpu->arch.interrupt.nr = events->interrupt.nr;
4630        vcpu->arch.interrupt.soft = events->interrupt.soft;
4631        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4632                static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4633                                                events->interrupt.shadow);
4634
4635        vcpu->arch.nmi_injected = events->nmi.injected;
4636        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4637                vcpu->arch.nmi_pending = events->nmi.pending;
4638        static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4639
4640        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4641            lapic_in_kernel(vcpu))
4642                vcpu->arch.apic->sipi_vector = events->sipi_vector;
4643
4644        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4645                if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4646                        kvm_smm_changed(vcpu, events->smi.smm);
4647
4648                vcpu->arch.smi_pending = events->smi.pending;
4649
4650                if (events->smi.smm) {
4651                        if (events->smi.smm_inside_nmi)
4652                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4653                        else
4654                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4655                }
4656
4657                if (lapic_in_kernel(vcpu)) {
4658                        if (events->smi.latched_init)
4659                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4660                        else
4661                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4662                }
4663        }
4664
4665        kvm_make_request(KVM_REQ_EVENT, vcpu);
4666
4667        return 0;
4668}
4669
4670static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4671                                             struct kvm_debugregs *dbgregs)
4672{
4673        unsigned long val;
4674
4675        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4676        kvm_get_dr(vcpu, 6, &val);
4677        dbgregs->dr6 = val;
4678        dbgregs->dr7 = vcpu->arch.dr7;
4679        dbgregs->flags = 0;
4680        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4681}
4682
4683static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4684                                            struct kvm_debugregs *dbgregs)
4685{
4686        if (dbgregs->flags)
4687                return -EINVAL;
4688
4689        if (!kvm_dr6_valid(dbgregs->dr6))
4690                return -EINVAL;
4691        if (!kvm_dr7_valid(dbgregs->dr7))
4692                return -EINVAL;
4693
4694        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4695        kvm_update_dr0123(vcpu);
4696        vcpu->arch.dr6 = dbgregs->dr6;
4697        vcpu->arch.dr7 = dbgregs->dr7;
4698        kvm_update_dr7(vcpu);
4699
4700        return 0;
4701}
4702
4703#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4704
4705static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4706{
4707        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4708        u64 xstate_bv = xsave->header.xfeatures;
4709        u64 valid;
4710
4711        /*
4712         * Copy legacy XSAVE area, to avoid complications with CPUID
4713         * leaves 0 and 1 in the loop below.
4714         */
4715        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4716
4717        /* Set XSTATE_BV */
4718        xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4719        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4720
4721        /*
4722         * Copy each region from the possibly compacted offset to the
4723         * non-compacted offset.
4724         */
4725        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4726        while (valid) {
4727                u32 size, offset, ecx, edx;
4728                u64 xfeature_mask = valid & -valid;
4729                int xfeature_nr = fls64(xfeature_mask) - 1;
4730                void *src;
4731
4732                cpuid_count(XSTATE_CPUID, xfeature_nr,
4733                            &size, &offset, &ecx, &edx);
4734
4735                if (xfeature_nr == XFEATURE_PKRU) {
4736                        memcpy(dest + offset, &vcpu->arch.pkru,
4737                               sizeof(vcpu->arch.pkru));
4738                } else {
4739                        src = get_xsave_addr(xsave, xfeature_nr);
4740                        if (src)
4741                                memcpy(dest + offset, src, size);
4742                }
4743
4744                valid -= xfeature_mask;
4745        }
4746}
4747
4748static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4749{
4750        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4751        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4752        u64 valid;
4753
4754        /*
4755         * Copy legacy XSAVE area, to avoid complications with CPUID
4756         * leaves 0 and 1 in the loop below.
4757         */
4758        memcpy(xsave, src, XSAVE_HDR_OFFSET);
4759
4760        /* Set XSTATE_BV and possibly XCOMP_BV.  */
4761        xsave->header.xfeatures = xstate_bv;
4762        if (boot_cpu_has(X86_FEATURE_XSAVES))
4763                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4764
4765        /*
4766         * Copy each region from the non-compacted offset to the
4767         * possibly compacted offset.
4768         */
4769        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4770        while (valid) {
4771                u32 size, offset, ecx, edx;
4772                u64 xfeature_mask = valid & -valid;
4773                int xfeature_nr = fls64(xfeature_mask) - 1;
4774
4775                cpuid_count(XSTATE_CPUID, xfeature_nr,
4776                            &size, &offset, &ecx, &edx);
4777
4778                if (xfeature_nr == XFEATURE_PKRU) {
4779                        memcpy(&vcpu->arch.pkru, src + offset,
4780                               sizeof(vcpu->arch.pkru));
4781                } else {
4782                        void *dest = get_xsave_addr(xsave, xfeature_nr);
4783
4784                        if (dest)
4785                                memcpy(dest, src + offset, size);
4786                }
4787
4788                valid -= xfeature_mask;
4789        }
4790}
4791
4792static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4793                                         struct kvm_xsave *guest_xsave)
4794{
4795        if (!vcpu->arch.guest_fpu)
4796                return;
4797
4798        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4799                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4800                fill_xsave((u8 *) guest_xsave->region, vcpu);
4801        } else {
4802                memcpy(guest_xsave->region,
4803                        &vcpu->arch.guest_fpu->state.fxsave,
4804                        sizeof(struct fxregs_state));
4805                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4806                        XFEATURE_MASK_FPSSE;
4807        }
4808}
4809
4810#define XSAVE_MXCSR_OFFSET 24
4811
4812static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4813                                        struct kvm_xsave *guest_xsave)
4814{
4815        u64 xstate_bv;
4816        u32 mxcsr;
4817
4818        if (!vcpu->arch.guest_fpu)
4819                return 0;
4820
4821        xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4822        mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4823
4824        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4825                /*
4826                 * Here we allow setting states that are not present in
4827                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4828                 * with old userspace.
4829                 */
4830                if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4831                        return -EINVAL;
4832                load_xsave(vcpu, (u8 *)guest_xsave->region);
4833        } else {
4834                if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4835                        mxcsr & ~mxcsr_feature_mask)
4836                        return -EINVAL;
4837                memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4838                        guest_xsave->region, sizeof(struct fxregs_state));
4839        }
4840        return 0;
4841}
4842
4843static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4844                                        struct kvm_xcrs *guest_xcrs)
4845{
4846        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4847                guest_xcrs->nr_xcrs = 0;
4848                return;
4849        }
4850
4851        guest_xcrs->nr_xcrs = 1;
4852        guest_xcrs->flags = 0;
4853        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4854        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4855}
4856
4857static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4858                                       struct kvm_xcrs *guest_xcrs)
4859{
4860        int i, r = 0;
4861
4862        if (!boot_cpu_has(X86_FEATURE_XSAVE))
4863                return -EINVAL;
4864
4865        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4866                return -EINVAL;
4867
4868        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4869                /* Only support XCR0 currently */
4870                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4871                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4872                                guest_xcrs->xcrs[i].value);
4873                        break;
4874                }
4875        if (r)
4876                r = -EINVAL;
4877        return r;
4878}
4879
4880/*
4881 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4882 * stopped by the hypervisor.  This function will be called from the host only.
4883 * EINVAL is returned when the host attempts to set the flag for a guest that
4884 * does not support pv clocks.
4885 */
4886static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4887{
4888        if (!vcpu->arch.pv_time_enabled)
4889                return -EINVAL;
4890        vcpu->arch.pvclock_set_guest_stopped_request = true;
4891        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4892        return 0;
4893}
4894
4895static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4896                                     struct kvm_enable_cap *cap)
4897{
4898        int r;
4899        uint16_t vmcs_version;
4900        void __user *user_ptr;
4901
4902        if (cap->flags)
4903                return -EINVAL;
4904
4905        switch (cap->cap) {
4906        case KVM_CAP_HYPERV_SYNIC2:
4907                if (cap->args[0])
4908                        return -EINVAL;
4909                fallthrough;
4910
4911        case KVM_CAP_HYPERV_SYNIC:
4912                if (!irqchip_in_kernel(vcpu->kvm))
4913                        return -EINVAL;
4914                return kvm_hv_activate_synic(vcpu, cap->cap ==
4915                                             KVM_CAP_HYPERV_SYNIC2);
4916        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4917                if (!kvm_x86_ops.nested_ops->enable_evmcs)
4918                        return -ENOTTY;
4919                r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4920                if (!r) {
4921                        user_ptr = (void __user *)(uintptr_t)cap->args[0];
4922                        if (copy_to_user(user_ptr, &vmcs_version,
4923                                         sizeof(vmcs_version)))
4924                                r = -EFAULT;
4925                }
4926                return r;
4927        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4928                if (!kvm_x86_ops.enable_direct_tlbflush)
4929                        return -ENOTTY;
4930
4931                return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4932
4933        case KVM_CAP_HYPERV_ENFORCE_CPUID:
4934                return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4935
4936        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4937                vcpu->arch.pv_cpuid.enforce = cap->args[0];
4938                if (vcpu->arch.pv_cpuid.enforce)
4939                        kvm_update_pv_runtime(vcpu);
4940
4941                return 0;
4942        default:
4943                return -EINVAL;
4944        }
4945}
4946
4947long kvm_arch_vcpu_ioctl(struct file *filp,
4948                         unsigned int ioctl, unsigned long arg)
4949{
4950        struct kvm_vcpu *vcpu = filp->private_data;
4951        void __user *argp = (void __user *)arg;
4952        int r;
4953        union {
4954                struct kvm_sregs2 *sregs2;
4955                struct kvm_lapic_state *lapic;
4956                struct kvm_xsave *xsave;
4957                struct kvm_xcrs *xcrs;
4958                void *buffer;
4959        } u;
4960
4961        vcpu_load(vcpu);
4962
4963        u.buffer = NULL;
4964        switch (ioctl) {
4965        case KVM_GET_LAPIC: {
4966                r = -EINVAL;
4967                if (!lapic_in_kernel(vcpu))
4968                        goto out;
4969                u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4970                                GFP_KERNEL_ACCOUNT);
4971
4972                r = -ENOMEM;
4973                if (!u.lapic)
4974                        goto out;
4975                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4976                if (r)
4977                        goto out;
4978                r = -EFAULT;
4979                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4980                        goto out;
4981                r = 0;
4982                break;
4983        }
4984        case KVM_SET_LAPIC: {
4985                r = -EINVAL;
4986                if (!lapic_in_kernel(vcpu))
4987                        goto out;
4988                u.lapic = memdup_user(argp, sizeof(*u.lapic));
4989                if (IS_ERR(u.lapic)) {
4990                        r = PTR_ERR(u.lapic);
4991                        goto out_nofree;
4992                }
4993
4994                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4995                break;
4996        }
4997        case KVM_INTERRUPT: {
4998                struct kvm_interrupt irq;
4999
5000                r = -EFAULT;
5001                if (copy_from_user(&irq, argp, sizeof(irq)))
5002                        goto out;
5003                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5004                break;
5005        }
5006        case KVM_NMI: {
5007                r = kvm_vcpu_ioctl_nmi(vcpu);
5008                break;
5009        }
5010        case KVM_SMI: {
5011                r = kvm_vcpu_ioctl_smi(vcpu);
5012                break;
5013        }
5014        case KVM_SET_CPUID: {
5015                struct kvm_cpuid __user *cpuid_arg = argp;
5016                struct kvm_cpuid cpuid;
5017
5018                r = -EFAULT;
5019                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5020                        goto out;
5021                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5022                break;
5023        }
5024        case KVM_SET_CPUID2: {
5025                struct kvm_cpuid2 __user *cpuid_arg = argp;
5026                struct kvm_cpuid2 cpuid;
5027
5028                r = -EFAULT;
5029                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5030                        goto out;
5031                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5032                                              cpuid_arg->entries);
5033                break;
5034        }
5035        case KVM_GET_CPUID2: {
5036                struct kvm_cpuid2 __user *cpuid_arg = argp;
5037                struct kvm_cpuid2 cpuid;
5038
5039                r = -EFAULT;
5040                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5041                        goto out;
5042                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5043                                              cpuid_arg->entries);
5044                if (r)
5045                        goto out;
5046                r = -EFAULT;
5047                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5048                        goto out;
5049                r = 0;
5050                break;
5051        }
5052        case KVM_GET_MSRS: {
5053                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5054                r = msr_io(vcpu, argp, do_get_msr, 1);
5055                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5056                break;
5057        }
5058        case KVM_SET_MSRS: {
5059                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5060                r = msr_io(vcpu, argp, do_set_msr, 0);
5061                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5062                break;
5063        }
5064        case KVM_TPR_ACCESS_REPORTING: {
5065                struct kvm_tpr_access_ctl tac;
5066
5067                r = -EFAULT;
5068                if (copy_from_user(&tac, argp, sizeof(tac)))
5069                        goto out;
5070                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5071                if (r)
5072                        goto out;
5073                r = -EFAULT;
5074                if (copy_to_user(argp, &tac, sizeof(tac)))
5075                        goto out;
5076                r = 0;
5077                break;
5078        };
5079        case KVM_SET_VAPIC_ADDR: {
5080                struct kvm_vapic_addr va;
5081                int idx;
5082
5083                r = -EINVAL;
5084                if (!lapic_in_kernel(vcpu))
5085                        goto out;
5086                r = -EFAULT;
5087                if (copy_from_user(&va, argp, sizeof(va)))
5088                        goto out;
5089                idx = srcu_read_lock(&vcpu->kvm->srcu);
5090                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5091                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5092                break;
5093        }
5094        case KVM_X86_SETUP_MCE: {
5095                u64 mcg_cap;
5096
5097                r = -EFAULT;
5098                if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5099                        goto out;
5100                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5101                break;
5102        }
5103        case KVM_X86_SET_MCE: {
5104                struct kvm_x86_mce mce;
5105
5106                r = -EFAULT;
5107                if (copy_from_user(&mce, argp, sizeof(mce)))
5108                        goto out;
5109                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5110                break;
5111        }
5112        case KVM_GET_VCPU_EVENTS: {
5113                struct kvm_vcpu_events events;
5114
5115                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5116
5117                r = -EFAULT;
5118                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5119                        break;
5120                r = 0;
5121                break;
5122        }
5123        case KVM_SET_VCPU_EVENTS: {
5124                struct kvm_vcpu_events events;
5125
5126                r = -EFAULT;
5127                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5128                        break;
5129
5130                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5131                break;
5132        }
5133        case KVM_GET_DEBUGREGS: {
5134                struct kvm_debugregs dbgregs;
5135
5136                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5137
5138                r = -EFAULT;
5139                if (copy_to_user(argp, &dbgregs,
5140                                 sizeof(struct kvm_debugregs)))
5141                        break;
5142                r = 0;
5143                break;
5144        }
5145        case KVM_SET_DEBUGREGS: {
5146                struct kvm_debugregs dbgregs;
5147
5148                r = -EFAULT;
5149                if (copy_from_user(&dbgregs, argp,
5150                                   sizeof(struct kvm_debugregs)))
5151                        break;
5152
5153                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5154                break;
5155        }
5156        case KVM_GET_XSAVE: {
5157                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5158                r = -ENOMEM;
5159                if (!u.xsave)
5160                        break;
5161
5162                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5163
5164                r = -EFAULT;
5165                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5166                        break;
5167                r = 0;
5168                break;
5169        }
5170        case KVM_SET_XSAVE: {
5171                u.xsave = memdup_user(argp, sizeof(*u.xsave));
5172                if (IS_ERR(u.xsave)) {
5173                        r = PTR_ERR(u.xsave);
5174                        goto out_nofree;
5175                }
5176
5177                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5178                break;
5179        }
5180        case KVM_GET_XCRS: {
5181                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5182                r = -ENOMEM;
5183                if (!u.xcrs)
5184                        break;
5185
5186                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5187
5188                r = -EFAULT;
5189                if (copy_to_user(argp, u.xcrs,
5190                                 sizeof(struct kvm_xcrs)))
5191                        break;
5192                r = 0;
5193                break;
5194        }
5195        case KVM_SET_XCRS: {
5196                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5197                if (IS_ERR(u.xcrs)) {
5198                        r = PTR_ERR(u.xcrs);
5199                        goto out_nofree;
5200                }
5201
5202                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5203                break;
5204        }
5205        case KVM_SET_TSC_KHZ: {
5206                u32 user_tsc_khz;
5207
5208                r = -EINVAL;
5209                user_tsc_khz = (u32)arg;
5210
5211                if (kvm_has_tsc_control &&
5212                    user_tsc_khz >= kvm_max_guest_tsc_khz)
5213                        goto out;
5214
5215                if (user_tsc_khz == 0)
5216                        user_tsc_khz = tsc_khz;
5217
5218                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5219                        r = 0;
5220
5221                goto out;
5222        }
5223        case KVM_GET_TSC_KHZ: {
5224                r = vcpu->arch.virtual_tsc_khz;
5225                goto out;
5226        }
5227        case KVM_KVMCLOCK_CTRL: {
5228                r = kvm_set_guest_paused(vcpu);
5229                goto out;
5230        }
5231        case KVM_ENABLE_CAP: {
5232                struct kvm_enable_cap cap;
5233
5234                r = -EFAULT;
5235                if (copy_from_user(&cap, argp, sizeof(cap)))
5236                        goto out;
5237                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5238                break;
5239        }
5240        case KVM_GET_NESTED_STATE: {
5241                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5242                u32 user_data_size;
5243
5244                r = -EINVAL;
5245                if (!kvm_x86_ops.nested_ops->get_state)
5246                        break;
5247
5248                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5249                r = -EFAULT;
5250                if (get_user(user_data_size, &user_kvm_nested_state->size))
5251                        break;
5252
5253                r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5254                                                     user_data_size);
5255                if (r < 0)
5256                        break;
5257
5258                if (r > user_data_size) {
5259                        if (put_user(r, &user_kvm_nested_state->size))
5260                                r = -EFAULT;
5261                        else
5262                                r = -E2BIG;
5263                        break;
5264                }
5265
5266                r = 0;
5267                break;
5268        }
5269        case KVM_SET_NESTED_STATE: {
5270                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5271                struct kvm_nested_state kvm_state;
5272                int idx;
5273
5274                r = -EINVAL;
5275                if (!kvm_x86_ops.nested_ops->set_state)
5276                        break;
5277
5278                r = -EFAULT;
5279                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5280                        break;
5281
5282                r = -EINVAL;
5283                if (kvm_state.size < sizeof(kvm_state))
5284                        break;
5285
5286                if (kvm_state.flags &
5287                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5288                      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5289                      | KVM_STATE_NESTED_GIF_SET))
5290                        break;
5291
5292                /* nested_run_pending implies guest_mode.  */
5293                if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5294                    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5295                        break;
5296
5297                idx = srcu_read_lock(&vcpu->kvm->srcu);
5298                r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5299                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5300                break;
5301        }
5302        case KVM_GET_SUPPORTED_HV_CPUID:
5303                r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5304                break;
5305#ifdef CONFIG_KVM_XEN
5306        case KVM_XEN_VCPU_GET_ATTR: {
5307                struct kvm_xen_vcpu_attr xva;
5308
5309                r = -EFAULT;
5310                if (copy_from_user(&xva, argp, sizeof(xva)))
5311                        goto out;
5312                r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5313                if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5314                        r = -EFAULT;
5315                break;
5316        }
5317        case KVM_XEN_VCPU_SET_ATTR: {
5318                struct kvm_xen_vcpu_attr xva;
5319
5320                r = -EFAULT;
5321                if (copy_from_user(&xva, argp, sizeof(xva)))
5322                        goto out;
5323                r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5324                break;
5325        }
5326#endif
5327        case KVM_GET_SREGS2: {
5328                u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5329                r = -ENOMEM;
5330                if (!u.sregs2)
5331                        goto out;
5332                __get_sregs2(vcpu, u.sregs2);
5333                r = -EFAULT;
5334                if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5335                        goto out;
5336                r = 0;
5337                break;
5338        }
5339        case KVM_SET_SREGS2: {
5340                u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5341                if (IS_ERR(u.sregs2)) {
5342                        r = PTR_ERR(u.sregs2);
5343                        u.sregs2 = NULL;
5344                        goto out;
5345                }
5346                r = __set_sregs2(vcpu, u.sregs2);
5347                break;
5348        }
5349        default:
5350                r = -EINVAL;
5351        }
5352out:
5353        kfree(u.buffer);
5354out_nofree:
5355        vcpu_put(vcpu);
5356        return r;
5357}
5358
5359vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5360{
5361        return VM_FAULT_SIGBUS;
5362}
5363
5364static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5365{
5366        int ret;
5367
5368        if (addr > (unsigned int)(-3 * PAGE_SIZE))
5369                return -EINVAL;
5370        ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5371        return ret;
5372}
5373
5374static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5375                                              u64 ident_addr)
5376{
5377        return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5378}
5379
5380static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5381                                         unsigned long kvm_nr_mmu_pages)
5382{
5383        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5384                return -EINVAL;
5385
5386        mutex_lock(&kvm->slots_lock);
5387
5388        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5389        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5390
5391        mutex_unlock(&kvm->slots_lock);
5392        return 0;
5393}
5394
5395static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5396{
5397        return kvm->arch.n_max_mmu_pages;
5398}
5399
5400static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5401{
5402        struct kvm_pic *pic = kvm->arch.vpic;
5403        int r;
5404
5405        r = 0;
5406        switch (chip->chip_id) {
5407        case KVM_IRQCHIP_PIC_MASTER:
5408                memcpy(&chip->chip.pic, &pic->pics[0],
5409                        sizeof(struct kvm_pic_state));
5410                break;
5411        case KVM_IRQCHIP_PIC_SLAVE:
5412                memcpy(&chip->chip.pic, &pic->pics[1],
5413                        sizeof(struct kvm_pic_state));
5414                break;
5415        case KVM_IRQCHIP_IOAPIC:
5416                kvm_get_ioapic(kvm, &chip->chip.ioapic);
5417                break;
5418        default:
5419                r = -EINVAL;
5420                break;
5421        }
5422        return r;
5423}
5424
5425static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5426{
5427        struct kvm_pic *pic = kvm->arch.vpic;
5428        int r;
5429
5430        r = 0;
5431        switch (chip->chip_id) {
5432        case KVM_IRQCHIP_PIC_MASTER:
5433                spin_lock(&pic->lock);
5434                memcpy(&pic->pics[0], &chip->chip.pic,
5435                        sizeof(struct kvm_pic_state));
5436                spin_unlock(&pic->lock);
5437                break;
5438        case KVM_IRQCHIP_PIC_SLAVE:
5439                spin_lock(&pic->lock);
5440                memcpy(&pic->pics[1], &chip->chip.pic,
5441                        sizeof(struct kvm_pic_state));
5442                spin_unlock(&pic->lock);
5443                break;
5444        case KVM_IRQCHIP_IOAPIC:
5445                kvm_set_ioapic(kvm, &chip->chip.ioapic);
5446                break;
5447        default:
5448                r = -EINVAL;
5449                break;
5450        }
5451        kvm_pic_update_irq(pic);
5452        return r;
5453}
5454
5455static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5456{
5457        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5458
5459        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5460
5461        mutex_lock(&kps->lock);
5462        memcpy(ps, &kps->channels, sizeof(*ps));
5463        mutex_unlock(&kps->lock);
5464        return 0;
5465}
5466
5467static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5468{
5469        int i;
5470        struct kvm_pit *pit = kvm->arch.vpit;
5471
5472        mutex_lock(&pit->pit_state.lock);
5473        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5474        for (i = 0; i < 3; i++)
5475                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5476        mutex_unlock(&pit->pit_state.lock);
5477        return 0;
5478}
5479
5480static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5481{
5482        mutex_lock(&kvm->arch.vpit->pit_state.lock);
5483        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5484                sizeof(ps->channels));
5485        ps->flags = kvm->arch.vpit->pit_state.flags;
5486        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5487        memset(&ps->reserved, 0, sizeof(ps->reserved));
5488        return 0;
5489}
5490
5491static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5492{
5493        int start = 0;
5494        int i;
5495        u32 prev_legacy, cur_legacy;
5496        struct kvm_pit *pit = kvm->arch.vpit;
5497
5498        mutex_lock(&pit->pit_state.lock);
5499        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5500        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5501        if (!prev_legacy && cur_legacy)
5502                start = 1;
5503        memcpy(&pit->pit_state.channels, &ps->channels,
5504               sizeof(pit->pit_state.channels));
5505        pit->pit_state.flags = ps->flags;
5506        for (i = 0; i < 3; i++)
5507                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5508                                   start && i == 0);
5509        mutex_unlock(&pit->pit_state.lock);
5510        return 0;
5511}
5512
5513static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5514                                 struct kvm_reinject_control *control)
5515{
5516        struct kvm_pit *pit = kvm->arch.vpit;
5517
5518        /* pit->pit_state.lock was overloaded to prevent userspace from getting
5519         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5520         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5521         */
5522        mutex_lock(&pit->pit_state.lock);
5523        kvm_pit_set_reinject(pit, control->pit_reinject);
5524        mutex_unlock(&pit->pit_state.lock);
5525
5526        return 0;
5527}
5528
5529void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5530{
5531
5532        /*
5533         * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5534         * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5535         * on all VM-Exits, thus we only need to kick running vCPUs to force a
5536         * VM-Exit.
5537         */
5538