linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * derived from drivers/kvm/kvm_main.c
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright (C) 2008 Qumranet, Inc.
   9 * Copyright IBM Corporation, 2008
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Avi Kivity   <avi@qumranet.com>
  14 *   Yaniv Kamay  <yaniv@qumranet.com>
  15 *   Amit Shah    <amit.shah@qumranet.com>
  16 *   Ben-Ami Yassour <benami@il.ibm.com>
  17 */
  18
  19#include <linux/kvm_host.h>
  20#include "irq.h"
  21#include "ioapic.h"
  22#include "mmu.h"
  23#include "i8254.h"
  24#include "tss.h"
  25#include "kvm_cache_regs.h"
  26#include "kvm_emulate.h"
  27#include "x86.h"
  28#include "cpuid.h"
  29#include "pmu.h"
  30#include "hyperv.h"
  31#include "lapic.h"
  32#include "xen.h"
  33
  34#include <linux/clocksource.h>
  35#include <linux/interrupt.h>
  36#include <linux/kvm.h>
  37#include <linux/fs.h>
  38#include <linux/vmalloc.h>
  39#include <linux/export.h>
  40#include <linux/moduleparam.h>
  41#include <linux/mman.h>
  42#include <linux/highmem.h>
  43#include <linux/iommu.h>
  44#include <linux/intel-iommu.h>
  45#include <linux/cpufreq.h>
  46#include <linux/user-return-notifier.h>
  47#include <linux/srcu.h>
  48#include <linux/slab.h>
  49#include <linux/perf_event.h>
  50#include <linux/uaccess.h>
  51#include <linux/hash.h>
  52#include <linux/pci.h>
  53#include <linux/timekeeper_internal.h>
  54#include <linux/pvclock_gtod.h>
  55#include <linux/kvm_irqfd.h>
  56#include <linux/irqbypass.h>
  57#include <linux/sched/stat.h>
  58#include <linux/sched/isolation.h>
  59#include <linux/mem_encrypt.h>
  60#include <linux/entry-kvm.h>
  61#include <linux/suspend.h>
  62
  63#include <trace/events/kvm.h>
  64
  65#include <asm/debugreg.h>
  66#include <asm/msr.h>
  67#include <asm/desc.h>
  68#include <asm/mce.h>
  69#include <asm/pkru.h>
  70#include <linux/kernel_stat.h>
  71#include <asm/fpu/internal.h> /* Ugh! */
  72#include <asm/pvclock.h>
  73#include <asm/div64.h>
  74#include <asm/irq_remapping.h>
  75#include <asm/mshyperv.h>
  76#include <asm/hypervisor.h>
  77#include <asm/tlbflush.h>
  78#include <asm/intel_pt.h>
  79#include <asm/emulate_prefix.h>
  80#include <asm/sgx.h>
  81#include <clocksource/hyperv_timer.h>
  82
  83#define CREATE_TRACE_POINTS
  84#include "trace.h"
  85
  86#define MAX_IO_MSRS 256
  87#define KVM_MAX_MCE_BANKS 32
  88u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  89EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  90
  91#define emul_to_vcpu(ctxt) \
  92        ((struct kvm_vcpu *)(ctxt)->vcpu)
  93
  94/* EFER defaults:
  95 * - enable syscall per default because its emulated by KVM
  96 * - enable LME and LMA per default on 64 bit KVM
  97 */
  98#ifdef CONFIG_X86_64
  99static
 100u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
 101#else
 102static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
 103#endif
 104
 105static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
 106
 107#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
 108
 109#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 110                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 111
 112static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 113static void process_nmi(struct kvm_vcpu *vcpu);
 114static void process_smi(struct kvm_vcpu *vcpu);
 115static void enter_smm(struct kvm_vcpu *vcpu);
 116static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 117static void store_regs(struct kvm_vcpu *vcpu);
 118static int sync_regs(struct kvm_vcpu *vcpu);
 119
 120static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 121static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 122
 123struct kvm_x86_ops kvm_x86_ops __read_mostly;
 124EXPORT_SYMBOL_GPL(kvm_x86_ops);
 125
 126#define KVM_X86_OP(func)                                             \
 127        DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
 128                                *(((struct kvm_x86_ops *)0)->func));
 129#define KVM_X86_OP_NULL KVM_X86_OP
 130#include <asm/kvm-x86-ops.h>
 131EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
 132EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
 133EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
 134
 135static bool __read_mostly ignore_msrs = 0;
 136module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 137
 138bool __read_mostly report_ignored_msrs = true;
 139module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 140EXPORT_SYMBOL_GPL(report_ignored_msrs);
 141
 142unsigned int min_timer_period_us = 200;
 143module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 144
 145static bool __read_mostly kvmclock_periodic_sync = true;
 146module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 147
 148bool __read_mostly kvm_has_tsc_control;
 149EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 150u32  __read_mostly kvm_max_guest_tsc_khz;
 151EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 152u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 153EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 154u64  __read_mostly kvm_max_tsc_scaling_ratio;
 155EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 156u64 __read_mostly kvm_default_tsc_scaling_ratio;
 157EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 158bool __read_mostly kvm_has_bus_lock_exit;
 159EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
 160
 161/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 162static u32 __read_mostly tsc_tolerance_ppm = 250;
 163module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 164
 165/*
 166 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 167 * adaptive tuning starting from default advancement of 1000ns.  '0' disables
 168 * advancement entirely.  Any other value is used as-is and disables adaptive
 169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
 170 */
 171static int __read_mostly lapic_timer_advance_ns = -1;
 172module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 173
 174static bool __read_mostly vector_hashing = true;
 175module_param(vector_hashing, bool, S_IRUGO);
 176
 177bool __read_mostly enable_vmware_backdoor = false;
 178module_param(enable_vmware_backdoor, bool, S_IRUGO);
 179EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 180
 181static bool __read_mostly force_emulation_prefix = false;
 182module_param(force_emulation_prefix, bool, S_IRUGO);
 183
 184int __read_mostly pi_inject_timer = -1;
 185module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 186
 187/*
 188 * Restoring the host value for MSRs that are only consumed when running in
 189 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
 190 * returns to userspace, i.e. the kernel can run with the guest's value.
 191 */
 192#define KVM_MAX_NR_USER_RETURN_MSRS 16
 193
 194struct kvm_user_return_msrs {
 195        struct user_return_notifier urn;
 196        bool registered;
 197        struct kvm_user_return_msr_values {
 198                u64 host;
 199                u64 curr;
 200        } values[KVM_MAX_NR_USER_RETURN_MSRS];
 201};
 202
 203u32 __read_mostly kvm_nr_uret_msrs;
 204EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
 205static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
 206static struct kvm_user_return_msrs __percpu *user_return_msrs;
 207
 208#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
 209                                | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
 210                                | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
 211                                | XFEATURE_MASK_PKRU)
 212
 213u64 __read_mostly host_efer;
 214EXPORT_SYMBOL_GPL(host_efer);
 215
 216bool __read_mostly allow_smaller_maxphyaddr = 0;
 217EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
 218
 219bool __read_mostly enable_apicv = true;
 220EXPORT_SYMBOL_GPL(enable_apicv);
 221
 222u64 __read_mostly host_xss;
 223EXPORT_SYMBOL_GPL(host_xss);
 224u64 __read_mostly supported_xss;
 225EXPORT_SYMBOL_GPL(supported_xss);
 226
 227const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 228        KVM_GENERIC_VM_STATS(),
 229        STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
 230        STATS_DESC_COUNTER(VM, mmu_pte_write),
 231        STATS_DESC_COUNTER(VM, mmu_pde_zapped),
 232        STATS_DESC_COUNTER(VM, mmu_flooded),
 233        STATS_DESC_COUNTER(VM, mmu_recycled),
 234        STATS_DESC_COUNTER(VM, mmu_cache_miss),
 235        STATS_DESC_ICOUNTER(VM, mmu_unsync),
 236        STATS_DESC_ICOUNTER(VM, pages_4k),
 237        STATS_DESC_ICOUNTER(VM, pages_2m),
 238        STATS_DESC_ICOUNTER(VM, pages_1g),
 239        STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
 240        STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
 241        STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
 242};
 243
 244const struct kvm_stats_header kvm_vm_stats_header = {
 245        .name_size = KVM_STATS_NAME_SIZE,
 246        .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 247        .id_offset = sizeof(struct kvm_stats_header),
 248        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 249        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 250                       sizeof(kvm_vm_stats_desc),
 251};
 252
 253const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 254        KVM_GENERIC_VCPU_STATS(),
 255        STATS_DESC_COUNTER(VCPU, pf_fixed),
 256        STATS_DESC_COUNTER(VCPU, pf_guest),
 257        STATS_DESC_COUNTER(VCPU, tlb_flush),
 258        STATS_DESC_COUNTER(VCPU, invlpg),
 259        STATS_DESC_COUNTER(VCPU, exits),
 260        STATS_DESC_COUNTER(VCPU, io_exits),
 261        STATS_DESC_COUNTER(VCPU, mmio_exits),
 262        STATS_DESC_COUNTER(VCPU, signal_exits),
 263        STATS_DESC_COUNTER(VCPU, irq_window_exits),
 264        STATS_DESC_COUNTER(VCPU, nmi_window_exits),
 265        STATS_DESC_COUNTER(VCPU, l1d_flush),
 266        STATS_DESC_COUNTER(VCPU, halt_exits),
 267        STATS_DESC_COUNTER(VCPU, request_irq_exits),
 268        STATS_DESC_COUNTER(VCPU, irq_exits),
 269        STATS_DESC_COUNTER(VCPU, host_state_reload),
 270        STATS_DESC_COUNTER(VCPU, fpu_reload),
 271        STATS_DESC_COUNTER(VCPU, insn_emulation),
 272        STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
 273        STATS_DESC_COUNTER(VCPU, hypercalls),
 274        STATS_DESC_COUNTER(VCPU, irq_injections),
 275        STATS_DESC_COUNTER(VCPU, nmi_injections),
 276        STATS_DESC_COUNTER(VCPU, req_event),
 277        STATS_DESC_COUNTER(VCPU, nested_run),
 278        STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
 279        STATS_DESC_COUNTER(VCPU, directed_yield_successful),
 280        STATS_DESC_ICOUNTER(VCPU, guest_mode)
 281};
 282
 283const struct kvm_stats_header kvm_vcpu_stats_header = {
 284        .name_size = KVM_STATS_NAME_SIZE,
 285        .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 286        .id_offset = sizeof(struct kvm_stats_header),
 287        .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 288        .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 289                       sizeof(kvm_vcpu_stats_desc),
 290};
 291
 292u64 __read_mostly host_xcr0;
 293u64 __read_mostly supported_xcr0;
 294EXPORT_SYMBOL_GPL(supported_xcr0);
 295
 296static struct kmem_cache *x86_fpu_cache;
 297
 298static struct kmem_cache *x86_emulator_cache;
 299
 300/*
 301 * When called, it means the previous get/set msr reached an invalid msr.
 302 * Return true if we want to ignore/silent this failed msr access.
 303 */
 304static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
 305{
 306        const char *op = write ? "wrmsr" : "rdmsr";
 307
 308        if (ignore_msrs) {
 309                if (report_ignored_msrs)
 310                        kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
 311                                      op, msr, data);
 312                /* Mask the error */
 313                return true;
 314        } else {
 315                kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
 316                                      op, msr, data);
 317                return false;
 318        }
 319}
 320
 321static struct kmem_cache *kvm_alloc_emulator_cache(void)
 322{
 323        unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
 324        unsigned int size = sizeof(struct x86_emulate_ctxt);
 325
 326        return kmem_cache_create_usercopy("x86_emulator", size,
 327                                          __alignof__(struct x86_emulate_ctxt),
 328                                          SLAB_ACCOUNT, useroffset,
 329                                          size - useroffset, NULL);
 330}
 331
 332static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 333
 334static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 335{
 336        int i;
 337        for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
 338                vcpu->arch.apf.gfns[i] = ~0;
 339}
 340
 341static void kvm_on_user_return(struct user_return_notifier *urn)
 342{
 343        unsigned slot;
 344        struct kvm_user_return_msrs *msrs
 345                = container_of(urn, struct kvm_user_return_msrs, urn);
 346        struct kvm_user_return_msr_values *values;
 347        unsigned long flags;
 348
 349        /*
 350         * Disabling irqs at this point since the following code could be
 351         * interrupted and executed through kvm_arch_hardware_disable()
 352         */
 353        local_irq_save(flags);
 354        if (msrs->registered) {
 355                msrs->registered = false;
 356                user_return_notifier_unregister(urn);
 357        }
 358        local_irq_restore(flags);
 359        for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
 360                values = &msrs->values[slot];
 361                if (values->host != values->curr) {
 362                        wrmsrl(kvm_uret_msrs_list[slot], values->host);
 363                        values->curr = values->host;
 364                }
 365        }
 366}
 367
 368static int kvm_probe_user_return_msr(u32 msr)
 369{
 370        u64 val;
 371        int ret;
 372
 373        preempt_disable();
 374        ret = rdmsrl_safe(msr, &val);
 375        if (ret)
 376                goto out;
 377        ret = wrmsrl_safe(msr, val);
 378out:
 379        preempt_enable();
 380        return ret;
 381}
 382
 383int kvm_add_user_return_msr(u32 msr)
 384{
 385        BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
 386
 387        if (kvm_probe_user_return_msr(msr))
 388                return -1;
 389
 390        kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
 391        return kvm_nr_uret_msrs++;
 392}
 393EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
 394
 395int kvm_find_user_return_msr(u32 msr)
 396{
 397        int i;
 398
 399        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 400                if (kvm_uret_msrs_list[i] == msr)
 401                        return i;
 402        }
 403        return -1;
 404}
 405EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
 406
 407static void kvm_user_return_msr_cpu_online(void)
 408{
 409        unsigned int cpu = smp_processor_id();
 410        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 411        u64 value;
 412        int i;
 413
 414        for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 415                rdmsrl_safe(kvm_uret_msrs_list[i], &value);
 416                msrs->values[i].host = value;
 417                msrs->values[i].curr = value;
 418        }
 419}
 420
 421int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
 422{
 423        unsigned int cpu = smp_processor_id();
 424        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 425        int err;
 426
 427        value = (value & mask) | (msrs->values[slot].host & ~mask);
 428        if (value == msrs->values[slot].curr)
 429                return 0;
 430        err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
 431        if (err)
 432                return 1;
 433
 434        msrs->values[slot].curr = value;
 435        if (!msrs->registered) {
 436                msrs->urn.on_user_return = kvm_on_user_return;
 437                user_return_notifier_register(&msrs->urn);
 438                msrs->registered = true;
 439        }
 440        return 0;
 441}
 442EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
 443
 444static void drop_user_return_notifiers(void)
 445{
 446        unsigned int cpu = smp_processor_id();
 447        struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 448
 449        if (msrs->registered)
 450                kvm_on_user_return(&msrs->urn);
 451}
 452
 453u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 454{
 455        return vcpu->arch.apic_base;
 456}
 457EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 458
 459enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 460{
 461        return kvm_apic_mode(kvm_get_apic_base(vcpu));
 462}
 463EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 464
 465int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 466{
 467        enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 468        enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 469        u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
 470                (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 471
 472        if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 473                return 1;
 474        if (!msr_info->host_initiated) {
 475                if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 476                        return 1;
 477                if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 478                        return 1;
 479        }
 480
 481        kvm_lapic_set_base(vcpu, msr_info->data);
 482        kvm_recalculate_apic_map(vcpu->kvm);
 483        return 0;
 484}
 485EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 486
 487/*
 488 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
 489 *
 490 * Hardware virtualization extension instructions may fault if a reboot turns
 491 * off virtualization while processes are running.  Usually after catching the
 492 * fault we just panic; during reboot instead the instruction is ignored.
 493 */
 494noinstr void kvm_spurious_fault(void)
 495{
 496        /* Fault while not rebooting.  We want the trace. */
 497        BUG_ON(!kvm_rebooting);
 498}
 499EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 500
 501#define EXCPT_BENIGN            0
 502#define EXCPT_CONTRIBUTORY      1
 503#define EXCPT_PF                2
 504
 505static int exception_class(int vector)
 506{
 507        switch (vector) {
 508        case PF_VECTOR:
 509                return EXCPT_PF;
 510        case DE_VECTOR:
 511        case TS_VECTOR:
 512        case NP_VECTOR:
 513        case SS_VECTOR:
 514        case GP_VECTOR:
 515                return EXCPT_CONTRIBUTORY;
 516        default:
 517                break;
 518        }
 519        return EXCPT_BENIGN;
 520}
 521
 522#define EXCPT_FAULT             0
 523#define EXCPT_TRAP              1
 524#define EXCPT_ABORT             2
 525#define EXCPT_INTERRUPT         3
 526
 527static int exception_type(int vector)
 528{
 529        unsigned int mask;
 530
 531        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 532                return EXCPT_INTERRUPT;
 533
 534        mask = 1 << vector;
 535
 536        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 537        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 538                return EXCPT_TRAP;
 539
 540        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 541                return EXCPT_ABORT;
 542
 543        /* Reserved exceptions will result in fault */
 544        return EXCPT_FAULT;
 545}
 546
 547void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 548{
 549        unsigned nr = vcpu->arch.exception.nr;
 550        bool has_payload = vcpu->arch.exception.has_payload;
 551        unsigned long payload = vcpu->arch.exception.payload;
 552
 553        if (!has_payload)
 554                return;
 555
 556        switch (nr) {
 557        case DB_VECTOR:
 558                /*
 559                 * "Certain debug exceptions may clear bit 0-3.  The
 560                 * remaining contents of the DR6 register are never
 561                 * cleared by the processor".
 562                 */
 563                vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 564                /*
 565                 * In order to reflect the #DB exception payload in guest
 566                 * dr6, three components need to be considered: active low
 567                 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
 568                 * DR6_BS and DR6_BT)
 569                 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
 570                 * In the target guest dr6:
 571                 * FIXED_1 bits should always be set.
 572                 * Active low bits should be cleared if 1-setting in payload.
 573                 * Active high bits should be set if 1-setting in payload.
 574                 *
 575                 * Note, the payload is compatible with the pending debug
 576                 * exceptions/exit qualification under VMX, that active_low bits
 577                 * are active high in payload.
 578                 * So they need to be flipped for DR6.
 579                 */
 580                vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
 581                vcpu->arch.dr6 |= payload;
 582                vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
 583
 584                /*
 585                 * The #DB payload is defined as compatible with the 'pending
 586                 * debug exceptions' field under VMX, not DR6. While bit 12 is
 587                 * defined in the 'pending debug exceptions' field (enabled
 588                 * breakpoint), it is reserved and must be zero in DR6.
 589                 */
 590                vcpu->arch.dr6 &= ~BIT(12);
 591                break;
 592        case PF_VECTOR:
 593                vcpu->arch.cr2 = payload;
 594                break;
 595        }
 596
 597        vcpu->arch.exception.has_payload = false;
 598        vcpu->arch.exception.payload = 0;
 599}
 600EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 601
 602static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 603                unsigned nr, bool has_error, u32 error_code,
 604                bool has_payload, unsigned long payload, bool reinject)
 605{
 606        u32 prev_nr;
 607        int class1, class2;
 608
 609        kvm_make_request(KVM_REQ_EVENT, vcpu);
 610
 611        if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 612        queue:
 613                if (reinject) {
 614                        /*
 615                         * On vmentry, vcpu->arch.exception.pending is only
 616                         * true if an event injection was blocked by
 617                         * nested_run_pending.  In that case, however,
 618                         * vcpu_enter_guest requests an immediate exit,
 619                         * and the guest shouldn't proceed far enough to
 620                         * need reinjection.
 621                         */
 622                        WARN_ON_ONCE(vcpu->arch.exception.pending);
 623                        vcpu->arch.exception.injected = true;
 624                        if (WARN_ON_ONCE(has_payload)) {
 625                                /*
 626                                 * A reinjected event has already
 627                                 * delivered its payload.
 628                                 */
 629                                has_payload = false;
 630                                payload = 0;
 631                        }
 632                } else {
 633                        vcpu->arch.exception.pending = true;
 634                        vcpu->arch.exception.injected = false;
 635                }
 636                vcpu->arch.exception.has_error_code = has_error;
 637                vcpu->arch.exception.nr = nr;
 638                vcpu->arch.exception.error_code = error_code;
 639                vcpu->arch.exception.has_payload = has_payload;
 640                vcpu->arch.exception.payload = payload;
 641                if (!is_guest_mode(vcpu))
 642                        kvm_deliver_exception_payload(vcpu);
 643                return;
 644        }
 645
 646        /* to check exception */
 647        prev_nr = vcpu->arch.exception.nr;
 648        if (prev_nr == DF_VECTOR) {
 649                /* triple fault -> shutdown */
 650                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 651                return;
 652        }
 653        class1 = exception_class(prev_nr);
 654        class2 = exception_class(nr);
 655        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 656                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 657                /*
 658                 * Generate double fault per SDM Table 5-5.  Set
 659                 * exception.pending = true so that the double fault
 660                 * can trigger a nested vmexit.
 661                 */
 662                vcpu->arch.exception.pending = true;
 663                vcpu->arch.exception.injected = false;
 664                vcpu->arch.exception.has_error_code = true;
 665                vcpu->arch.exception.nr = DF_VECTOR;
 666                vcpu->arch.exception.error_code = 0;
 667                vcpu->arch.exception.has_payload = false;
 668                vcpu->arch.exception.payload = 0;
 669        } else
 670                /* replace previous exception with a new one in a hope
 671                   that instruction re-execution will regenerate lost
 672                   exception */
 673                goto queue;
 674}
 675
 676void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 677{
 678        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 679}
 680EXPORT_SYMBOL_GPL(kvm_queue_exception);
 681
 682void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 683{
 684        kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 685}
 686EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 687
 688void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 689                           unsigned long payload)
 690{
 691        kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 692}
 693EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
 694
 695static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 696                                    u32 error_code, unsigned long payload)
 697{
 698        kvm_multiple_exception(vcpu, nr, true, error_code,
 699                               true, payload, false);
 700}
 701
 702int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 703{
 704        if (err)
 705                kvm_inject_gp(vcpu, 0);
 706        else
 707                return kvm_skip_emulated_instruction(vcpu);
 708
 709        return 1;
 710}
 711EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 712
 713void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 714{
 715        ++vcpu->stat.pf_guest;
 716        vcpu->arch.exception.nested_apf =
 717                is_guest_mode(vcpu) && fault->async_page_fault;
 718        if (vcpu->arch.exception.nested_apf) {
 719                vcpu->arch.apf.nested_apf_token = fault->address;
 720                kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 721        } else {
 722                kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 723                                        fault->address);
 724        }
 725}
 726EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 727
 728bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
 729                                    struct x86_exception *fault)
 730{
 731        struct kvm_mmu *fault_mmu;
 732        WARN_ON_ONCE(fault->vector != PF_VECTOR);
 733
 734        fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
 735                                               vcpu->arch.walk_mmu;
 736
 737        /*
 738         * Invalidate the TLB entry for the faulting address, if it exists,
 739         * else the access will fault indefinitely (and to emulate hardware).
 740         */
 741        if ((fault->error_code & PFERR_PRESENT_MASK) &&
 742            !(fault->error_code & PFERR_RSVD_MASK))
 743                kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
 744                                       fault_mmu->root_hpa);
 745
 746        fault_mmu->inject_page_fault(vcpu, fault);
 747        return fault->nested_page_fault;
 748}
 749EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
 750
 751void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 752{
 753        atomic_inc(&vcpu->arch.nmi_queued);
 754        kvm_make_request(KVM_REQ_NMI, vcpu);
 755}
 756EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 757
 758void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 759{
 760        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 761}
 762EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 763
 764void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 765{
 766        kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 767}
 768EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 769
 770/*
 771 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 772 * a #GP and return false.
 773 */
 774bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 775{
 776        if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
 777                return true;
 778        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 779        return false;
 780}
 781EXPORT_SYMBOL_GPL(kvm_require_cpl);
 782
 783bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 784{
 785        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 786                return true;
 787
 788        kvm_queue_exception(vcpu, UD_VECTOR);
 789        return false;
 790}
 791EXPORT_SYMBOL_GPL(kvm_require_dr);
 792
 793/*
 794 * This function will be used to read from the physical memory of the currently
 795 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 796 * can read from guest physical or from the guest's guest physical memory.
 797 */
 798int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 799                            gfn_t ngfn, void *data, int offset, int len,
 800                            u32 access)
 801{
 802        struct x86_exception exception;
 803        gfn_t real_gfn;
 804        gpa_t ngpa;
 805
 806        ngpa     = gfn_to_gpa(ngfn);
 807        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 808        if (real_gfn == UNMAPPED_GVA)
 809                return -EFAULT;
 810
 811        real_gfn = gpa_to_gfn(real_gfn);
 812
 813        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 814}
 815EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 816
 817static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 818{
 819        return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
 820}
 821
 822/*
 823 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 824 */
 825int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 826{
 827        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 828        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 829        int i;
 830        int ret;
 831        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 832
 833        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 834                                      offset * sizeof(u64), sizeof(pdpte),
 835                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 836        if (ret < 0) {
 837                ret = 0;
 838                goto out;
 839        }
 840        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 841                if ((pdpte[i] & PT_PRESENT_MASK) &&
 842                    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 843                        ret = 0;
 844                        goto out;
 845                }
 846        }
 847        ret = 1;
 848
 849        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 850        kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 851        vcpu->arch.pdptrs_from_userspace = false;
 852
 853out:
 854
 855        return ret;
 856}
 857EXPORT_SYMBOL_GPL(load_pdptrs);
 858
 859void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
 860{
 861        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 862                kvm_clear_async_pf_completion_queue(vcpu);
 863                kvm_async_pf_hash_reset(vcpu);
 864        }
 865
 866        if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
 867                kvm_mmu_reset_context(vcpu);
 868
 869        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 870            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 871            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 872                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 873}
 874EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
 875
 876int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 877{
 878        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 879        unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
 880
 881        cr0 |= X86_CR0_ET;
 882
 883#ifdef CONFIG_X86_64
 884        if (cr0 & 0xffffffff00000000UL)
 885                return 1;
 886#endif
 887
 888        cr0 &= ~CR0_RESERVED_BITS;
 889
 890        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 891                return 1;
 892
 893        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 894                return 1;
 895
 896#ifdef CONFIG_X86_64
 897        if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
 898            (cr0 & X86_CR0_PG)) {
 899                int cs_db, cs_l;
 900
 901                if (!is_pae(vcpu))
 902                        return 1;
 903                static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
 904                if (cs_l)
 905                        return 1;
 906        }
 907#endif
 908        if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
 909            is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
 910            !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
 911                return 1;
 912
 913        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 914                return 1;
 915
 916        static_call(kvm_x86_set_cr0)(vcpu, cr0);
 917
 918        kvm_post_set_cr0(vcpu, old_cr0, cr0);
 919
 920        return 0;
 921}
 922EXPORT_SYMBOL_GPL(kvm_set_cr0);
 923
 924void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 925{
 926        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 927}
 928EXPORT_SYMBOL_GPL(kvm_lmsw);
 929
 930void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 931{
 932        if (vcpu->arch.guest_state_protected)
 933                return;
 934
 935        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 936
 937                if (vcpu->arch.xcr0 != host_xcr0)
 938                        xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 939
 940                if (vcpu->arch.xsaves_enabled &&
 941                    vcpu->arch.ia32_xss != host_xss)
 942                        wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 943        }
 944
 945        if (static_cpu_has(X86_FEATURE_PKU) &&
 946            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 947             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
 948            vcpu->arch.pkru != vcpu->arch.host_pkru)
 949                write_pkru(vcpu->arch.pkru);
 950}
 951EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 952
 953void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 954{
 955        if (vcpu->arch.guest_state_protected)
 956                return;
 957
 958        if (static_cpu_has(X86_FEATURE_PKU) &&
 959            (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 960             (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
 961                vcpu->arch.pkru = rdpkru();
 962                if (vcpu->arch.pkru != vcpu->arch.host_pkru)
 963                        write_pkru(vcpu->arch.host_pkru);
 964        }
 965
 966        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 967
 968                if (vcpu->arch.xcr0 != host_xcr0)
 969                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 970
 971                if (vcpu->arch.xsaves_enabled &&
 972                    vcpu->arch.ia32_xss != host_xss)
 973                        wrmsrl(MSR_IA32_XSS, host_xss);
 974        }
 975
 976}
 977EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 978
 979static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 980{
 981        u64 xcr0 = xcr;
 982        u64 old_xcr0 = vcpu->arch.xcr0;
 983        u64 valid_bits;
 984
 985        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 986        if (index != XCR_XFEATURE_ENABLED_MASK)
 987                return 1;
 988        if (!(xcr0 & XFEATURE_MASK_FP))
 989                return 1;
 990        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 991                return 1;
 992
 993        /*
 994         * Do not allow the guest to set bits that we do not support
 995         * saving.  However, xcr0 bit 0 is always set, even if the
 996         * emulated CPU does not support XSAVE (see fx_init).
 997         */
 998        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 999        if (xcr0 & ~valid_bits)
1000                return 1;
1001
1002        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1003            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1004                return 1;
1005
1006        if (xcr0 & XFEATURE_MASK_AVX512) {
1007                if (!(xcr0 & XFEATURE_MASK_YMM))
1008                        return 1;
1009                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1010                        return 1;
1011        }
1012        vcpu->arch.xcr0 = xcr0;
1013
1014        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1015                kvm_update_cpuid_runtime(vcpu);
1016        return 0;
1017}
1018
1019int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1020{
1021        if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1022            __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1023                kvm_inject_gp(vcpu, 0);
1024                return 1;
1025        }
1026
1027        return kvm_skip_emulated_instruction(vcpu);
1028}
1029EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1030
1031bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1032{
1033        if (cr4 & cr4_reserved_bits)
1034                return false;
1035
1036        if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1037                return false;
1038
1039        return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1040}
1041EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1042
1043void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1044{
1045        if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1046            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1047                kvm_mmu_reset_context(vcpu);
1048}
1049EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1050
1051int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1052{
1053        unsigned long old_cr4 = kvm_read_cr4(vcpu);
1054        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1055                                   X86_CR4_SMEP;
1056
1057        if (!kvm_is_valid_cr4(vcpu, cr4))
1058                return 1;
1059
1060        if (is_long_mode(vcpu)) {
1061                if (!(cr4 & X86_CR4_PAE))
1062                        return 1;
1063                if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1064                        return 1;
1065        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1066                   && ((cr4 ^ old_cr4) & pdptr_bits)
1067                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1068                                   kvm_read_cr3(vcpu)))
1069                return 1;
1070
1071        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1072                if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1073                        return 1;
1074
1075                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1076                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1077                        return 1;
1078        }
1079
1080        static_call(kvm_x86_set_cr4)(vcpu, cr4);
1081
1082        kvm_post_set_cr4(vcpu, old_cr4, cr4);
1083
1084        return 0;
1085}
1086EXPORT_SYMBOL_GPL(kvm_set_cr4);
1087
1088static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1089{
1090        struct kvm_mmu *mmu = vcpu->arch.mmu;
1091        unsigned long roots_to_free = 0;
1092        int i;
1093
1094        /*
1095         * If neither the current CR3 nor any of the prev_roots use the given
1096         * PCID, then nothing needs to be done here because a resync will
1097         * happen anyway before switching to any other CR3.
1098         */
1099        if (kvm_get_active_pcid(vcpu) == pcid) {
1100                kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1101                kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1102        }
1103
1104        for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1105                if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1106                        roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1107
1108        kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1109}
1110
1111int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1112{
1113        bool skip_tlb_flush = false;
1114        unsigned long pcid = 0;
1115#ifdef CONFIG_X86_64
1116        bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1117
1118        if (pcid_enabled) {
1119                skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1120                cr3 &= ~X86_CR3_PCID_NOFLUSH;
1121                pcid = cr3 & X86_CR3_PCID_MASK;
1122        }
1123#endif
1124
1125        /* PDPTRs are always reloaded for PAE paging. */
1126        if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1127                goto handle_tlb_flush;
1128
1129        /*
1130         * Do not condition the GPA check on long mode, this helper is used to
1131         * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1132         * the current vCPU mode is accurate.
1133         */
1134        if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1135                return 1;
1136
1137        if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1138                return 1;
1139
1140        if (cr3 != kvm_read_cr3(vcpu))
1141                kvm_mmu_new_pgd(vcpu, cr3);
1142
1143        vcpu->arch.cr3 = cr3;
1144        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1145
1146handle_tlb_flush:
1147        /*
1148         * A load of CR3 that flushes the TLB flushes only the current PCID,
1149         * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1150         * moot point in the end because _disabling_ PCID will flush all PCIDs,
1151         * and it's impossible to use a non-zero PCID when PCID is disabled,
1152         * i.e. only PCID=0 can be relevant.
1153         */
1154        if (!skip_tlb_flush)
1155                kvm_invalidate_pcid(vcpu, pcid);
1156
1157        return 0;
1158}
1159EXPORT_SYMBOL_GPL(kvm_set_cr3);
1160
1161int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1162{
1163        if (cr8 & CR8_RESERVED_BITS)
1164                return 1;
1165        if (lapic_in_kernel(vcpu))
1166                kvm_lapic_set_tpr(vcpu, cr8);
1167        else
1168                vcpu->arch.cr8 = cr8;
1169        return 0;
1170}
1171EXPORT_SYMBOL_GPL(kvm_set_cr8);
1172
1173unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1174{
1175        if (lapic_in_kernel(vcpu))
1176                return kvm_lapic_get_cr8(vcpu);
1177        else
1178                return vcpu->arch.cr8;
1179}
1180EXPORT_SYMBOL_GPL(kvm_get_cr8);
1181
1182static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1183{
1184        int i;
1185
1186        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1187                for (i = 0; i < KVM_NR_DB_REGS; i++)
1188                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1189        }
1190}
1191
1192void kvm_update_dr7(struct kvm_vcpu *vcpu)
1193{
1194        unsigned long dr7;
1195
1196        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1197                dr7 = vcpu->arch.guest_debug_dr7;
1198        else
1199                dr7 = vcpu->arch.dr7;
1200        static_call(kvm_x86_set_dr7)(vcpu, dr7);
1201        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1202        if (dr7 & DR7_BP_EN_MASK)
1203                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1204}
1205EXPORT_SYMBOL_GPL(kvm_update_dr7);
1206
1207static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1208{
1209        u64 fixed = DR6_FIXED_1;
1210
1211        if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1212                fixed |= DR6_RTM;
1213
1214        if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1215                fixed |= DR6_BUS_LOCK;
1216        return fixed;
1217}
1218
1219int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1220{
1221        size_t size = ARRAY_SIZE(vcpu->arch.db);
1222
1223        switch (dr) {
1224        case 0 ... 3:
1225                vcpu->arch.db[array_index_nospec(dr, size)] = val;
1226                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1227                        vcpu->arch.eff_db[dr] = val;
1228                break;
1229        case 4:
1230        case 6:
1231                if (!kvm_dr6_valid(val))
1232                        return 1; /* #GP */
1233                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1234                break;
1235        case 5:
1236        default: /* 7 */
1237                if (!kvm_dr7_valid(val))
1238                        return 1; /* #GP */
1239                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1240                kvm_update_dr7(vcpu);
1241                break;
1242        }
1243
1244        return 0;
1245}
1246EXPORT_SYMBOL_GPL(kvm_set_dr);
1247
1248void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1249{
1250        size_t size = ARRAY_SIZE(vcpu->arch.db);
1251
1252        switch (dr) {
1253        case 0 ... 3:
1254                *val = vcpu->arch.db[array_index_nospec(dr, size)];
1255                break;
1256        case 4:
1257        case 6:
1258                *val = vcpu->arch.dr6;
1259                break;
1260        case 5:
1261        default: /* 7 */
1262                *val = vcpu->arch.dr7;
1263                break;
1264        }
1265}
1266EXPORT_SYMBOL_GPL(kvm_get_dr);
1267
1268int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1269{
1270        u32 ecx = kvm_rcx_read(vcpu);
1271        u64 data;
1272
1273        if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1274                kvm_inject_gp(vcpu, 0);
1275                return 1;
1276        }
1277
1278        kvm_rax_write(vcpu, (u32)data);
1279        kvm_rdx_write(vcpu, data >> 32);
1280        return kvm_skip_emulated_instruction(vcpu);
1281}
1282EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1283
1284/*
1285 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1286 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1287 *
1288 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1289 * extract the supported MSRs from the related const lists.
1290 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1291 * capabilities of the host cpu. This capabilities test skips MSRs that are
1292 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1293 * may depend on host virtualization features rather than host cpu features.
1294 */
1295
1296static const u32 msrs_to_save_all[] = {
1297        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1298        MSR_STAR,
1299#ifdef CONFIG_X86_64
1300        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1301#endif
1302        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1303        MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1304        MSR_IA32_SPEC_CTRL,
1305        MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1306        MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1307        MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1308        MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1309        MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1310        MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1311        MSR_IA32_UMWAIT_CONTROL,
1312
1313        MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1314        MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1315        MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1316        MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1317        MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1318        MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1319        MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1320        MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1321        MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1322        MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1323        MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1324        MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1325        MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1326        MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1327        MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1328        MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1329        MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1330        MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1331        MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1332        MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1333        MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1334        MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1335
1336        MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1337        MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1338        MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1339        MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1340        MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1341        MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1342};
1343
1344static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1345static unsigned num_msrs_to_save;
1346
1347static const u32 emulated_msrs_all[] = {
1348        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1349        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1350        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1351        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1352        HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1353        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1354        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1355        HV_X64_MSR_RESET,
1356        HV_X64_MSR_VP_INDEX,
1357        HV_X64_MSR_VP_RUNTIME,
1358        HV_X64_MSR_SCONTROL,
1359        HV_X64_MSR_STIMER0_CONFIG,
1360        HV_X64_MSR_VP_ASSIST_PAGE,
1361        HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1362        HV_X64_MSR_TSC_EMULATION_STATUS,
1363        HV_X64_MSR_SYNDBG_OPTIONS,
1364        HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1365        HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1366        HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1367
1368        MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1369        MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1370
1371        MSR_IA32_TSC_ADJUST,
1372        MSR_IA32_TSC_DEADLINE,
1373        MSR_IA32_ARCH_CAPABILITIES,
1374        MSR_IA32_PERF_CAPABILITIES,
1375        MSR_IA32_MISC_ENABLE,
1376        MSR_IA32_MCG_STATUS,
1377        MSR_IA32_MCG_CTL,
1378        MSR_IA32_MCG_EXT_CTL,
1379        MSR_IA32_SMBASE,
1380        MSR_SMI_COUNT,
1381        MSR_PLATFORM_INFO,
1382        MSR_MISC_FEATURES_ENABLES,
1383        MSR_AMD64_VIRT_SPEC_CTRL,
1384        MSR_IA32_POWER_CTL,
1385        MSR_IA32_UCODE_REV,
1386
1387        /*
1388         * The following list leaves out MSRs whose values are determined
1389         * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1390         * We always support the "true" VMX control MSRs, even if the host
1391         * processor does not, so I am putting these registers here rather
1392         * than in msrs_to_save_all.
1393         */
1394        MSR_IA32_VMX_BASIC,
1395        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1396        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1397        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1398        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1399        MSR_IA32_VMX_MISC,
1400        MSR_IA32_VMX_CR0_FIXED0,
1401        MSR_IA32_VMX_CR4_FIXED0,
1402        MSR_IA32_VMX_VMCS_ENUM,
1403        MSR_IA32_VMX_PROCBASED_CTLS2,
1404        MSR_IA32_VMX_EPT_VPID_CAP,
1405        MSR_IA32_VMX_VMFUNC,
1406
1407        MSR_K7_HWCR,
1408        MSR_KVM_POLL_CONTROL,
1409};
1410
1411static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1412static unsigned num_emulated_msrs;
1413
1414/*
1415 * List of msr numbers which are used to expose MSR-based features that
1416 * can be used by a hypervisor to validate requested CPU features.
1417 */
1418static const u32 msr_based_features_all[] = {
1419        MSR_IA32_VMX_BASIC,
1420        MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1421        MSR_IA32_VMX_PINBASED_CTLS,
1422        MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1423        MSR_IA32_VMX_PROCBASED_CTLS,
1424        MSR_IA32_VMX_TRUE_EXIT_CTLS,
1425        MSR_IA32_VMX_EXIT_CTLS,
1426        MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1427        MSR_IA32_VMX_ENTRY_CTLS,
1428        MSR_IA32_VMX_MISC,
1429        MSR_IA32_VMX_CR0_FIXED0,
1430        MSR_IA32_VMX_CR0_FIXED1,
1431        MSR_IA32_VMX_CR4_FIXED0,
1432        MSR_IA32_VMX_CR4_FIXED1,
1433        MSR_IA32_VMX_VMCS_ENUM,
1434        MSR_IA32_VMX_PROCBASED_CTLS2,
1435        MSR_IA32_VMX_EPT_VPID_CAP,
1436        MSR_IA32_VMX_VMFUNC,
1437
1438        MSR_F10H_DECFG,
1439        MSR_IA32_UCODE_REV,
1440        MSR_IA32_ARCH_CAPABILITIES,
1441        MSR_IA32_PERF_CAPABILITIES,
1442};
1443
1444static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1445static unsigned int num_msr_based_features;
1446
1447static u64 kvm_get_arch_capabilities(void)
1448{
1449        u64 data = 0;
1450
1451        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1452                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1453
1454        /*
1455         * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1456         * the nested hypervisor runs with NX huge pages.  If it is not,
1457         * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1458         * L1 guests, so it need not worry about its own (L2) guests.
1459         */
1460        data |= ARCH_CAP_PSCHANGE_MC_NO;
1461
1462        /*
1463         * If we're doing cache flushes (either "always" or "cond")
1464         * we will do one whenever the guest does a vmlaunch/vmresume.
1465         * If an outer hypervisor is doing the cache flush for us
1466         * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1467         * capability to the guest too, and if EPT is disabled we're not
1468         * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1469         * require a nested hypervisor to do a flush of its own.
1470         */
1471        if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1472                data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1473
1474        if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1475                data |= ARCH_CAP_RDCL_NO;
1476        if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1477                data |= ARCH_CAP_SSB_NO;
1478        if (!boot_cpu_has_bug(X86_BUG_MDS))
1479                data |= ARCH_CAP_MDS_NO;
1480
1481        if (!boot_cpu_has(X86_FEATURE_RTM)) {
1482                /*
1483                 * If RTM=0 because the kernel has disabled TSX, the host might
1484                 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1485                 * and therefore knows that there cannot be TAA) but keep
1486                 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1487                 * and we want to allow migrating those guests to tsx=off hosts.
1488                 */
1489                data &= ~ARCH_CAP_TAA_NO;
1490        } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1491                data |= ARCH_CAP_TAA_NO;
1492        } else {
1493                /*
1494                 * Nothing to do here; we emulate TSX_CTRL if present on the
1495                 * host so the guest can choose between disabling TSX or
1496                 * using VERW to clear CPU buffers.
1497                 */
1498        }
1499
1500        return data;
1501}
1502
1503static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1504{
1505        switch (msr->index) {
1506        case MSR_IA32_ARCH_CAPABILITIES:
1507                msr->data = kvm_get_arch_capabilities();
1508                break;
1509        case MSR_IA32_UCODE_REV:
1510                rdmsrl_safe(msr->index, &msr->data);
1511                break;
1512        default:
1513                return static_call(kvm_x86_get_msr_feature)(msr);
1514        }
1515        return 0;
1516}
1517
1518static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1519{
1520        struct kvm_msr_entry msr;
1521        int r;
1522
1523        msr.index = index;
1524        r = kvm_get_msr_feature(&msr);
1525
1526        if (r == KVM_MSR_RET_INVALID) {
1527                /* Unconditionally clear the output for simplicity */
1528                *data = 0;
1529                if (kvm_msr_ignored_check(index, 0, false))
1530                        r = 0;
1531        }
1532
1533        if (r)
1534                return r;
1535
1536        *data = msr.data;
1537
1538        return 0;
1539}
1540
1541static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1542{
1543        if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1544                return false;
1545
1546        if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1547                return false;
1548
1549        if (efer & (EFER_LME | EFER_LMA) &&
1550            !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1551                return false;
1552
1553        if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1554                return false;
1555
1556        return true;
1557
1558}
1559bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1560{
1561        if (efer & efer_reserved_bits)
1562                return false;
1563
1564        return __kvm_valid_efer(vcpu, efer);
1565}
1566EXPORT_SYMBOL_GPL(kvm_valid_efer);
1567
1568static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1569{
1570        u64 old_efer = vcpu->arch.efer;
1571        u64 efer = msr_info->data;
1572        int r;
1573
1574        if (efer & efer_reserved_bits)
1575                return 1;
1576
1577        if (!msr_info->host_initiated) {
1578                if (!__kvm_valid_efer(vcpu, efer))
1579                        return 1;
1580
1581                if (is_paging(vcpu) &&
1582                    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1583                        return 1;
1584        }
1585
1586        efer &= ~EFER_LMA;
1587        efer |= vcpu->arch.efer & EFER_LMA;
1588
1589        r = static_call(kvm_x86_set_efer)(vcpu, efer);
1590        if (r) {
1591                WARN_ON(r > 0);
1592                return r;
1593        }
1594
1595        /* Update reserved bits */
1596        if ((efer ^ old_efer) & EFER_NX)
1597                kvm_mmu_reset_context(vcpu);
1598
1599        return 0;
1600}
1601
1602void kvm_enable_efer_bits(u64 mask)
1603{
1604       efer_reserved_bits &= ~mask;
1605}
1606EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1607
1608bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1609{
1610        struct kvm_x86_msr_filter *msr_filter;
1611        struct msr_bitmap_range *ranges;
1612        struct kvm *kvm = vcpu->kvm;
1613        bool allowed;
1614        int idx;
1615        u32 i;
1616
1617        /* x2APIC MSRs do not support filtering. */
1618        if (index >= 0x800 && index <= 0x8ff)
1619                return true;
1620
1621        idx = srcu_read_lock(&kvm->srcu);
1622
1623        msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1624        if (!msr_filter) {
1625                allowed = true;
1626                goto out;
1627        }
1628
1629        allowed = msr_filter->default_allow;
1630        ranges = msr_filter->ranges;
1631
1632        for (i = 0; i < msr_filter->count; i++) {
1633                u32 start = ranges[i].base;
1634                u32 end = start + ranges[i].nmsrs;
1635                u32 flags = ranges[i].flags;
1636                unsigned long *bitmap = ranges[i].bitmap;
1637
1638                if ((index >= start) && (index < end) && (flags & type)) {
1639                        allowed = !!test_bit(index - start, bitmap);
1640                        break;
1641                }
1642        }
1643
1644out:
1645        srcu_read_unlock(&kvm->srcu, idx);
1646
1647        return allowed;
1648}
1649EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1650
1651/*
1652 * Write @data into the MSR specified by @index.  Select MSR specific fault
1653 * checks are bypassed if @host_initiated is %true.
1654 * Returns 0 on success, non-0 otherwise.
1655 * Assumes vcpu_load() was already called.
1656 */
1657static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1658                         bool host_initiated)
1659{
1660        struct msr_data msr;
1661
1662        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1663                return KVM_MSR_RET_FILTERED;
1664
1665        switch (index) {
1666        case MSR_FS_BASE:
1667        case MSR_GS_BASE:
1668        case MSR_KERNEL_GS_BASE:
1669        case MSR_CSTAR:
1670        case MSR_LSTAR:
1671                if (is_noncanonical_address(data, vcpu))
1672                        return 1;
1673                break;
1674        case MSR_IA32_SYSENTER_EIP:
1675        case MSR_IA32_SYSENTER_ESP:
1676                /*
1677                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1678                 * non-canonical address is written on Intel but not on
1679                 * AMD (which ignores the top 32-bits, because it does
1680                 * not implement 64-bit SYSENTER).
1681                 *
1682                 * 64-bit code should hence be able to write a non-canonical
1683                 * value on AMD.  Making the address canonical ensures that
1684                 * vmentry does not fail on Intel after writing a non-canonical
1685                 * value, and that something deterministic happens if the guest
1686                 * invokes 64-bit SYSENTER.
1687                 */
1688                data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1689                break;
1690        case MSR_TSC_AUX:
1691                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1692                        return 1;
1693
1694                if (!host_initiated &&
1695                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1696                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1697                        return 1;
1698
1699                /*
1700                 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1701                 * incomplete and conflicting architectural behavior.  Current
1702                 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1703                 * reserved and always read as zeros.  Enforce Intel's reserved
1704                 * bits check if and only if the guest CPU is Intel, and clear
1705                 * the bits in all other cases.  This ensures cross-vendor
1706                 * migration will provide consistent behavior for the guest.
1707                 */
1708                if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1709                        return 1;
1710
1711                data = (u32)data;
1712                break;
1713        }
1714
1715        msr.data = data;
1716        msr.index = index;
1717        msr.host_initiated = host_initiated;
1718
1719        return static_call(kvm_x86_set_msr)(vcpu, &msr);
1720}
1721
1722static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1723                                     u32 index, u64 data, bool host_initiated)
1724{
1725        int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1726
1727        if (ret == KVM_MSR_RET_INVALID)
1728                if (kvm_msr_ignored_check(index, data, true))
1729                        ret = 0;
1730
1731        return ret;
1732}
1733
1734/*
1735 * Read the MSR specified by @index into @data.  Select MSR specific fault
1736 * checks are bypassed if @host_initiated is %true.
1737 * Returns 0 on success, non-0 otherwise.
1738 * Assumes vcpu_load() was already called.
1739 */
1740int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1741                  bool host_initiated)
1742{
1743        struct msr_data msr;
1744        int ret;
1745
1746        if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1747                return KVM_MSR_RET_FILTERED;
1748
1749        switch (index) {
1750        case MSR_TSC_AUX:
1751                if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752                        return 1;
1753
1754                if (!host_initiated &&
1755                    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756                    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757                        return 1;
1758                break;
1759        }
1760
1761        msr.index = index;
1762        msr.host_initiated = host_initiated;
1763
1764        ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1765        if (!ret)
1766                *data = msr.data;
1767        return ret;
1768}
1769
1770static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1771                                     u32 index, u64 *data, bool host_initiated)
1772{
1773        int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1774
1775        if (ret == KVM_MSR_RET_INVALID) {
1776                /* Unconditionally clear *data for simplicity */
1777                *data = 0;
1778                if (kvm_msr_ignored_check(index, 0, false))
1779                        ret = 0;
1780        }
1781
1782        return ret;
1783}
1784
1785int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1786{
1787        return kvm_get_msr_ignored_check(vcpu, index, data, false);
1788}
1789EXPORT_SYMBOL_GPL(kvm_get_msr);
1790
1791int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1792{
1793        return kvm_set_msr_ignored_check(vcpu, index, data, false);
1794}
1795EXPORT_SYMBOL_GPL(kvm_set_msr);
1796
1797static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1798{
1799        int err = vcpu->run->msr.error;
1800        if (!err) {
1801                kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1802                kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1803        }
1804
1805        return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1806}
1807
1808static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1809{
1810        return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1811}
1812
1813static u64 kvm_msr_reason(int r)
1814{
1815        switch (r) {
1816        case KVM_MSR_RET_INVALID:
1817                return KVM_MSR_EXIT_REASON_UNKNOWN;
1818        case KVM_MSR_RET_FILTERED:
1819                return KVM_MSR_EXIT_REASON_FILTER;
1820        default:
1821                return KVM_MSR_EXIT_REASON_INVAL;
1822        }
1823}
1824
1825static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1826                              u32 exit_reason, u64 data,
1827                              int (*completion)(struct kvm_vcpu *vcpu),
1828                              int r)
1829{
1830        u64 msr_reason = kvm_msr_reason(r);
1831
1832        /* Check if the user wanted to know about this MSR fault */
1833        if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1834                return 0;
1835
1836        vcpu->run->exit_reason = exit_reason;
1837        vcpu->run->msr.error = 0;
1838        memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1839        vcpu->run->msr.reason = msr_reason;
1840        vcpu->run->msr.index = index;
1841        vcpu->run->msr.data = data;
1842        vcpu->arch.complete_userspace_io = completion;
1843
1844        return 1;
1845}
1846
1847static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1848{
1849        return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1850                                   complete_emulated_rdmsr, r);
1851}
1852
1853static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1854{
1855        return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1856                                   complete_emulated_wrmsr, r);
1857}
1858
1859int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1860{
1861        u32 ecx = kvm_rcx_read(vcpu);
1862        u64 data;
1863        int r;
1864
1865        r = kvm_get_msr(vcpu, ecx, &data);
1866
1867        /* MSR read failed? See if we should ask user space */
1868        if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1869                /* Bounce to user space */
1870                return 0;
1871        }
1872
1873        if (!r) {
1874                trace_kvm_msr_read(ecx, data);
1875
1876                kvm_rax_write(vcpu, data & -1u);
1877                kvm_rdx_write(vcpu, (data >> 32) & -1u);
1878        } else {
1879                trace_kvm_msr_read_ex(ecx);
1880        }
1881
1882        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1883}
1884EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1885
1886int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1887{
1888        u32 ecx = kvm_rcx_read(vcpu);
1889        u64 data = kvm_read_edx_eax(vcpu);
1890        int r;
1891
1892        r = kvm_set_msr(vcpu, ecx, data);
1893
1894        /* MSR write failed? See if we should ask user space */
1895        if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1896                /* Bounce to user space */
1897                return 0;
1898
1899        /* Signal all other negative errors to userspace */
1900        if (r < 0)
1901                return r;
1902
1903        if (!r)
1904                trace_kvm_msr_write(ecx, data);
1905        else
1906                trace_kvm_msr_write_ex(ecx, data);
1907
1908        return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1909}
1910EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1911
1912int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1913{
1914        return kvm_skip_emulated_instruction(vcpu);
1915}
1916EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1917
1918int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1919{
1920        /* Treat an INVD instruction as a NOP and just skip it. */
1921        return kvm_emulate_as_nop(vcpu);
1922}
1923EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1924
1925int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1926{
1927        pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1928        return kvm_emulate_as_nop(vcpu);
1929}
1930EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1931
1932int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1933{
1934        kvm_queue_exception(vcpu, UD_VECTOR);
1935        return 1;
1936}
1937EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1938
1939int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1940{
1941        pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1942        return kvm_emulate_as_nop(vcpu);
1943}
1944EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1945
1946static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1947{
1948        xfer_to_guest_mode_prepare();
1949        return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1950                xfer_to_guest_mode_work_pending();
1951}
1952
1953/*
1954 * The fast path for frequent and performance sensitive wrmsr emulation,
1955 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1956 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1957 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1958 * other cases which must be called after interrupts are enabled on the host.
1959 */
1960static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1961{
1962        if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1963                return 1;
1964
1965        if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1966                ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1967                ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1968                ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1969
1970                data &= ~(1 << 12);
1971                kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1972                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1973                kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1974                trace_kvm_apic_write(APIC_ICR, (u32)data);
1975                return 0;
1976        }
1977
1978        return 1;
1979}
1980
1981static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1982{
1983        if (!kvm_can_use_hv_timer(vcpu))
1984                return 1;
1985
1986        kvm_set_lapic_tscdeadline_msr(vcpu, data);
1987        return 0;
1988}
1989
1990fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1991{
1992        u32 msr = kvm_rcx_read(vcpu);
1993        u64 data;
1994        fastpath_t ret = EXIT_FASTPATH_NONE;
1995
1996        switch (msr) {
1997        case APIC_BASE_MSR + (APIC_ICR >> 4):
1998                data = kvm_read_edx_eax(vcpu);
1999                if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2000                        kvm_skip_emulated_instruction(vcpu);
2001                        ret = EXIT_FASTPATH_EXIT_HANDLED;
2002                }
2003                break;
2004        case MSR_IA32_TSC_DEADLINE:
2005                data = kvm_read_edx_eax(vcpu);
2006                if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2007                        kvm_skip_emulated_instruction(vcpu);
2008                        ret = EXIT_FASTPATH_REENTER_GUEST;
2009                }
2010                break;
2011        default:
2012                break;
2013        }
2014
2015        if (ret != EXIT_FASTPATH_NONE)
2016                trace_kvm_msr_write(msr, data);
2017
2018        return ret;
2019}
2020EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2021
2022/*
2023 * Adapt set_msr() to msr_io()'s calling convention
2024 */
2025static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2026{
2027        return kvm_get_msr_ignored_check(vcpu, index, data, true);
2028}
2029
2030static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2031{
2032        return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2033}
2034
2035#ifdef CONFIG_X86_64
2036struct pvclock_clock {
2037        int vclock_mode;
2038        u64 cycle_last;
2039        u64 mask;
2040        u32 mult;
2041        u32 shift;
2042        u64 base_cycles;
2043        u64 offset;
2044};
2045
2046struct pvclock_gtod_data {
2047        seqcount_t      seq;
2048
2049        struct pvclock_clock clock; /* extract of a clocksource struct */
2050        struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2051
2052        ktime_t         offs_boot;
2053        u64             wall_time_sec;
2054};
2055
2056static struct pvclock_gtod_data pvclock_gtod_data;
2057
2058static void update_pvclock_gtod(struct timekeeper *tk)
2059{
2060        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2061
2062        write_seqcount_begin(&vdata->seq);
2063
2064        /* copy pvclock gtod data */
2065        vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2066        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2067        vdata->clock.mask               = tk->tkr_mono.mask;
2068        vdata->clock.mult               = tk->tkr_mono.mult;
2069        vdata->clock.shift              = tk->tkr_mono.shift;
2070        vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2071        vdata->clock.offset             = tk->tkr_mono.base;
2072
2073        vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2074        vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2075        vdata->raw_clock.mask           = tk->tkr_raw.mask;
2076        vdata->raw_clock.mult           = tk->tkr_raw.mult;
2077        vdata->raw_clock.shift          = tk->tkr_raw.shift;
2078        vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2079        vdata->raw_clock.offset         = tk->tkr_raw.base;
2080
2081        vdata->wall_time_sec            = tk->xtime_sec;
2082
2083        vdata->offs_boot                = tk->offs_boot;
2084
2085        write_seqcount_end(&vdata->seq);
2086}
2087
2088static s64 get_kvmclock_base_ns(void)
2089{
2090        /* Count up from boot time, but with the frequency of the raw clock.  */
2091        return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2092}
2093#else
2094static s64 get_kvmclock_base_ns(void)
2095{
2096        /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2097        return ktime_get_boottime_ns();
2098}
2099#endif
2100
2101void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2102{
2103        int version;
2104        int r;
2105        struct pvclock_wall_clock wc;
2106        u32 wc_sec_hi;
2107        u64 wall_nsec;
2108
2109        if (!wall_clock)
2110                return;
2111
2112        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2113        if (r)
2114                return;
2115
2116        if (version & 1)
2117                ++version;  /* first time write, random junk */
2118
2119        ++version;
2120
2121        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2122                return;
2123
2124        /*
2125         * The guest calculates current wall clock time by adding
2126         * system time (updated by kvm_guest_time_update below) to the
2127         * wall clock specified here.  We do the reverse here.
2128         */
2129        wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2130
2131        wc.nsec = do_div(wall_nsec, 1000000000);
2132        wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2133        wc.version = version;
2134
2135        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2136
2137        if (sec_hi_ofs) {
2138                wc_sec_hi = wall_nsec >> 32;
2139                kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2140                                &wc_sec_hi, sizeof(wc_sec_hi));
2141        }
2142
2143        version++;
2144        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2145}
2146
2147static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2148                                  bool old_msr, bool host_initiated)
2149{
2150        struct kvm_arch *ka = &vcpu->kvm->arch;
2151
2152        if (vcpu->vcpu_id == 0 && !host_initiated) {
2153                if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2154                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2155
2156                ka->boot_vcpu_runs_old_kvmclock = old_msr;
2157        }
2158
2159        vcpu->arch.time = system_time;
2160        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2161
2162        /* we verify if the enable bit is set... */
2163        vcpu->arch.pv_time_enabled = false;
2164        if (!(system_time & 1))
2165                return;
2166
2167        if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2168                                       &vcpu->arch.pv_time, system_time & ~1ULL,
2169                                       sizeof(struct pvclock_vcpu_time_info)))
2170                vcpu->arch.pv_time_enabled = true;
2171
2172        return;
2173}
2174
2175static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2176{
2177        do_shl32_div32(dividend, divisor);
2178        return dividend;
2179}
2180
2181static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2182                               s8 *pshift, u32 *pmultiplier)
2183{
2184        uint64_t scaled64;
2185        int32_t  shift = 0;
2186        uint64_t tps64;
2187        uint32_t tps32;
2188
2189        tps64 = base_hz;
2190        scaled64 = scaled_hz;
2191        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2192                tps64 >>= 1;
2193                shift--;
2194        }
2195
2196        tps32 = (uint32_t)tps64;
2197        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2198                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2199                        scaled64 >>= 1;
2200                else
2201                        tps32 <<= 1;
2202                shift++;
2203        }
2204
2205        *pshift = shift;
2206        *pmultiplier = div_frac(scaled64, tps32);
2207}
2208
2209#ifdef CONFIG_X86_64
2210static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2211#endif
2212
2213static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2214static unsigned long max_tsc_khz;
2215
2216static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2217{
2218        u64 v = (u64)khz * (1000000 + ppm);
2219        do_div(v, 1000000);
2220        return v;
2221}
2222
2223static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2224
2225static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2226{
2227        u64 ratio;
2228
2229        /* Guest TSC same frequency as host TSC? */
2230        if (!scale) {
2231                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2232                return 0;
2233        }
2234
2235        /* TSC scaling supported? */
2236        if (!kvm_has_tsc_control) {
2237                if (user_tsc_khz > tsc_khz) {
2238                        vcpu->arch.tsc_catchup = 1;
2239                        vcpu->arch.tsc_always_catchup = 1;
2240                        return 0;
2241                } else {
2242                        pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2243                        return -1;
2244                }
2245        }
2246
2247        /* TSC scaling required  - calculate ratio */
2248        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2249                                user_tsc_khz, tsc_khz);
2250
2251        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2252                pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2253                                    user_tsc_khz);
2254                return -1;
2255        }
2256
2257        kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2258        return 0;
2259}
2260
2261static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2262{
2263        u32 thresh_lo, thresh_hi;
2264        int use_scaling = 0;
2265
2266        /* tsc_khz can be zero if TSC calibration fails */
2267        if (user_tsc_khz == 0) {
2268                /* set tsc_scaling_ratio to a safe value */
2269                kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2270                return -1;
2271        }
2272
2273        /* Compute a scale to convert nanoseconds in TSC cycles */
2274        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2275                           &vcpu->arch.virtual_tsc_shift,
2276                           &vcpu->arch.virtual_tsc_mult);
2277        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2278
2279        /*
2280         * Compute the variation in TSC rate which is acceptable
2281         * within the range of tolerance and decide if the
2282         * rate being applied is within that bounds of the hardware
2283         * rate.  If so, no scaling or compensation need be done.
2284         */
2285        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2286        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2287        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2288                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2289                use_scaling = 1;
2290        }
2291        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2292}
2293
2294static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2295{
2296        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2297                                      vcpu->arch.virtual_tsc_mult,
2298                                      vcpu->arch.virtual_tsc_shift);
2299        tsc += vcpu->arch.this_tsc_write;
2300        return tsc;
2301}
2302
2303static inline int gtod_is_based_on_tsc(int mode)
2304{
2305        return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2306}
2307
2308static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2309{
2310#ifdef CONFIG_X86_64
2311        bool vcpus_matched;
2312        struct kvm_arch *ka = &vcpu->kvm->arch;
2313        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2314
2315        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2316                         atomic_read(&vcpu->kvm->online_vcpus));
2317
2318        /*
2319         * Once the masterclock is enabled, always perform request in
2320         * order to update it.
2321         *
2322         * In order to enable masterclock, the host clocksource must be TSC
2323         * and the vcpus need to have matched TSCs.  When that happens,
2324         * perform request to enable masterclock.
2325         */
2326        if (ka->use_master_clock ||
2327            (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2328                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2329
2330        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2331                            atomic_read(&vcpu->kvm->online_vcpus),
2332                            ka->use_master_clock, gtod->clock.vclock_mode);
2333#endif
2334}
2335
2336/*
2337 * Multiply tsc by a fixed point number represented by ratio.
2338 *
2339 * The most significant 64-N bits (mult) of ratio represent the
2340 * integral part of the fixed point number; the remaining N bits
2341 * (frac) represent the fractional part, ie. ratio represents a fixed
2342 * point number (mult + frac * 2^(-N)).
2343 *
2344 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2345 */
2346static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2347{
2348        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2349}
2350
2351u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2352{
2353        u64 _tsc = tsc;
2354
2355        if (ratio != kvm_default_tsc_scaling_ratio)
2356                _tsc = __scale_tsc(ratio, tsc);
2357
2358        return _tsc;
2359}
2360EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2361
2362static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2363{
2364        u64 tsc;
2365
2366        tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2367
2368        return target_tsc - tsc;
2369}
2370
2371u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2372{
2373        return vcpu->arch.l1_tsc_offset +
2374                kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2375}
2376EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2377
2378u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2379{
2380        u64 nested_offset;
2381
2382        if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2383                nested_offset = l1_offset;
2384        else
2385                nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2386                                                kvm_tsc_scaling_ratio_frac_bits);
2387
2388        nested_offset += l2_offset;
2389        return nested_offset;
2390}
2391EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2392
2393u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2394{
2395        if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2396                return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2397                                       kvm_tsc_scaling_ratio_frac_bits);
2398
2399        return l1_multiplier;
2400}
2401EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2402
2403static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2404{
2405        trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2406                                   vcpu->arch.l1_tsc_offset,
2407                                   l1_offset);
2408
2409        vcpu->arch.l1_tsc_offset = l1_offset;
2410
2411        /*
2412         * If we are here because L1 chose not to trap WRMSR to TSC then
2413         * according to the spec this should set L1's TSC (as opposed to
2414         * setting L1's offset for L2).
2415         */
2416        if (is_guest_mode(vcpu))
2417                vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2418                        l1_offset,
2419                        static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2420                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2421        else
2422                vcpu->arch.tsc_offset = l1_offset;
2423
2424        static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2425}
2426
2427static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2428{
2429        vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2430
2431        /* Userspace is changing the multiplier while L2 is active */
2432        if (is_guest_mode(vcpu))
2433                vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2434                        l1_multiplier,
2435                        static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2436        else
2437                vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2438
2439        if (kvm_has_tsc_control)
2440                static_call(kvm_x86_write_tsc_multiplier)(
2441                        vcpu, vcpu->arch.tsc_scaling_ratio);
2442}
2443
2444static inline bool kvm_check_tsc_unstable(void)
2445{
2446#ifdef CONFIG_X86_64
2447        /*
2448         * TSC is marked unstable when we're running on Hyper-V,
2449         * 'TSC page' clocksource is good.
2450         */
2451        if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2452                return false;
2453#endif
2454        return check_tsc_unstable();
2455}
2456
2457static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2458{
2459        struct kvm *kvm = vcpu->kvm;
2460        u64 offset, ns, elapsed;
2461        unsigned long flags;
2462        bool matched;
2463        bool already_matched;
2464        bool synchronizing = false;
2465
2466        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2467        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2468        ns = get_kvmclock_base_ns();
2469        elapsed = ns - kvm->arch.last_tsc_nsec;
2470
2471        if (vcpu->arch.virtual_tsc_khz) {
2472                if (data == 0) {
2473                        /*
2474                         * detection of vcpu initialization -- need to sync
2475                         * with other vCPUs. This particularly helps to keep
2476                         * kvm_clock stable after CPU hotplug
2477                         */
2478                        synchronizing = true;
2479                } else {
2480                        u64 tsc_exp = kvm->arch.last_tsc_write +
2481                                                nsec_to_cycles(vcpu, elapsed);
2482                        u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2483                        /*
2484                         * Special case: TSC write with a small delta (1 second)
2485                         * of virtual cycle time against real time is
2486                         * interpreted as an attempt to synchronize the CPU.
2487                         */
2488                        synchronizing = data < tsc_exp + tsc_hz &&
2489                                        data + tsc_hz > tsc_exp;
2490                }
2491        }
2492
2493        /*
2494         * For a reliable TSC, we can match TSC offsets, and for an unstable
2495         * TSC, we add elapsed time in this computation.  We could let the
2496         * compensation code attempt to catch up if we fall behind, but
2497         * it's better to try to match offsets from the beginning.
2498         */
2499        if (synchronizing &&
2500            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2501                if (!kvm_check_tsc_unstable()) {
2502                        offset = kvm->arch.cur_tsc_offset;
2503                } else {
2504                        u64 delta = nsec_to_cycles(vcpu, elapsed);
2505                        data += delta;
2506                        offset = kvm_compute_l1_tsc_offset(vcpu, data);
2507                }
2508                matched = true;
2509                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2510        } else {
2511                /*
2512                 * We split periods of matched TSC writes into generations.
2513                 * For each generation, we track the original measured
2514                 * nanosecond time, offset, and write, so if TSCs are in
2515                 * sync, we can match exact offset, and if not, we can match
2516                 * exact software computation in compute_guest_tsc()
2517                 *
2518                 * These values are tracked in kvm->arch.cur_xxx variables.
2519                 */
2520                kvm->arch.cur_tsc_generation++;
2521                kvm->arch.cur_tsc_nsec = ns;
2522                kvm->arch.cur_tsc_write = data;
2523                kvm->arch.cur_tsc_offset = offset;
2524                matched = false;
2525        }
2526
2527        /*
2528         * We also track th most recent recorded KHZ, write and time to
2529         * allow the matching interval to be extended at each write.
2530         */
2531        kvm->arch.last_tsc_nsec = ns;
2532        kvm->arch.last_tsc_write = data;
2533        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2534
2535        vcpu->arch.last_guest_tsc = data;
2536
2537        /* Keep track of which generation this VCPU has synchronized to */
2538        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2539        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2540        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2541
2542        kvm_vcpu_write_tsc_offset(vcpu, offset);
2543        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2544
2545        raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2546        if (!matched) {
2547                kvm->arch.nr_vcpus_matched_tsc = 0;
2548        } else if (!already_matched) {
2549                kvm->arch.nr_vcpus_matched_tsc++;
2550        }
2551
2552        kvm_track_tsc_matching(vcpu);
2553        raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2554}
2555
2556static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2557                                           s64 adjustment)
2558{
2559        u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2560        kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2561}
2562
2563static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2564{
2565        if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2566                WARN_ON(adjustment < 0);
2567        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2568                                   vcpu->arch.l1_tsc_scaling_ratio);
2569        adjust_tsc_offset_guest(vcpu, adjustment);
2570}
2571
2572#ifdef CONFIG_X86_64
2573
2574static u64 read_tsc(void)
2575{
2576        u64 ret = (u64)rdtsc_ordered();
2577        u64 last = pvclock_gtod_data.clock.cycle_last;
2578
2579        if (likely(ret >= last))
2580                return ret;
2581
2582        /*
2583         * GCC likes to generate cmov here, but this branch is extremely
2584         * predictable (it's just a function of time and the likely is
2585         * very likely) and there's a data dependence, so force GCC
2586         * to generate a branch instead.  I don't barrier() because
2587         * we don't actually need a barrier, and if this function
2588         * ever gets inlined it will generate worse code.
2589         */
2590        asm volatile ("");
2591        return last;
2592}
2593
2594static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2595                          int *mode)
2596{
2597        long v;
2598        u64 tsc_pg_val;
2599
2600        switch (clock->vclock_mode) {
2601        case VDSO_CLOCKMODE_HVCLOCK:
2602                tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2603                                                  tsc_timestamp);
2604                if (tsc_pg_val != U64_MAX) {
2605                        /* TSC page valid */
2606                        *mode = VDSO_CLOCKMODE_HVCLOCK;
2607                        v = (tsc_pg_val - clock->cycle_last) &
2608                                clock->mask;
2609                } else {
2610                        /* TSC page invalid */
2611                        *mode = VDSO_CLOCKMODE_NONE;
2612                }
2613                break;
2614        case VDSO_CLOCKMODE_TSC:
2615                *mode = VDSO_CLOCKMODE_TSC;
2616                *tsc_timestamp = read_tsc();
2617                v = (*tsc_timestamp - clock->cycle_last) &
2618                        clock->mask;
2619                break;
2620        default:
2621                *mode = VDSO_CLOCKMODE_NONE;
2622        }
2623
2624        if (*mode == VDSO_CLOCKMODE_NONE)
2625                *tsc_timestamp = v = 0;
2626
2627        return v * clock->mult;
2628}
2629
2630static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2631{
2632        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2633        unsigned long seq;
2634        int mode;
2635        u64 ns;
2636
2637        do {
2638                seq = read_seqcount_begin(&gtod->seq);
2639                ns = gtod->raw_clock.base_cycles;
2640                ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2641                ns >>= gtod->raw_clock.shift;
2642                ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2643        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2644        *t = ns;
2645
2646        return mode;
2647}
2648
2649static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2650{
2651        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2652        unsigned long seq;
2653        int mode;
2654        u64 ns;
2655
2656        do {
2657                seq = read_seqcount_begin(&gtod->seq);
2658                ts->tv_sec = gtod->wall_time_sec;
2659                ns = gtod->clock.base_cycles;
2660                ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2661                ns >>= gtod->clock.shift;
2662        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2663
2664        ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2665        ts->tv_nsec = ns;
2666
2667        return mode;
2668}
2669
2670/* returns true if host is using TSC based clocksource */
2671static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2672{
2673        /* checked again under seqlock below */
2674        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2675                return false;
2676
2677        return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2678                                                      tsc_timestamp));
2679}
2680
2681/* returns true if host is using TSC based clocksource */
2682static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2683                                           u64 *tsc_timestamp)
2684{
2685        /* checked again under seqlock below */
2686        if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2687                return false;
2688
2689        return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2690}
2691#endif
2692
2693/*
2694 *
2695 * Assuming a stable TSC across physical CPUS, and a stable TSC
2696 * across virtual CPUs, the following condition is possible.
2697 * Each numbered line represents an event visible to both
2698 * CPUs at the next numbered event.
2699 *
2700 * "timespecX" represents host monotonic time. "tscX" represents
2701 * RDTSC value.
2702 *
2703 *              VCPU0 on CPU0           |       VCPU1 on CPU1
2704 *
2705 * 1.  read timespec0,tsc0
2706 * 2.                                   | timespec1 = timespec0 + N
2707 *                                      | tsc1 = tsc0 + M
2708 * 3. transition to guest               | transition to guest
2709 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2710 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2711 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2712 *
2713 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2714 *
2715 *      - ret0 < ret1
2716 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2717 *              ...
2718 *      - 0 < N - M => M < N
2719 *
2720 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2721 * always the case (the difference between two distinct xtime instances
2722 * might be smaller then the difference between corresponding TSC reads,
2723 * when updating guest vcpus pvclock areas).
2724 *
2725 * To avoid that problem, do not allow visibility of distinct
2726 * system_timestamp/tsc_timestamp values simultaneously: use a master
2727 * copy of host monotonic time values. Update that master copy
2728 * in lockstep.
2729 *
2730 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2731 *
2732 */
2733
2734static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2735{
2736#ifdef CONFIG_X86_64
2737        struct kvm_arch *ka = &kvm->arch;
2738        int vclock_mode;
2739        bool host_tsc_clocksource, vcpus_matched;
2740
2741        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2742                        atomic_read(&kvm->online_vcpus));
2743
2744        /*
2745         * If the host uses TSC clock, then passthrough TSC as stable
2746         * to the guest.
2747         */
2748        host_tsc_clocksource = kvm_get_time_and_clockread(
2749                                        &ka->master_kernel_ns,
2750                                        &ka->master_cycle_now);
2751
2752        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2753                                && !ka->backwards_tsc_observed
2754                                && !ka->boot_vcpu_runs_old_kvmclock;
2755
2756        if (ka->use_master_clock)
2757                atomic_set(&kvm_guest_has_master_clock, 1);
2758
2759        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2760        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2761                                        vcpus_matched);
2762#endif
2763}
2764
2765void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2766{
2767        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2768}
2769
2770static void kvm_gen_update_masterclock(struct kvm *kvm)
2771{
2772#ifdef CONFIG_X86_64
2773        int i;
2774        struct kvm_vcpu *vcpu;
2775        struct kvm_arch *ka = &kvm->arch;
2776        unsigned long flags;
2777
2778        kvm_hv_invalidate_tsc_page(kvm);
2779
2780        kvm_make_mclock_inprogress_request(kvm);
2781
2782        /* no guest entries from this point */
2783        raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2784        pvclock_update_vm_gtod_copy(kvm);
2785        raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2786
2787        kvm_for_each_vcpu(i, vcpu, kvm)
2788                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2789
2790        /* guest entries allowed */
2791        kvm_for_each_vcpu(i, vcpu, kvm)
2792                kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2793#endif
2794}
2795
2796u64 get_kvmclock_ns(struct kvm *kvm)
2797{
2798        struct kvm_arch *ka = &kvm->arch;
2799        struct pvclock_vcpu_time_info hv_clock;
2800        unsigned long flags;
2801        u64 ret;
2802
2803        raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2804        if (!ka->use_master_clock) {
2805                raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2806                return get_kvmclock_base_ns() + ka->kvmclock_offset;
2807        }
2808
2809        hv_clock.tsc_timestamp = ka->master_cycle_now;
2810        hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2811        raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2812
2813        /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2814        get_cpu();
2815
2816        if (__this_cpu_read(cpu_tsc_khz)) {
2817                kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2818                                   &hv_clock.tsc_shift,
2819                                   &hv_clock.tsc_to_system_mul);
2820                ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2821        } else
2822                ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2823
2824        put_cpu();
2825
2826        return ret;
2827}
2828
2829static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2830                                   struct gfn_to_hva_cache *cache,
2831                                   unsigned int offset)
2832{
2833        struct kvm_vcpu_arch *vcpu = &v->arch;
2834        struct pvclock_vcpu_time_info guest_hv_clock;
2835
2836        if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2837                &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2838                return;
2839
2840        /* This VCPU is paused, but it's legal for a guest to read another
2841         * VCPU's kvmclock, so we really have to follow the specification where
2842         * it says that version is odd if data is being modified, and even after
2843         * it is consistent.
2844         *
2845         * Version field updates must be kept separate.  This is because
2846         * kvm_write_guest_cached might use a "rep movs" instruction, and
2847         * writes within a string instruction are weakly ordered.  So there
2848         * are three writes overall.
2849         *
2850         * As a small optimization, only write the version field in the first
2851         * and third write.  The vcpu->pv_time cache is still valid, because the
2852         * version field is the first in the struct.
2853         */
2854        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2855
2856        if (guest_hv_clock.version & 1)
2857                ++guest_hv_clock.version;  /* first time write, random junk */
2858
2859        vcpu->hv_clock.version = guest_hv_clock.version + 1;
2860        kvm_write_guest_offset_cached(v->kvm, cache,
2861                                      &vcpu->hv_clock, offset,
2862                                      sizeof(vcpu->hv_clock.version));
2863
2864        smp_wmb();
2865
2866        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2867        vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2868
2869        if (vcpu->pvclock_set_guest_stopped_request) {
2870                vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2871                vcpu->pvclock_set_guest_stopped_request = false;
2872        }
2873
2874        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2875
2876        kvm_write_guest_offset_cached(v->kvm, cache,
2877                                      &vcpu->hv_clock, offset,
2878                                      sizeof(vcpu->hv_clock));
2879
2880        smp_wmb();
2881
2882        vcpu->hv_clock.version++;
2883        kvm_write_guest_offset_cached(v->kvm, cache,
2884                                     &vcpu->hv_clock, offset,
2885                                     sizeof(vcpu->hv_clock.version));
2886}
2887
2888static int kvm_guest_time_update(struct kvm_vcpu *v)
2889{
2890        unsigned long flags, tgt_tsc_khz;
2891        struct kvm_vcpu_arch *vcpu = &v->arch;
2892        struct kvm_arch *ka = &v->kvm->arch;
2893        s64 kernel_ns;
2894        u64 tsc_timestamp, host_tsc;
2895        u8 pvclock_flags;
2896        bool use_master_clock;
2897
2898        kernel_ns = 0;
2899        host_tsc = 0;
2900
2901        /*
2902         * If the host uses TSC clock, then passthrough TSC as stable
2903         * to the guest.
2904         */
2905        raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2906        use_master_clock = ka->use_master_clock;
2907        if (use_master_clock) {
2908                host_tsc = ka->master_cycle_now;
2909                kernel_ns = ka->master_kernel_ns;
2910        }
2911        raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2912
2913        /* Keep irq disabled to prevent changes to the clock */
2914        local_irq_save(flags);
2915        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2916        if (unlikely(tgt_tsc_khz == 0)) {
2917                local_irq_restore(flags);
2918                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2919                return 1;
2920        }
2921        if (!use_master_clock) {
2922                host_tsc = rdtsc();
2923                kernel_ns = get_kvmclock_base_ns();
2924        }
2925
2926        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2927
2928        /*
2929         * We may have to catch up the TSC to match elapsed wall clock
2930         * time for two reasons, even if kvmclock is used.
2931         *   1) CPU could have been running below the maximum TSC rate
2932         *   2) Broken TSC compensation resets the base at each VCPU
2933         *      entry to avoid unknown leaps of TSC even when running
2934         *      again on the same CPU.  This may cause apparent elapsed
2935         *      time to disappear, and the guest to stand still or run
2936         *      very slowly.
2937         */
2938        if (vcpu->tsc_catchup) {
2939                u64 tsc = compute_guest_tsc(v, kernel_ns);
2940                if (tsc > tsc_timestamp) {
2941                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2942                        tsc_timestamp = tsc;
2943                }
2944        }
2945
2946        local_irq_restore(flags);
2947
2948        /* With all the info we got, fill in the values */
2949
2950        if (kvm_has_tsc_control)
2951                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
2952                                            v->arch.l1_tsc_scaling_ratio);
2953
2954        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2955                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2956                                   &vcpu->hv_clock.tsc_shift,
2957                                   &vcpu->hv_clock.tsc_to_system_mul);
2958                vcpu->hw_tsc_khz = tgt_tsc_khz;
2959        }
2960
2961        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2962        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2963        vcpu->last_guest_tsc = tsc_timestamp;
2964
2965        /* If the host uses TSC clocksource, then it is stable */
2966        pvclock_flags = 0;
2967        if (use_master_clock)
2968                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2969
2970        vcpu->hv_clock.flags = pvclock_flags;
2971
2972        if (vcpu->pv_time_enabled)
2973                kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
2974        if (vcpu->xen.vcpu_info_set)
2975                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
2976                                       offsetof(struct compat_vcpu_info, time));
2977        if (vcpu->xen.vcpu_time_info_set)
2978                kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
2979        if (!v->vcpu_idx)
2980                kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2981        return 0;
2982}
2983
2984/*
2985 * kvmclock updates which are isolated to a given vcpu, such as
2986 * vcpu->cpu migration, should not allow system_timestamp from
2987 * the rest of the vcpus to remain static. Otherwise ntp frequency
2988 * correction applies to one vcpu's system_timestamp but not
2989 * the others.
2990 *
2991 * So in those cases, request a kvmclock update for all vcpus.
2992 * We need to rate-limit these requests though, as they can
2993 * considerably slow guests that have a large number of vcpus.
2994 * The time for a remote vcpu to update its kvmclock is bound
2995 * by the delay we use to rate-limit the updates.
2996 */
2997
2998#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2999
3000static void kvmclock_update_fn(struct work_struct *work)
3001{
3002        int i;
3003        struct delayed_work *dwork = to_delayed_work(work);
3004        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3005                                           kvmclock_update_work);
3006        struct kvm *kvm = container_of(ka, struct kvm, arch);
3007        struct kvm_vcpu *vcpu;
3008
3009        kvm_for_each_vcpu(i, vcpu, kvm) {
3010                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3011                kvm_vcpu_kick(vcpu);
3012        }
3013}
3014
3015static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3016{
3017        struct kvm *kvm = v->kvm;
3018
3019        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3020        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3021                                        KVMCLOCK_UPDATE_DELAY);
3022}
3023
3024#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3025
3026static void kvmclock_sync_fn(struct work_struct *work)
3027{
3028        struct delayed_work *dwork = to_delayed_work(work);
3029        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3030                                           kvmclock_sync_work);
3031        struct kvm *kvm = container_of(ka, struct kvm, arch);
3032
3033        if (!kvmclock_periodic_sync)
3034                return;
3035
3036        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3037        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3038                                        KVMCLOCK_SYNC_PERIOD);
3039}
3040
3041/*
3042 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3043 */
3044static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3045{
3046        /* McStatusWrEn enabled? */
3047        if (guest_cpuid_is_amd_or_hygon(vcpu))
3048                return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3049
3050        return false;
3051}
3052
3053static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3054{
3055        u64 mcg_cap = vcpu->arch.mcg_cap;
3056        unsigned bank_num = mcg_cap & 0xff;
3057        u32 msr = msr_info->index;
3058        u64 data = msr_info->data;
3059
3060        switch (msr) {
3061        case MSR_IA32_MCG_STATUS:
3062                vcpu->arch.mcg_status = data;
3063                break;
3064        case MSR_IA32_MCG_CTL:
3065                if (!(mcg_cap & MCG_CTL_P) &&
3066                    (data || !msr_info->host_initiated))
3067                        return 1;
3068                if (data != 0 && data != ~(u64)0)
3069                        return 1;
3070                vcpu->arch.mcg_ctl = data;
3071                break;
3072        default:
3073                if (msr >= MSR_IA32_MC0_CTL &&
3074                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3075                        u32 offset = array_index_nospec(
3076                                msr - MSR_IA32_MC0_CTL,
3077                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3078
3079                        /* only 0 or all 1s can be written to IA32_MCi_CTL
3080                         * some Linux kernels though clear bit 10 in bank 4 to
3081                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3082                         * this to avoid an uncatched #GP in the guest
3083                         */
3084                        if ((offset & 0x3) == 0 &&
3085                            data != 0 && (data | (1 << 10)) != ~(u64)0)
3086                                return -1;
3087
3088                        /* MCi_STATUS */
3089                        if (!msr_info->host_initiated &&
3090                            (offset & 0x3) == 1 && data != 0) {
3091                                if (!can_set_mci_status(vcpu))
3092                                        return -1;
3093                        }
3094
3095                        vcpu->arch.mce_banks[offset] = data;
3096                        break;
3097                }
3098                return 1;
3099        }
3100        return 0;
3101}
3102
3103static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3104{
3105        u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3106
3107        return (vcpu->arch.apf.msr_en_val & mask) == mask;
3108}
3109
3110static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3111{
3112        gpa_t gpa = data & ~0x3f;
3113
3114        /* Bits 4:5 are reserved, Should be zero */
3115        if (data & 0x30)
3116                return 1;
3117
3118        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3119            (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3120                return 1;
3121
3122        if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3123            (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3124                return 1;
3125
3126        if (!lapic_in_kernel(vcpu))
3127                return data ? 1 : 0;
3128
3129        vcpu->arch.apf.msr_en_val = data;
3130
3131        if (!kvm_pv_async_pf_enabled(vcpu)) {
3132                kvm_clear_async_pf_completion_queue(vcpu);
3133                kvm_async_pf_hash_reset(vcpu);
3134                return 0;
3135        }
3136
3137        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3138                                        sizeof(u64)))
3139                return 1;
3140
3141        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3142        vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3143
3144        kvm_async_pf_wakeup_all(vcpu);
3145
3146        return 0;
3147}
3148
3149static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3150{
3151        /* Bits 8-63 are reserved */
3152        if (data >> 8)
3153                return 1;
3154
3155        if (!lapic_in_kernel(vcpu))
3156                return 1;
3157
3158        vcpu->arch.apf.msr_int_val = data;
3159
3160        vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3161
3162        return 0;
3163}
3164
3165static void kvmclock_reset(struct kvm_vcpu *vcpu)
3166{
3167        vcpu->arch.pv_time_enabled = false;
3168        vcpu->arch.time = 0;
3169}
3170
3171static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3172{
3173        ++vcpu->stat.tlb_flush;
3174        static_call(kvm_x86_tlb_flush_all)(vcpu);
3175}
3176
3177static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3178{
3179        ++vcpu->stat.tlb_flush;
3180
3181        if (!tdp_enabled) {
3182               /*
3183                 * A TLB flush on behalf of the guest is equivalent to
3184                 * INVPCID(all), toggling CR4.PGE, etc., which requires
3185                 * a forced sync of the shadow page tables.  Unload the
3186                 * entire MMU here and the subsequent load will sync the
3187                 * shadow page tables, and also flush the TLB.
3188                 */
3189                kvm_mmu_unload(vcpu);
3190                return;
3191        }
3192
3193        static_call(kvm_x86_tlb_flush_guest)(vcpu);
3194}
3195
3196static void record_steal_time(struct kvm_vcpu *vcpu)
3197{
3198        struct kvm_host_map map;
3199        struct kvm_steal_time *st;
3200
3201        if (kvm_xen_msr_enabled(vcpu->kvm)) {
3202                kvm_xen_runstate_set_running(vcpu);
3203                return;
3204        }
3205
3206        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3207                return;
3208
3209        /* -EAGAIN is returned in atomic context so we can just return. */
3210        if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
3211                        &map, &vcpu->arch.st.cache, false))
3212                return;
3213
3214        st = map.hva +
3215                offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
3216
3217        /*
3218         * Doing a TLB flush here, on the guest's behalf, can avoid
3219         * expensive IPIs.
3220         */
3221        if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3222                u8 st_preempted = xchg(&st->preempted, 0);
3223
3224                trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3225                                       st_preempted & KVM_VCPU_FLUSH_TLB);
3226                if (st_preempted & KVM_VCPU_FLUSH_TLB)
3227                        kvm_vcpu_flush_tlb_guest(vcpu);
3228        } else {
3229                st->preempted = 0;
3230        }
3231
3232        vcpu->arch.st.preempted = 0;
3233
3234        if (st->version & 1)
3235                st->version += 1;  /* first time write, random junk */
3236
3237        st->version += 1;
3238
3239        smp_wmb();
3240
3241        st->steal += current->sched_info.run_delay -
3242                vcpu->arch.st.last_steal;
3243        vcpu->arch.st.last_steal = current->sched_info.run_delay;
3244
3245        smp_wmb();
3246
3247        st->version += 1;
3248
3249        kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
3250}
3251
3252int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3253{
3254        bool pr = false;
3255        u32 msr = msr_info->index;
3256        u64 data = msr_info->data;
3257
3258        if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3259                return kvm_xen_write_hypercall_page(vcpu, data);
3260
3261        switch (msr) {
3262        case MSR_AMD64_NB_CFG:
3263        case MSR_IA32_UCODE_WRITE:
3264        case MSR_VM_HSAVE_PA:
3265        case MSR_AMD64_PATCH_LOADER:
3266        case MSR_AMD64_BU_CFG2:
3267        case MSR_AMD64_DC_CFG:
3268        case MSR_F15H_EX_CFG:
3269                break;
3270
3271        case MSR_IA32_UCODE_REV:
3272                if (msr_info->host_initiated)
3273                        vcpu->arch.microcode_version = data;
3274                break;
3275        case MSR_IA32_ARCH_CAPABILITIES:
3276                if (!msr_info->host_initiated)
3277                        return 1;
3278                vcpu->arch.arch_capabilities = data;
3279                break;
3280        case MSR_IA32_PERF_CAPABILITIES: {
3281                struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3282
3283                if (!msr_info->host_initiated)
3284                        return 1;
3285                if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3286                        return 1;
3287                if (data & ~msr_ent.data)
3288                        return 1;
3289
3290                vcpu->arch.perf_capabilities = data;
3291
3292                return 0;
3293                }
3294        case MSR_EFER:
3295                return set_efer(vcpu, msr_info);
3296        case MSR_K7_HWCR:
3297                data &= ~(u64)0x40;     /* ignore flush filter disable */
3298                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3299                data &= ~(u64)0x8;      /* ignore TLB cache disable */
3300
3301                /* Handle McStatusWrEn */
3302                if (data == BIT_ULL(18)) {
3303                        vcpu->arch.msr_hwcr = data;
3304                } else if (data != 0) {
3305                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3306                                    data);
3307                        return 1;
3308                }
3309                break;
3310        case MSR_FAM10H_MMIO_CONF_BASE:
3311                if (data != 0) {
3312                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3313                                    "0x%llx\n", data);
3314                        return 1;
3315                }
3316                break;
3317        case 0x200 ... 0x2ff:
3318                return kvm_mtrr_set_msr(vcpu, msr, data);
3319        case MSR_IA32_APICBASE:
3320                return kvm_set_apic_base(vcpu, msr_info);
3321        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3322                return kvm_x2apic_msr_write(vcpu, msr, data);
3323        case MSR_IA32_TSC_DEADLINE:
3324                kvm_set_lapic_tscdeadline_msr(vcpu, data);
3325                break;
3326        case MSR_IA32_TSC_ADJUST:
3327                if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3328                        if (!msr_info->host_initiated) {
3329                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3330                                adjust_tsc_offset_guest(vcpu, adj);
3331                                /* Before back to guest, tsc_timestamp must be adjusted
3332                                 * as well, otherwise guest's percpu pvclock time could jump.
3333                                 */
3334                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3335                        }
3336                        vcpu->arch.ia32_tsc_adjust_msr = data;
3337                }
3338                break;
3339        case MSR_IA32_MISC_ENABLE:
3340                if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3341                    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3342                        if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3343                                return 1;
3344                        vcpu->arch.ia32_misc_enable_msr = data;
3345                        kvm_update_cpuid_runtime(vcpu);
3346                } else {
3347                        vcpu->arch.ia32_misc_enable_msr = data;
3348                }
3349                break;
3350        case MSR_IA32_SMBASE:
3351                if (!msr_info->host_initiated)
3352                        return 1;
3353                vcpu->arch.smbase = data;
3354                break;
3355        case MSR_IA32_POWER_CTL:
3356                vcpu->arch.msr_ia32_power_ctl = data;
3357                break;
3358        case MSR_IA32_TSC:
3359                if (msr_info->host_initiated) {
3360                        kvm_synchronize_tsc(vcpu, data);
3361                } else {
3362                        u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3363                        adjust_tsc_offset_guest(vcpu, adj);
3364                        vcpu->arch.ia32_tsc_adjust_msr += adj;
3365                }
3366                break;
3367        case MSR_IA32_XSS:
3368                if (!msr_info->host_initiated &&
3369                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3370                        return 1;
3371                /*
3372                 * KVM supports exposing PT to the guest, but does not support
3373                 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3374                 * XSAVES/XRSTORS to save/restore PT MSRs.
3375                 */
3376                if (data & ~supported_xss)
3377                        return 1;
3378                vcpu->arch.ia32_xss = data;
3379                break;
3380        case MSR_SMI_COUNT:
3381                if (!msr_info->host_initiated)
3382                        return 1;
3383                vcpu->arch.smi_count = data;
3384                break;
3385        case MSR_KVM_WALL_CLOCK_NEW:
3386                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3387                        return 1;
3388
3389                vcpu->kvm->arch.wall_clock = data;
3390                kvm_write_wall_clock(vcpu->kvm, data, 0);
3391                break;
3392        case MSR_KVM_WALL_CLOCK:
3393                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3394                        return 1;
3395
3396                vcpu->kvm->arch.wall_clock = data;
3397                kvm_write_wall_clock(vcpu->kvm, data, 0);
3398                break;
3399        case MSR_KVM_SYSTEM_TIME_NEW:
3400                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3401                        return 1;
3402
3403                kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3404                break;
3405        case MSR_KVM_SYSTEM_TIME:
3406                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3407                        return 1;
3408
3409                kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3410                break;
3411        case MSR_KVM_ASYNC_PF_EN:
3412                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3413                        return 1;
3414
3415                if (kvm_pv_enable_async_pf(vcpu, data))
3416                        return 1;
3417                break;
3418        case MSR_KVM_ASYNC_PF_INT:
3419                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3420                        return 1;
3421
3422                if (kvm_pv_enable_async_pf_int(vcpu, data))
3423                        return 1;
3424                break;
3425        case MSR_KVM_ASYNC_PF_ACK:
3426                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3427                        return 1;
3428                if (data & 0x1) {
3429                        vcpu->arch.apf.pageready_pending = false;
3430                        kvm_check_async_pf_completion(vcpu);
3431                }
3432                break;
3433        case MSR_KVM_STEAL_TIME:
3434                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3435                        return 1;
3436
3437                if (unlikely(!sched_info_on()))
3438                        return 1;
3439
3440                if (data & KVM_STEAL_RESERVED_MASK)
3441                        return 1;
3442
3443                vcpu->arch.st.msr_val = data;
3444
3445                if (!(data & KVM_MSR_ENABLED))
3446                        break;
3447
3448                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3449
3450                break;
3451        case MSR_KVM_PV_EOI_EN:
3452                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3453                        return 1;
3454
3455                if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3456                        return 1;
3457                break;
3458
3459        case MSR_KVM_POLL_CONTROL:
3460                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3461                        return 1;
3462
3463                /* only enable bit supported */
3464                if (data & (-1ULL << 1))
3465                        return 1;
3466
3467                vcpu->arch.msr_kvm_poll_control = data;
3468                break;
3469
3470        case MSR_IA32_MCG_CTL:
3471        case MSR_IA32_MCG_STATUS:
3472        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3473                return set_msr_mce(vcpu, msr_info);
3474
3475        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3476        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3477                pr = true;
3478                fallthrough;
3479        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3480        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3481                if (kvm_pmu_is_valid_msr(vcpu, msr))
3482                        return kvm_pmu_set_msr(vcpu, msr_info);
3483
3484                if (pr || data != 0)
3485                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3486                                    "0x%x data 0x%llx\n", msr, data);
3487                break;
3488        case MSR_K7_CLK_CTL:
3489                /*
3490                 * Ignore all writes to this no longer documented MSR.
3491                 * Writes are only relevant for old K7 processors,
3492                 * all pre-dating SVM, but a recommended workaround from
3493                 * AMD for these chips. It is possible to specify the
3494                 * affected processor models on the command line, hence
3495                 * the need to ignore the workaround.
3496                 */
3497                break;
3498        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3499        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3500        case HV_X64_MSR_SYNDBG_OPTIONS:
3501        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3502        case HV_X64_MSR_CRASH_CTL:
3503        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3504        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3505        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3506        case HV_X64_MSR_TSC_EMULATION_STATUS:
3507                return kvm_hv_set_msr_common(vcpu, msr, data,
3508                                             msr_info->host_initiated);
3509        case MSR_IA32_BBL_CR_CTL3:
3510                /* Drop writes to this legacy MSR -- see rdmsr
3511                 * counterpart for further detail.
3512                 */
3513                if (report_ignored_msrs)
3514                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3515                                msr, data);
3516                break;
3517        case MSR_AMD64_OSVW_ID_LENGTH:
3518                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3519                        return 1;
3520                vcpu->arch.osvw.length = data;
3521                break;
3522        case MSR_AMD64_OSVW_STATUS:
3523                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3524                        return 1;
3525                vcpu->arch.osvw.status = data;
3526                break;
3527        case MSR_PLATFORM_INFO:
3528                if (!msr_info->host_initiated ||
3529                    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3530                     cpuid_fault_enabled(vcpu)))
3531                        return 1;
3532                vcpu->arch.msr_platform_info = data;
3533                break;
3534        case MSR_MISC_FEATURES_ENABLES:
3535                if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3536                    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3537                     !supports_cpuid_fault(vcpu)))
3538                        return 1;
3539                vcpu->arch.msr_misc_features_enables = data;
3540                break;
3541        default:
3542                if (kvm_pmu_is_valid_msr(vcpu, msr))
3543                        return kvm_pmu_set_msr(vcpu, msr_info);
3544                return KVM_MSR_RET_INVALID;
3545        }
3546        return 0;
3547}
3548EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3549
3550static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3551{
3552        u64 data;
3553        u64 mcg_cap = vcpu->arch.mcg_cap;
3554        unsigned bank_num = mcg_cap & 0xff;
3555
3556        switch (msr) {
3557        case MSR_IA32_P5_MC_ADDR:
3558        case MSR_IA32_P5_MC_TYPE:
3559                data = 0;
3560                break;
3561        case MSR_IA32_MCG_CAP:
3562                data = vcpu->arch.mcg_cap;
3563                break;
3564        case MSR_IA32_MCG_CTL:
3565                if (!(mcg_cap & MCG_CTL_P) && !host)
3566                        return 1;
3567                data = vcpu->arch.mcg_ctl;
3568                break;
3569        case MSR_IA32_MCG_STATUS:
3570                data = vcpu->arch.mcg_status;
3571                break;
3572        default:
3573                if (msr >= MSR_IA32_MC0_CTL &&
3574                    msr < MSR_IA32_MCx_CTL(bank_num)) {
3575                        u32 offset = array_index_nospec(
3576                                msr - MSR_IA32_MC0_CTL,
3577                                MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3578
3579                        data = vcpu->arch.mce_banks[offset];
3580                        break;
3581                }
3582                return 1;
3583        }
3584        *pdata = data;
3585        return 0;
3586}
3587
3588int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3589{
3590        switch (msr_info->index) {
3591        case MSR_IA32_PLATFORM_ID:
3592        case MSR_IA32_EBL_CR_POWERON:
3593        case MSR_IA32_LASTBRANCHFROMIP:
3594        case MSR_IA32_LASTBRANCHTOIP:
3595        case MSR_IA32_LASTINTFROMIP:
3596        case MSR_IA32_LASTINTTOIP:
3597        case MSR_AMD64_SYSCFG:
3598        case MSR_K8_TSEG_ADDR:
3599        case MSR_K8_TSEG_MASK:
3600        case MSR_VM_HSAVE_PA:
3601        case MSR_K8_INT_PENDING_MSG:
3602        case MSR_AMD64_NB_CFG:
3603        case MSR_FAM10H_MMIO_CONF_BASE:
3604        case MSR_AMD64_BU_CFG2:
3605        case MSR_IA32_PERF_CTL:
3606        case MSR_AMD64_DC_CFG:
3607        case MSR_F15H_EX_CFG:
3608        /*
3609         * Intel Sandy Bridge CPUs must support the RAPL (running average power
3610         * limit) MSRs. Just return 0, as we do not want to expose the host
3611         * data here. Do not conditionalize this on CPUID, as KVM does not do
3612         * so for existing CPU-specific MSRs.
3613         */
3614        case MSR_RAPL_POWER_UNIT:
3615        case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3616        case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3617        case MSR_PKG_ENERGY_STATUS:     /* Total package */
3618        case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3619                msr_info->data = 0;
3620                break;
3621        case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3622                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3623                        return kvm_pmu_get_msr(vcpu, msr_info);
3624                if (!msr_info->host_initiated)
3625                        return 1;
3626                msr_info->data = 0;
3627                break;
3628        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3629        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3630        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3631        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3632                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3633                        return kvm_pmu_get_msr(vcpu, msr_info);
3634                msr_info->data = 0;
3635                break;
3636        case MSR_IA32_UCODE_REV:
3637                msr_info->data = vcpu->arch.microcode_version;
3638                break;
3639        case MSR_IA32_ARCH_CAPABILITIES:
3640                if (!msr_info->host_initiated &&
3641                    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3642                        return 1;
3643                msr_info->data = vcpu->arch.arch_capabilities;
3644                break;
3645        case MSR_IA32_PERF_CAPABILITIES:
3646                if (!msr_info->host_initiated &&
3647                    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3648                        return 1;
3649                msr_info->data = vcpu->arch.perf_capabilities;
3650                break;
3651        case MSR_IA32_POWER_CTL:
3652                msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3653                break;
3654        case MSR_IA32_TSC: {
3655                /*
3656                 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3657                 * even when not intercepted. AMD manual doesn't explicitly
3658                 * state this but appears to behave the same.
3659                 *
3660                 * On userspace reads and writes, however, we unconditionally
3661                 * return L1's TSC value to ensure backwards-compatible
3662                 * behavior for migration.
3663                 */
3664                u64 offset, ratio;
3665
3666                if (msr_info->host_initiated) {
3667                        offset = vcpu->arch.l1_tsc_offset;
3668                        ratio = vcpu->arch.l1_tsc_scaling_ratio;
3669                } else {
3670                        offset = vcpu->arch.tsc_offset;
3671                        ratio = vcpu->arch.tsc_scaling_ratio;
3672                }
3673
3674                msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3675                break;
3676        }
3677        case MSR_MTRRcap:
3678        case 0x200 ... 0x2ff:
3679                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3680        case 0xcd: /* fsb frequency */
3681                msr_info->data = 3;
3682                break;
3683                /*
3684                 * MSR_EBC_FREQUENCY_ID
3685                 * Conservative value valid for even the basic CPU models.
3686                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3687                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3688                 * and 266MHz for model 3, or 4. Set Core Clock
3689                 * Frequency to System Bus Frequency Ratio to 1 (bits
3690                 * 31:24) even though these are only valid for CPU
3691                 * models > 2, however guests may end up dividing or
3692                 * multiplying by zero otherwise.
3693                 */
3694        case MSR_EBC_FREQUENCY_ID:
3695                msr_info->data = 1 << 24;
3696                break;
3697        case MSR_IA32_APICBASE:
3698                msr_info->data = kvm_get_apic_base(vcpu);
3699                break;
3700        case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3701                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3702        case MSR_IA32_TSC_DEADLINE:
3703                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3704                break;
3705        case MSR_IA32_TSC_ADJUST:
3706                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3707                break;
3708        case MSR_IA32_MISC_ENABLE:
3709                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3710                break;
3711        case MSR_IA32_SMBASE:
3712                if (!msr_info->host_initiated)
3713                        return 1;
3714                msr_info->data = vcpu->arch.smbase;
3715                break;
3716        case MSR_SMI_COUNT:
3717                msr_info->data = vcpu->arch.smi_count;
3718                break;
3719        case MSR_IA32_PERF_STATUS:
3720                /* TSC increment by tick */
3721                msr_info->data = 1000ULL;
3722                /* CPU multiplier */
3723                msr_info->data |= (((uint64_t)4ULL) << 40);
3724                break;
3725        case MSR_EFER:
3726                msr_info->data = vcpu->arch.efer;
3727                break;
3728        case MSR_KVM_WALL_CLOCK:
3729                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3730                        return 1;
3731
3732                msr_info->data = vcpu->kvm->arch.wall_clock;
3733                break;
3734        case MSR_KVM_WALL_CLOCK_NEW:
3735                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3736                        return 1;
3737
3738                msr_info->data = vcpu->kvm->arch.wall_clock;
3739                break;
3740        case MSR_KVM_SYSTEM_TIME:
3741                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3742                        return 1;
3743
3744                msr_info->data = vcpu->arch.time;
3745                break;
3746        case MSR_KVM_SYSTEM_TIME_NEW:
3747                if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3748                        return 1;
3749
3750                msr_info->data = vcpu->arch.time;
3751                break;
3752        case MSR_KVM_ASYNC_PF_EN:
3753                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3754                        return 1;
3755
3756                msr_info->data = vcpu->arch.apf.msr_en_val;
3757                break;
3758        case MSR_KVM_ASYNC_PF_INT:
3759                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3760                        return 1;
3761
3762                msr_info->data = vcpu->arch.apf.msr_int_val;
3763                break;
3764        case MSR_KVM_ASYNC_PF_ACK:
3765                if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3766                        return 1;
3767
3768                msr_info->data = 0;
3769                break;
3770        case MSR_KVM_STEAL_TIME:
3771                if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3772                        return 1;
3773
3774                msr_info->data = vcpu->arch.st.msr_val;
3775                break;
3776        case MSR_KVM_PV_EOI_EN:
3777                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3778                        return 1;
3779
3780                msr_info->data = vcpu->arch.pv_eoi.msr_val;
3781                break;
3782        case MSR_KVM_POLL_CONTROL:
3783                if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3784                        return 1;
3785
3786                msr_info->data = vcpu->arch.msr_kvm_poll_control;
3787                break;
3788        case MSR_IA32_P5_MC_ADDR:
3789        case MSR_IA32_P5_MC_TYPE:
3790        case MSR_IA32_MCG_CAP:
3791        case MSR_IA32_MCG_CTL:
3792        case MSR_IA32_MCG_STATUS:
3793        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3794                return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3795                                   msr_info->host_initiated);
3796        case MSR_IA32_XSS:
3797                if (!msr_info->host_initiated &&
3798                    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3799                        return 1;
3800                msr_info->data = vcpu->arch.ia32_xss;
3801                break;
3802        case MSR_K7_CLK_CTL:
3803                /*
3804                 * Provide expected ramp-up count for K7. All other
3805                 * are set to zero, indicating minimum divisors for
3806                 * every field.
3807                 *
3808                 * This prevents guest kernels on AMD host with CPU
3809                 * type 6, model 8 and higher from exploding due to
3810                 * the rdmsr failing.
3811                 */
3812                msr_info->data = 0x20000000;
3813                break;
3814        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3815        case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3816        case HV_X64_MSR_SYNDBG_OPTIONS:
3817        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3818        case HV_X64_MSR_CRASH_CTL:
3819        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3820        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3821        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3822        case HV_X64_MSR_TSC_EMULATION_STATUS:
3823                return kvm_hv_get_msr_common(vcpu,
3824                                             msr_info->index, &msr_info->data,
3825                                             msr_info->host_initiated);
3826        case MSR_IA32_BBL_CR_CTL3:
3827                /* This legacy MSR exists but isn't fully documented in current
3828                 * silicon.  It is however accessed by winxp in very narrow
3829                 * scenarios where it sets bit #19, itself documented as
3830                 * a "reserved" bit.  Best effort attempt to source coherent
3831                 * read data here should the balance of the register be
3832                 * interpreted by the guest:
3833                 *
3834                 * L2 cache control register 3: 64GB range, 256KB size,
3835                 * enabled, latency 0x1, configured
3836                 */
3837                msr_info->data = 0xbe702111;
3838                break;
3839        case MSR_AMD64_OSVW_ID_LENGTH:
3840                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3841                        return 1;
3842                msr_info->data = vcpu->arch.osvw.length;
3843                break;
3844        case MSR_AMD64_OSVW_STATUS:
3845                if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3846                        return 1;
3847                msr_info->data = vcpu->arch.osvw.status;
3848                break;
3849        case MSR_PLATFORM_INFO:
3850                if (!msr_info->host_initiated &&
3851                    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3852                        return 1;
3853                msr_info->data = vcpu->arch.msr_platform_info;
3854                break;
3855        case MSR_MISC_FEATURES_ENABLES:
3856                msr_info->data = vcpu->arch.msr_misc_features_enables;
3857                break;
3858        case MSR_K7_HWCR:
3859                msr_info->data = vcpu->arch.msr_hwcr;
3860                break;
3861        default:
3862                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3863                        return kvm_pmu_get_msr(vcpu, msr_info);
3864                return KVM_MSR_RET_INVALID;
3865        }
3866        return 0;
3867}
3868EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3869
3870/*
3871 * Read or write a bunch of msrs. All parameters are kernel addresses.
3872 *
3873 * @return number of msrs set successfully.
3874 */
3875static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3876                    struct kvm_msr_entry *entries,
3877                    int (*do_msr)(struct kvm_vcpu *vcpu,
3878                                  unsigned index, u64 *data))
3879{
3880        int i;
3881
3882        for (i = 0; i < msrs->nmsrs; ++i)
3883                if (do_msr(vcpu, entries[i].index, &entries[i].data))
3884                        break;
3885
3886        return i;
3887}
3888
3889/*
3890 * Read or write a bunch of msrs. Parameters are user addresses.
3891 *
3892 * @return number of msrs set successfully.
3893 */
3894static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3895                  int (*do_msr)(struct kvm_vcpu *vcpu,
3896                                unsigned index, u64 *data),
3897                  int writeback)
3898{
3899        struct kvm_msrs msrs;
3900        struct kvm_msr_entry *entries;
3901        int r, n;
3902        unsigned size;
3903
3904        r = -EFAULT;
3905        if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3906                goto out;
3907
3908        r = -E2BIG;
3909        if (msrs.nmsrs >= MAX_IO_MSRS)
3910                goto out;
3911
3912        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3913        entries = memdup_user(user_msrs->entries, size);
3914        if (IS_ERR(entries)) {
3915                r = PTR_ERR(entries);
3916                goto out;
3917        }
3918
3919        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3920        if (r < 0)
3921                goto out_free;
3922
3923        r = -EFAULT;
3924        if (writeback && copy_to_user(user_msrs->entries, entries, size))
3925                goto out_free;
3926
3927        r = n;
3928
3929out_free:
3930        kfree(entries);
3931out:
3932        return r;
3933}
3934
3935static inline bool kvm_can_mwait_in_guest(void)
3936{
3937        return boot_cpu_has(X86_FEATURE_MWAIT) &&
3938                !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3939                boot_cpu_has(X86_FEATURE_ARAT);
3940}
3941
3942static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3943                                            struct kvm_cpuid2 __user *cpuid_arg)
3944{
3945        struct kvm_cpuid2 cpuid;
3946        int r;
3947
3948        r = -EFAULT;
3949        if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3950                return r;
3951
3952        r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3953        if (r)
3954                return r;
3955
3956        r = -EFAULT;
3957        if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3958                return r;
3959
3960        return 0;
3961}
3962
3963int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3964{
3965        int r = 0;
3966
3967        switch (ext) {
3968        case KVM_CAP_IRQCHIP:
3969        case KVM_CAP_HLT:
3970        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3971        case KVM_CAP_SET_TSS_ADDR:
3972        case KVM_CAP_EXT_CPUID:
3973        case KVM_CAP_EXT_EMUL_CPUID:
3974        case KVM_CAP_CLOCKSOURCE:
3975        case KVM_CAP_PIT:
3976        case KVM_CAP_NOP_IO_DELAY:
3977        case KVM_CAP_MP_STATE:
3978        case KVM_CAP_SYNC_MMU:
3979        case KVM_CAP_USER_NMI:
3980        case KVM_CAP_REINJECT_CONTROL:
3981        case KVM_CAP_IRQ_INJECT_STATUS:
3982        case KVM_CAP_IOEVENTFD:
3983        case KVM_CAP_IOEVENTFD_NO_LENGTH:
3984        case KVM_CAP_PIT2:
3985        case KVM_CAP_PIT_STATE2:
3986        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3987        case KVM_CAP_VCPU_EVENTS:
3988        case KVM_CAP_HYPERV:
3989        case KVM_CAP_HYPERV_VAPIC:
3990        case KVM_CAP_HYPERV_SPIN:
3991        case KVM_CAP_HYPERV_SYNIC:
3992        case KVM_CAP_HYPERV_SYNIC2:
3993        case KVM_CAP_HYPERV_VP_INDEX:
3994        case KVM_CAP_HYPERV_EVENTFD:
3995        case KVM_CAP_HYPERV_TLBFLUSH:
3996        case KVM_CAP_HYPERV_SEND_IPI:
3997        case KVM_CAP_HYPERV_CPUID:
3998        case KVM_CAP_HYPERV_ENFORCE_CPUID:
3999        case KVM_CAP_SYS_HYPERV_CPUID:
4000        case KVM_CAP_PCI_SEGMENT:
4001        case KVM_CAP_DEBUGREGS:
4002        case KVM_CAP_X86_ROBUST_SINGLESTEP:
4003        case KVM_CAP_XSAVE:
4004        case KVM_CAP_ASYNC_PF:
4005        case KVM_CAP_ASYNC_PF_INT:
4006        case KVM_CAP_GET_TSC_KHZ:
4007        case KVM_CAP_KVMCLOCK_CTRL:
4008        case KVM_CAP_READONLY_MEM:
4009        case KVM_CAP_HYPERV_TIME:
4010        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4011        case KVM_CAP_TSC_DEADLINE_TIMER:
4012        case KVM_CAP_DISABLE_QUIRKS:
4013        case KVM_CAP_SET_BOOT_CPU_ID:
4014        case KVM_CAP_SPLIT_IRQCHIP:
4015        case KVM_CAP_IMMEDIATE_EXIT:
4016        case KVM_CAP_PMU_EVENT_FILTER:
4017        case KVM_CAP_GET_MSR_FEATURES:
4018        case KVM_CAP_MSR_PLATFORM_INFO:
4019        case KVM_CAP_EXCEPTION_PAYLOAD:
4020        case KVM_CAP_SET_GUEST_DEBUG:
4021        case KVM_CAP_LAST_CPU:
4022        case KVM_CAP_X86_USER_SPACE_MSR:
4023        case KVM_CAP_X86_MSR_FILTER:
4024        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4025#ifdef CONFIG_X86_SGX_KVM
4026        case KVM_CAP_SGX_ATTRIBUTE:
4027#endif
4028        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4029        case KVM_CAP_SREGS2:
4030        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4031                r = 1;
4032                break;
4033        case KVM_CAP_EXIT_HYPERCALL:
4034                r = KVM_EXIT_HYPERCALL_VALID_MASK;
4035                break;
4036        case KVM_CAP_SET_GUEST_DEBUG2:
4037                return KVM_GUESTDBG_VALID_MASK;
4038#ifdef CONFIG_KVM_XEN
4039        case KVM_CAP_XEN_HVM:
4040                r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4041                    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4042                    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4043                if (sched_info_on())
4044                        r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4045                break;
4046#endif
4047        case KVM_CAP_SYNC_REGS:
4048                r = KVM_SYNC_X86_VALID_FIELDS;
4049                break;
4050        case KVM_CAP_ADJUST_CLOCK:
4051                r = KVM_CLOCK_TSC_STABLE;
4052                break;
4053        case KVM_CAP_X86_DISABLE_EXITS:
4054                r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4055                      KVM_X86_DISABLE_EXITS_CSTATE;
4056                if(kvm_can_mwait_in_guest())
4057                        r |= KVM_X86_DISABLE_EXITS_MWAIT;
4058                break;
4059        case KVM_CAP_X86_SMM:
4060                /* SMBASE is usually relocated above 1M on modern chipsets,
4061                 * and SMM handlers might indeed rely on 4G segment limits,
4062                 * so do not report SMM to be available if real mode is
4063                 * emulated via vm86 mode.  Still, do not go to great lengths
4064                 * to avoid userspace's usage of the feature, because it is a
4065                 * fringe case that is not enabled except via specific settings
4066                 * of the module parameters.
4067                 */
4068                r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4069                break;
4070        case KVM_CAP_VAPIC:
4071                r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4072                break;
4073        case KVM_CAP_NR_VCPUS:
4074                r = KVM_SOFT_MAX_VCPUS;
4075                break;
4076        case KVM_CAP_MAX_VCPUS:
4077                r = KVM_MAX_VCPUS;
4078                break;
4079        case KVM_CAP_MAX_VCPU_ID:
4080                r = KVM_MAX_VCPU_ID;
4081                break;
4082        case KVM_CAP_PV_MMU:    /* obsolete */
4083                r = 0;
4084                break;
4085        case KVM_CAP_MCE:
4086                r = KVM_MAX_MCE_BANKS;
4087                break;
4088        case KVM_CAP_XCRS:
4089                r = boot_cpu_has(X86_FEATURE_XSAVE);
4090                break;
4091        case KVM_CAP_TSC_CONTROL:
4092                r = kvm_has_tsc_control;
4093                break;
4094        case KVM_CAP_X2APIC_API:
4095                r = KVM_X2APIC_API_VALID_FLAGS;
4096                break;
4097        case KVM_CAP_NESTED_STATE:
4098                r = kvm_x86_ops.nested_ops->get_state ?
4099                        kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4100                break;
4101        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4102                r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4103                break;
4104        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4105                r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4106                break;
4107        case KVM_CAP_SMALLER_MAXPHYADDR:
4108                r = (int) allow_smaller_maxphyaddr;
4109                break;
4110        case KVM_CAP_STEAL_TIME:
4111                r = sched_info_on();
4112                break;
4113        case KVM_CAP_X86_BUS_LOCK_EXIT:
4114                if (kvm_has_bus_lock_exit)
4115                        r = KVM_BUS_LOCK_DETECTION_OFF |
4116                            KVM_BUS_LOCK_DETECTION_EXIT;
4117                else
4118                        r = 0;
4119                break;
4120        default:
4121                break;
4122        }
4123        return r;
4124
4125}
4126
4127long kvm_arch_dev_ioctl(struct file *filp,
4128                        unsigned int ioctl, unsigned long arg)
4129{
4130        void __user *argp = (void __user *)arg;
4131        long r;
4132
4133        switch (ioctl) {
4134        case KVM_GET_MSR_INDEX_LIST: {
4135                struct kvm_msr_list __user *user_msr_list = argp;
4136                struct kvm_msr_list msr_list;
4137                unsigned n;
4138
4139                r = -EFAULT;
4140                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4141                        goto out;
4142                n = msr_list.nmsrs;
4143                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4144                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4145                        goto out;
4146                r = -E2BIG;
4147                if (n < msr_list.nmsrs)
4148                        goto out;
4149                r = -EFAULT;
4150                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4151                                 num_msrs_to_save * sizeof(u32)))
4152                        goto out;
4153                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4154                                 &emulated_msrs,
4155                                 num_emulated_msrs * sizeof(u32)))
4156                        goto out;
4157                r = 0;
4158                break;
4159        }
4160        case KVM_GET_SUPPORTED_CPUID:
4161        case KVM_GET_EMULATED_CPUID: {
4162                struct kvm_cpuid2 __user *cpuid_arg = argp;
4163                struct kvm_cpuid2 cpuid;
4164
4165                r = -EFAULT;
4166                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4167                        goto out;
4168
4169                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4170                                            ioctl);
4171                if (r)
4172                        goto out;
4173
4174                r = -EFAULT;
4175                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4176                        goto out;
4177                r = 0;
4178                break;
4179        }
4180        case KVM_X86_GET_MCE_CAP_SUPPORTED:
4181                r = -EFAULT;
4182                if (copy_to_user(argp, &kvm_mce_cap_supported,
4183                                 sizeof(kvm_mce_cap_supported)))
4184                        goto out;
4185                r = 0;
4186                break;
4187        case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4188                struct kvm_msr_list __user *user_msr_list = argp;
4189                struct kvm_msr_list msr_list;
4190                unsigned int n;
4191
4192                r = -EFAULT;
4193                if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4194                        goto out;
4195                n = msr_list.nmsrs;
4196                msr_list.nmsrs = num_msr_based_features;
4197                if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4198                        goto out;
4199                r = -E2BIG;
4200                if (n < msr_list.nmsrs)
4201                        goto out;
4202                r = -EFAULT;
4203                if (copy_to_user(user_msr_list->indices, &msr_based_features,
4204                                 num_msr_based_features * sizeof(u32)))
4205                        goto out;
4206                r = 0;
4207                break;
4208        }
4209        case KVM_GET_MSRS:
4210                r = msr_io(NULL, argp, do_get_msr_feature, 1);
4211                break;
4212        case KVM_GET_SUPPORTED_HV_CPUID:
4213                r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4214                break;
4215        default:
4216                r = -EINVAL;
4217                break;
4218        }
4219out:
4220        return r;
4221}
4222
4223static void wbinvd_ipi(void *garbage)
4224{
4225        wbinvd();
4226}
4227
4228static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4229{
4230        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4231}
4232
4233void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4234{
4235        /* Address WBINVD may be executed by guest */
4236        if (need_emulate_wbinvd(vcpu)) {
4237                if (static_call(kvm_x86_has_wbinvd_exit)())
4238                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4239                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4240                        smp_call_function_single(vcpu->cpu,
4241                                        wbinvd_ipi, NULL, 1);
4242        }
4243
4244        static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4245
4246        /* Save host pkru register if supported */
4247        vcpu->arch.host_pkru = read_pkru();
4248
4249        /* Apply any externally detected TSC adjustments (due to suspend) */
4250        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4251                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4252                vcpu->arch.tsc_offset_adjustment = 0;
4253                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4254        }
4255
4256        if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4257                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4258                                rdtsc() - vcpu->arch.last_host_tsc;
4259                if (tsc_delta < 0)
4260                        mark_tsc_unstable("KVM discovered backwards TSC");
4261
4262                if (kvm_check_tsc_unstable()) {
4263                        u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4264                                                vcpu->arch.last_guest_tsc);
4265                        kvm_vcpu_write_tsc_offset(vcpu, offset);
4266                        vcpu->arch.tsc_catchup = 1;
4267                }
4268
4269                if (kvm_lapic_hv_timer_in_use(vcpu))
4270                        kvm_lapic_restart_hv_timer(vcpu);
4271
4272                /*
4273                 * On a host with synchronized TSC, there is no need to update
4274                 * kvmclock on vcpu->cpu migration
4275                 */
4276                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4277                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4278                if (vcpu->cpu != cpu)
4279                        kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4280                vcpu->cpu = cpu;
4281        }
4282
4283        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4284}
4285
4286static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4287{
4288        struct kvm_host_map map;
4289        struct kvm_steal_time *st;
4290
4291        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4292                return;
4293
4294        if (vcpu->arch.st.preempted)
4295                return;
4296
4297        if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
4298                        &vcpu->arch.st.cache, true))
4299                return;
4300
4301        st = map.hva +
4302                offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
4303
4304        st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4305
4306        kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
4307}
4308
4309void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4310{
4311        int idx;
4312
4313        if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4314                vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4315
4316        /*
4317         * Take the srcu lock as memslots will be accessed to check the gfn
4318         * cache generation against the memslots generation.
4319         */
4320        idx = srcu_read_lock(&vcpu->kvm->srcu);
4321        if (kvm_xen_msr_enabled(vcpu->kvm))
4322                kvm_xen_runstate_set_preempted(vcpu);
4323        else
4324                kvm_steal_time_set_preempted(vcpu);
4325        srcu_read_unlock(&vcpu->kvm->srcu, idx);
4326
4327        static_call(kvm_x86_vcpu_put)(vcpu);
4328        vcpu->arch.last_host_tsc = rdtsc();
4329}
4330
4331static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4332                                    struct kvm_lapic_state *s)
4333{
4334        if (vcpu->arch.apicv_active)
4335                static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4336
4337        return kvm_apic_get_state(vcpu, s);
4338}
4339
4340static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4341                                    struct kvm_lapic_state *s)
4342{
4343        int r;
4344
4345        r = kvm_apic_set_state(vcpu, s);
4346        if (r)
4347                return r;
4348        update_cr8_intercept(vcpu);
4349
4350        return 0;
4351}
4352
4353static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4354{
4355        /*
4356         * We can accept userspace's request for interrupt injection
4357         * as long as we have a place to store the interrupt number.
4358         * The actual injection will happen when the CPU is able to
4359         * deliver the interrupt.
4360         */
4361        if (kvm_cpu_has_extint(vcpu))
4362                return false;
4363
4364        /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4365        return (!lapic_in_kernel(vcpu) ||
4366                kvm_apic_accept_pic_intr(vcpu));
4367}
4368
4369static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4370{
4371        /*
4372         * Do not cause an interrupt window exit if an exception
4373         * is pending or an event needs reinjection; userspace
4374         * might want to inject the interrupt manually using KVM_SET_REGS
4375         * or KVM_SET_SREGS.  For that to work, we must be at an
4376         * instruction boundary and with no events half-injected.
4377         */
4378        return (kvm_arch_interrupt_allowed(vcpu) &&
4379                kvm_cpu_accept_dm_intr(vcpu) &&
4380                !kvm_event_needs_reinjection(vcpu) &&
4381                !vcpu->arch.exception.pending);
4382}
4383
4384static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4385                                    struct kvm_interrupt *irq)
4386{
4387        if (irq->irq >= KVM_NR_INTERRUPTS)
4388                return -EINVAL;
4389
4390        if (!irqchip_in_kernel(vcpu->kvm)) {
4391                kvm_queue_interrupt(vcpu, irq->irq, false);
4392                kvm_make_request(KVM_REQ_EVENT, vcpu);
4393                return 0;
4394        }
4395
4396        /*
4397         * With in-kernel LAPIC, we only use this to inject EXTINT, so
4398         * fail for in-kernel 8259.
4399         */
4400        if (pic_in_kernel(vcpu->kvm))
4401                return -ENXIO;
4402
4403        if (vcpu->arch.pending_external_vector != -1)
4404                return -EEXIST;
4405
4406        vcpu->arch.pending_external_vector = irq->irq;
4407        kvm_make_request(KVM_REQ_EVENT, vcpu);
4408        return 0;
4409}
4410
4411static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4412{
4413        kvm_inject_nmi(vcpu);
4414
4415        return 0;
4416}
4417
4418static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4419{
4420        kvm_make_request(KVM_REQ_SMI, vcpu);
4421
4422        return 0;
4423}
4424
4425static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4426                                           struct kvm_tpr_access_ctl *tac)
4427{
4428        if (tac->flags)
4429                return -EINVAL;
4430        vcpu->arch.tpr_access_reporting = !!tac->enabled;
4431        return 0;
4432}
4433
4434static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4435                                        u64 mcg_cap)
4436{
4437        int r;
4438        unsigned bank_num = mcg_cap & 0xff, bank;
4439
4440        r = -EINVAL;
4441        if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4442                goto out;
4443        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4444                goto out;
4445        r = 0;
4446        vcpu->arch.mcg_cap = mcg_cap;
4447        /* Init IA32_MCG_CTL to all 1s */
4448        if (mcg_cap & MCG_CTL_P)
4449                vcpu->arch.mcg_ctl = ~(u64)0;
4450        /* Init IA32_MCi_CTL to all 1s */
4451        for (bank = 0; bank < bank_num; bank++)
4452                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4453
4454        static_call(kvm_x86_setup_mce)(vcpu);
4455out:
4456        return r;
4457}
4458
4459static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4460                                      struct kvm_x86_mce *mce)
4461{
4462        u64 mcg_cap = vcpu->arch.mcg_cap;
4463        unsigned bank_num = mcg_cap & 0xff;
4464        u64 *banks = vcpu->arch.mce_banks;
4465
4466        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4467                return -EINVAL;
4468        /*
4469         * if IA32_MCG_CTL is not all 1s, the uncorrected error
4470         * reporting is disabled
4471         */
4472        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4473            vcpu->arch.mcg_ctl != ~(u64)0)
4474                return 0;
4475        banks += 4 * mce->bank;
4476        /*
4477         * if IA32_MCi_CTL is not all 1s, the uncorrected error
4478         * reporting is disabled for the bank
4479         */
4480        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4481                return 0;
4482        if (mce->status & MCI_STATUS_UC) {
4483                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4484                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4485                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4486                        return 0;
4487                }
4488                if (banks[1] & MCI_STATUS_VAL)
4489                        mce->status |= MCI_STATUS_OVER;
4490                banks[2] = mce->addr;
4491                banks[3] = mce->misc;
4492                vcpu->arch.mcg_status = mce->mcg_status;
4493                banks[1] = mce->status;
4494                kvm_queue_exception(vcpu, MC_VECTOR);
4495        } else if (!(banks[1] & MCI_STATUS_VAL)
4496                   || !(banks[1] & MCI_STATUS_UC)) {
4497                if (banks[1] & MCI_STATUS_VAL)
4498                        mce->status |= MCI_STATUS_OVER;
4499                banks[2] = mce->addr;
4500                banks[3] = mce->misc;
4501                banks[1] = mce->status;
4502        } else
4503                banks[1] |= MCI_STATUS_OVER;
4504        return 0;
4505}
4506
4507static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4508                                               struct kvm_vcpu_events *events)
4509{
4510        process_nmi(vcpu);
4511
4512        if (kvm_check_request(KVM_REQ_SMI, vcpu))
4513                process_smi(vcpu);
4514
4515        /*
4516         * In guest mode, payload delivery should be deferred,
4517         * so that the L1 hypervisor can intercept #PF before
4518         * CR2 is modified (or intercept #DB before DR6 is
4519         * modified under nVMX). Unless the per-VM capability,
4520         * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4521         * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4522         * opportunistically defer the exception payload, deliver it if the
4523         * capability hasn't been requested before processing a
4524         * KVM_GET_VCPU_EVENTS.
4525         */
4526        if (!vcpu->kvm->arch.exception_payload_enabled &&
4527            vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4528                kvm_deliver_exception_payload(vcpu);
4529
4530        /*
4531         * The API doesn't provide the instruction length for software
4532         * exceptions, so don't report them. As long as the guest RIP
4533         * isn't advanced, we should expect to encounter the exception
4534         * again.
4535         */
4536        if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4537                events->exception.injected = 0;
4538                events->exception.pending = 0;
4539        } else {
4540                events->exception.injected = vcpu->arch.exception.injected;
4541                events->exception.pending = vcpu->arch.exception.pending;
4542                /*
4543                 * For ABI compatibility, deliberately conflate
4544                 * pending and injected exceptions when
4545                 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4546                 */
4547                if (!vcpu->kvm->arch.exception_payload_enabled)
4548                        events->exception.injected |=
4549                                vcpu->arch.exception.pending;
4550        }
4551        events->exception.nr = vcpu->arch.exception.nr;
4552        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4553        events->exception.error_code = vcpu->arch.exception.error_code;
4554        events->exception_has_payload = vcpu->arch.exception.has_payload;
4555        events->exception_payload = vcpu->arch.exception.payload;
4556
4557        events->interrupt.injected =
4558                vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4559        events->interrupt.nr = vcpu->arch.interrupt.nr;
4560        events->interrupt.soft = 0;
4561        events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4562
4563        events->nmi.injected = vcpu->arch.nmi_injected;
4564        events->nmi.pending = vcpu->arch.nmi_pending != 0;
4565        events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4566        events->nmi.pad = 0;
4567
4568        events->sipi_vector = 0; /* never valid when reporting to user space */
4569
4570        events->smi.smm = is_smm(vcpu);
4571        events->smi.pending = vcpu->arch.smi_pending;
4572        events->smi.smm_inside_nmi =
4573                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4574        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4575
4576        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4577                         | KVM_VCPUEVENT_VALID_SHADOW
4578                         | KVM_VCPUEVENT_VALID_SMM);
4579        if (vcpu->kvm->arch.exception_payload_enabled)
4580                events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4581
4582        memset(&events->reserved, 0, sizeof(events->reserved));
4583}
4584
4585static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4586
4587static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4588                                              struct kvm_vcpu_events *events)
4589{
4590        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4591                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4592                              | KVM_VCPUEVENT_VALID_SHADOW
4593                              | KVM_VCPUEVENT_VALID_SMM
4594                              | KVM_VCPUEVENT_VALID_PAYLOAD))
4595                return -EINVAL;
4596
4597        if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4598                if (!vcpu->kvm->arch.exception_payload_enabled)
4599                        return -EINVAL;
4600                if (events->exception.pending)
4601                        events->exception.injected = 0;
4602                else
4603                        events->exception_has_payload = 0;
4604        } else {
4605                events->exception.pending = 0;
4606                events->exception_has_payload = 0;
4607        }
4608
4609        if ((events->exception.injected || events->exception.pending) &&
4610            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4611                return -EINVAL;
4612
4613        /* INITs are latched while in SMM */
4614        if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4615            (events->smi.smm || events->smi.pending) &&
4616            vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4617                return -EINVAL;
4618
4619        process_nmi(vcpu);
4620        vcpu->arch.exception.injected = events->exception.injected;
4621        vcpu->arch.exception.pending = events->exception.pending;
4622        vcpu->arch.exception.nr = events->exception.nr;
4623        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4624        vcpu->arch.exception.error_code = events->exception.error_code;
4625        vcpu->arch.exception.has_payload = events->exception_has_payload;
4626        vcpu->arch.exception.payload = events->exception_payload;
4627
4628        vcpu->arch.interrupt.injected = events->interrupt.injected;
4629        vcpu->arch.interrupt.nr = events->interrupt.nr;
4630        vcpu->arch.interrupt.soft = events->interrupt.soft;
4631        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4632                static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4633                                                events->interrupt.shadow);
4634
4635        vcpu->arch.nmi_injected = events->nmi.injected;
4636        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4637                vcpu->arch.nmi_pending = events->nmi.pending;
4638        static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4639
4640        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4641            lapic_in_kernel(vcpu))
4642                vcpu->arch.apic->sipi_vector = events->sipi_vector;
4643
4644        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4645                if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4646                        kvm_smm_changed(vcpu, events->smi.smm);
4647
4648                vcpu->arch.smi_pending = events->smi.pending;
4649
4650                if (events->smi.smm) {
4651                        if (events->smi.smm_inside_nmi)
4652                                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4653                        else
4654                                vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4655                }
4656
4657                if (lapic_in_kernel(vcpu)) {
4658                        if (events->smi.latched_init)
4659                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4660                        else
4661                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4662                }
4663        }
4664
4665        kvm_make_request(KVM_REQ_EVENT, vcpu);
4666
4667        return 0;
4668}
4669
4670static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4671                                             struct kvm_debugregs *dbgregs)
4672{
4673        unsigned long val;
4674
4675        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4676        kvm_get_dr(vcpu, 6, &val);
4677        dbgregs->dr6 = val;
4678        dbgregs->dr7 = vcpu->arch.dr7;
4679        dbgregs->flags = 0;
4680        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4681}
4682
4683static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4684                                            struct kvm_debugregs *dbgregs)
4685{
4686        if (dbgregs->flags)
4687                return -EINVAL;
4688
4689        if (!kvm_dr6_valid(dbgregs->dr6))
4690                return -EINVAL;
4691        if (!kvm_dr7_valid(dbgregs->dr7))
4692                return -EINVAL;
4693
4694        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4695        kvm_update_dr0123(vcpu);
4696        vcpu->arch.dr6 = dbgregs->dr6;
4697        vcpu->arch.dr7 = dbgregs->dr7;
4698        kvm_update_dr7(vcpu);
4699
4700        return 0;
4701}
4702
4703#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4704
4705static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4706{
4707        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4708        u64 xstate_bv = xsave->header.xfeatures;
4709        u64 valid;
4710
4711        /*
4712         * Copy legacy XSAVE area, to avoid complications with CPUID
4713         * leaves 0 and 1 in the loop below.
4714         */
4715        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4716
4717        /* Set XSTATE_BV */
4718        xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4719        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4720
4721        /*
4722         * Copy each region from the possibly compacted offset to the
4723         * non-compacted offset.
4724         */
4725        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4726        while (valid) {
4727                u32 size, offset, ecx, edx;
4728                u64 xfeature_mask = valid & -valid;
4729                int xfeature_nr = fls64(xfeature_mask) - 1;
4730                void *src;
4731
4732                cpuid_count(XSTATE_CPUID, xfeature_nr,
4733                            &size, &offset, &ecx, &edx);
4734
4735                if (xfeature_nr == XFEATURE_PKRU) {
4736                        memcpy(dest + offset, &vcpu->arch.pkru,
4737                               sizeof(vcpu->arch.pkru));
4738                } else {
4739                        src = get_xsave_addr(xsave, xfeature_nr);
4740                        if (src)
4741                                memcpy(dest + offset, src, size);
4742                }
4743
4744                valid -= xfeature_mask;
4745        }
4746}
4747
4748static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4749{
4750        struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4751        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4752        u64 valid;
4753
4754        /*
4755         * Copy legacy XSAVE area, to avoid complications with CPUID
4756         * leaves 0 and 1 in the loop below.
4757         */
4758        memcpy(xsave, src, XSAVE_HDR_OFFSET);
4759
4760        /* Set XSTATE_BV and possibly XCOMP_BV.  */
4761        xsave->header.xfeatures = xstate_bv;
4762        if (boot_cpu_has(X86_FEATURE_XSAVES))
4763                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4764
4765        /*
4766         * Copy each region from the non-compacted offset to the
4767         * possibly compacted offset.
4768         */
4769        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4770        while (valid) {
4771                u32 size, offset, ecx, edx;
4772                u64 xfeature_mask = valid & -valid;
4773                int xfeature_nr = fls64(xfeature_mask) - 1;
4774
4775                cpuid_count(XSTATE_CPUID, xfeature_nr,
4776                            &size, &offset, &ecx, &edx);
4777
4778                if (xfeature_nr == XFEATURE_PKRU) {
4779                        memcpy(&vcpu->arch.pkru, src + offset,
4780                               sizeof(vcpu->arch.pkru));
4781                } else {
4782                        void *dest = get_xsave_addr(xsave, xfeature_nr);
4783
4784                        if (dest)
4785                                memcpy(dest, src + offset, size);
4786                }
4787
4788                valid -= xfeature_mask;
4789        }
4790}
4791
4792static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4793                                         struct kvm_xsave *guest_xsave)
4794{
4795        if (!vcpu->arch.guest_fpu)
4796                return;
4797
4798        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4799                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4800                fill_xsave((u8 *) guest_xsave->region, vcpu);
4801        } else {
4802                memcpy(guest_xsave->region,
4803                        &vcpu->arch.guest_fpu->state.fxsave,
4804                        sizeof(struct fxregs_state));
4805                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4806                        XFEATURE_MASK_FPSSE;
4807        }
4808}
4809
4810#define XSAVE_MXCSR_OFFSET 24
4811
4812static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4813                                        struct kvm_xsave *guest_xsave)
4814{
4815        u64 xstate_bv;
4816        u32 mxcsr;
4817
4818        if (!vcpu->arch.guest_fpu)
4819                return 0;
4820
4821        xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4822        mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4823
4824        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4825                /*
4826                 * Here we allow setting states that are not present in
4827                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4828                 * with old userspace.
4829                 */
4830                if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4831                        return -EINVAL;
4832                load_xsave(vcpu, (u8 *)guest_xsave->region);
4833        } else {
4834                if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4835                        mxcsr & ~mxcsr_feature_mask)
4836                        return -EINVAL;
4837                memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4838                        guest_xsave->region, sizeof(struct fxregs_state));
4839        }
4840        return 0;
4841}
4842
4843static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4844                                        struct kvm_xcrs *guest_xcrs)
4845{
4846        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4847                guest_xcrs->nr_xcrs = 0;
4848                return;
4849        }
4850
4851        guest_xcrs->nr_xcrs = 1;
4852        guest_xcrs->flags = 0;
4853        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4854        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4855}
4856
4857static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4858                                       struct kvm_xcrs *guest_xcrs)
4859{
4860        int i, r = 0;
4861
4862        if (!boot_cpu_has(X86_FEATURE_XSAVE))
4863                return -EINVAL;
4864
4865        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4866                return -EINVAL;
4867
4868        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4869                /* Only support XCR0 currently */
4870                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4871                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4872                                guest_xcrs->xcrs[i].value);
4873                        break;
4874                }
4875        if (r)
4876                r = -EINVAL;
4877        return r;
4878}
4879
4880/*
4881 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4882 * stopped by the hypervisor.  This function will be called from the host only.
4883 * EINVAL is returned when the host attempts to set the flag for a guest that
4884 * does not support pv clocks.
4885 */
4886static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4887{
4888        if (!vcpu->arch.pv_time_enabled)
4889                return -EINVAL;
4890        vcpu->arch.pvclock_set_guest_stopped_request = true;
4891        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4892        return 0;
4893}
4894
4895static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4896                                     struct kvm_enable_cap *cap)
4897{
4898        int r;
4899        uint16_t vmcs_version;
4900        void __user *user_ptr;
4901
4902        if (cap->flags)
4903                return -EINVAL;
4904
4905        switch (cap->cap) {
4906        case KVM_CAP_HYPERV_SYNIC2:
4907                if (cap->args[0])
4908                        return -EINVAL;
4909                fallthrough;
4910
4911        case KVM_CAP_HYPERV_SYNIC:
4912                if (!irqchip_in_kernel(vcpu->kvm))
4913                        return -EINVAL;
4914                return kvm_hv_activate_synic(vcpu, cap->cap ==
4915                                             KVM_CAP_HYPERV_SYNIC2);
4916        case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4917                if (!kvm_x86_ops.nested_ops->enable_evmcs)
4918                        return -ENOTTY;
4919                r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
4920                if (!r) {
4921                        user_ptr = (void __user *)(uintptr_t)cap->args[0];
4922                        if (copy_to_user(user_ptr, &vmcs_version,
4923                                         sizeof(vmcs_version)))
4924                                r = -EFAULT;
4925                }
4926                return r;
4927        case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4928                if (!kvm_x86_ops.enable_direct_tlbflush)
4929                        return -ENOTTY;
4930
4931                return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
4932
4933        case KVM_CAP_HYPERV_ENFORCE_CPUID:
4934                return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
4935
4936        case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4937                vcpu->arch.pv_cpuid.enforce = cap->args[0];
4938                if (vcpu->arch.pv_cpuid.enforce)
4939                        kvm_update_pv_runtime(vcpu);
4940
4941                return 0;
4942        default:
4943                return -EINVAL;
4944        }
4945}
4946
4947long kvm_arch_vcpu_ioctl(struct file *filp,
4948                         unsigned int ioctl, unsigned long arg)
4949{
4950        struct kvm_vcpu *vcpu = filp->private_data;
4951        void __user *argp = (void __user *)arg;
4952        int r;
4953        union {
4954                struct kvm_sregs2 *sregs2;
4955                struct kvm_lapic_state *lapic;
4956                struct kvm_xsave *xsave;
4957                struct kvm_xcrs *xcrs;
4958                void *buffer;
4959        } u;
4960
4961        vcpu_load(vcpu);
4962
4963        u.buffer = NULL;
4964        switch (ioctl) {
4965        case KVM_GET_LAPIC: {
4966                r = -EINVAL;
4967                if (!lapic_in_kernel(vcpu))
4968                        goto out;
4969                u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4970                                GFP_KERNEL_ACCOUNT);
4971
4972                r = -ENOMEM;
4973                if (!u.lapic)
4974                        goto out;
4975                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4976                if (r)
4977                        goto out;
4978                r = -EFAULT;
4979                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4980                        goto out;
4981                r = 0;
4982                break;
4983        }
4984        case KVM_SET_LAPIC: {
4985                r = -EINVAL;
4986                if (!lapic_in_kernel(vcpu))
4987                        goto out;
4988                u.lapic = memdup_user(argp, sizeof(*u.lapic));
4989                if (IS_ERR(u.lapic)) {
4990                        r = PTR_ERR(u.lapic);
4991                        goto out_nofree;
4992                }
4993
4994                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4995                break;
4996        }
4997        case KVM_INTERRUPT: {
4998                struct kvm_interrupt irq;
4999
5000                r = -EFAULT;
5001                if (copy_from_user(&irq, argp, sizeof(irq)))
5002                        goto out;
5003                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5004                break;
5005        }
5006        case KVM_NMI: {
5007                r = kvm_vcpu_ioctl_nmi(vcpu);
5008                break;
5009        }
5010        case KVM_SMI: {
5011                r = kvm_vcpu_ioctl_smi(vcpu);
5012                break;
5013        }
5014        case KVM_SET_CPUID: {
5015                struct kvm_cpuid __user *cpuid_arg = argp;
5016                struct kvm_cpuid cpuid;
5017
5018                r = -EFAULT;
5019                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5020                        goto out;
5021                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5022                break;
5023        }
5024        case KVM_SET_CPUID2: {
5025                struct kvm_cpuid2 __user *cpuid_arg = argp;
5026                struct kvm_cpuid2 cpuid;
5027
5028                r = -EFAULT;
5029                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5030                        goto out;
5031                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5032                                              cpuid_arg->entries);
5033                break;
5034        }
5035        case KVM_GET_CPUID2: {
5036                struct kvm_cpuid2 __user *cpuid_arg = argp;
5037                struct kvm_cpuid2 cpuid;
5038
5039                r = -EFAULT;
5040                if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5041                        goto out;
5042                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5043                                              cpuid_arg->entries);
5044                if (r)
5045                        goto out;
5046                r = -EFAULT;
5047                if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5048                        goto out;
5049                r = 0;
5050                break;
5051        }
5052        case KVM_GET_MSRS: {
5053                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5054                r = msr_io(vcpu, argp, do_get_msr, 1);
5055                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5056                break;
5057        }
5058        case KVM_SET_MSRS: {
5059                int idx = srcu_read_lock(&vcpu->kvm->srcu);
5060                r = msr_io(vcpu, argp, do_set_msr, 0);
5061                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5062                break;
5063        }
5064        case KVM_TPR_ACCESS_REPORTING: {
5065                struct kvm_tpr_access_ctl tac;
5066
5067                r = -EFAULT;
5068                if (copy_from_user(&tac, argp, sizeof(tac)))
5069                        goto out;
5070                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5071                if (r)
5072                        goto out;
5073                r = -EFAULT;
5074                if (copy_to_user(argp, &tac, sizeof(tac)))
5075                        goto out;
5076                r = 0;
5077                break;
5078        };
5079        case KVM_SET_VAPIC_ADDR: {
5080                struct kvm_vapic_addr va;
5081                int idx;
5082
5083                r = -EINVAL;
5084                if (!lapic_in_kernel(vcpu))
5085                        goto out;
5086                r = -EFAULT;
5087                if (copy_from_user(&va, argp, sizeof(va)))
5088                        goto out;
5089                idx = srcu_read_lock(&vcpu->kvm->srcu);
5090                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5091                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5092                break;
5093        }
5094        case KVM_X86_SETUP_MCE: {
5095                u64 mcg_cap;
5096
5097                r = -EFAULT;
5098                if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5099                        goto out;
5100                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5101                break;
5102        }
5103        case KVM_X86_SET_MCE: {
5104                struct kvm_x86_mce mce;
5105
5106                r = -EFAULT;
5107                if (copy_from_user(&mce, argp, sizeof(mce)))
5108                        goto out;
5109                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5110                break;
5111        }
5112        case KVM_GET_VCPU_EVENTS: {
5113                struct kvm_vcpu_events events;
5114
5115                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5116
5117                r = -EFAULT;
5118                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5119                        break;
5120                r = 0;
5121                break;
5122        }
5123        case KVM_SET_VCPU_EVENTS: {
5124                struct kvm_vcpu_events events;
5125
5126                r = -EFAULT;
5127                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5128                        break;
5129
5130                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5131                break;
5132        }
5133        case KVM_GET_DEBUGREGS: {
5134                struct kvm_debugregs dbgregs;
5135
5136                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5137
5138                r = -EFAULT;
5139                if (copy_to_user(argp, &dbgregs,
5140                                 sizeof(struct kvm_debugregs)))
5141                        break;
5142                r = 0;
5143                break;
5144        }
5145        case KVM_SET_DEBUGREGS: {
5146                struct kvm_debugregs dbgregs;
5147
5148                r = -EFAULT;
5149                if (copy_from_user(&dbgregs, argp,
5150                                   sizeof(struct kvm_debugregs)))
5151                        break;
5152
5153                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5154                break;
5155        }
5156        case KVM_GET_XSAVE: {
5157                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5158                r = -ENOMEM;
5159                if (!u.xsave)
5160                        break;
5161
5162                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5163
5164                r = -EFAULT;
5165                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5166                        break;
5167                r = 0;
5168                break;
5169        }
5170        case KVM_SET_XSAVE: {
5171                u.xsave = memdup_user(argp, sizeof(*u.xsave));
5172                if (IS_ERR(u.xsave)) {
5173                        r = PTR_ERR(u.xsave);
5174                        goto out_nofree;
5175                }
5176
5177                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5178                break;
5179        }
5180        case KVM_GET_XCRS: {
5181                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5182                r = -ENOMEM;
5183                if (!u.xcrs)
5184                        break;
5185
5186                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5187
5188                r = -EFAULT;
5189                if (copy_to_user(argp, u.xcrs,
5190                                 sizeof(struct kvm_xcrs)))
5191                        break;
5192                r = 0;
5193                break;
5194        }
5195        case KVM_SET_XCRS: {
5196                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5197                if (IS_ERR(u.xcrs)) {
5198                        r = PTR_ERR(u.xcrs);
5199                        goto out_nofree;
5200                }
5201
5202                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5203                break;
5204        }
5205        case KVM_SET_TSC_KHZ: {
5206                u32 user_tsc_khz;
5207
5208                r = -EINVAL;
5209                user_tsc_khz = (u32)arg;
5210
5211                if (kvm_has_tsc_control &&
5212                    user_tsc_khz >= kvm_max_guest_tsc_khz)
5213                        goto out;
5214
5215                if (user_tsc_khz == 0)
5216                        user_tsc_khz = tsc_khz;
5217
5218                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5219                        r = 0;
5220
5221                goto out;
5222        }
5223        case KVM_GET_TSC_KHZ: {
5224                r = vcpu->arch.virtual_tsc_khz;
5225                goto out;
5226        }
5227        case KVM_KVMCLOCK_CTRL: {
5228                r = kvm_set_guest_paused(vcpu);
5229                goto out;
5230        }
5231        case KVM_ENABLE_CAP: {
5232                struct kvm_enable_cap cap;
5233
5234                r = -EFAULT;
5235                if (copy_from_user(&cap, argp, sizeof(cap)))
5236                        goto out;
5237                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5238                break;
5239        }
5240        case KVM_GET_NESTED_STATE: {
5241                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5242                u32 user_data_size;
5243
5244                r = -EINVAL;
5245                if (!kvm_x86_ops.nested_ops->get_state)
5246                        break;
5247
5248                BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5249                r = -EFAULT;
5250                if (get_user(user_data_size, &user_kvm_nested_state->size))
5251                        break;
5252
5253                r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5254                                                     user_data_size);
5255                if (r < 0)
5256                        break;
5257
5258                if (r > user_data_size) {
5259                        if (put_user(r, &user_kvm_nested_state->size))
5260                                r = -EFAULT;
5261                        else
5262                                r = -E2BIG;
5263                        break;
5264                }
5265
5266                r = 0;
5267                break;
5268        }
5269        case KVM_SET_NESTED_STATE: {
5270                struct kvm_nested_state __user *user_kvm_nested_state = argp;
5271                struct kvm_nested_state kvm_state;
5272                int idx;
5273
5274                r = -EINVAL;
5275                if (!kvm_x86_ops.nested_ops->set_state)
5276                        break;
5277
5278                r = -EFAULT;
5279                if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5280                        break;
5281
5282                r = -EINVAL;
5283                if (kvm_state.size < sizeof(kvm_state))
5284                        break;
5285
5286                if (kvm_state.flags &
5287                    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5288                      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5289                      | KVM_STATE_NESTED_GIF_SET))
5290                        break;
5291
5292                /* nested_run_pending implies guest_mode.  */
5293                if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5294                    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5295                        break;
5296
5297                idx = srcu_read_lock(&vcpu->kvm->srcu);
5298                r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5299                srcu_read_unlock(&vcpu->kvm->srcu, idx);
5300                break;
5301        }
5302        case KVM_GET_SUPPORTED_HV_CPUID:
5303                r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5304                break;
5305#ifdef CONFIG_KVM_XEN
5306        case KVM_XEN_VCPU_GET_ATTR: {
5307                struct kvm_xen_vcpu_attr xva;
5308
5309                r = -EFAULT;
5310                if (copy_from_user(&xva, argp, sizeof(xva)))
5311                        goto out;
5312                r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5313                if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5314                        r = -EFAULT;
5315                break;
5316        }
5317        case KVM_XEN_VCPU_SET_ATTR: {
5318                struct kvm_xen_vcpu_attr xva;
5319
5320                r = -EFAULT;
5321                if (copy_from_user(&xva, argp, sizeof(xva)))
5322                        goto out;
5323                r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5324                break;
5325        }
5326#endif
5327        case KVM_GET_SREGS2: {
5328                u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5329                r = -ENOMEM;
5330                if (!u.sregs2)
5331                        goto out;
5332                __get_sregs2(vcpu, u.sregs2);
5333                r = -EFAULT;
5334                if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5335                        goto out;
5336                r = 0;
5337                break;
5338        }
5339        case KVM_SET_SREGS2: {
5340                u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5341                if (IS_ERR(u.sregs2)) {
5342                        r = PTR_ERR(u.sregs2);
5343                        u.sregs2 = NULL;
5344                        goto out;
5345                }
5346                r = __set_sregs2(vcpu, u.sregs2);
5347                break;
5348        }
5349        default:
5350                r = -EINVAL;
5351        }
5352out:
5353        kfree(u.buffer);
5354out_nofree:
5355        vcpu_put(vcpu);
5356        return r;
5357}
5358
5359vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5360{
5361        return VM_FAULT_SIGBUS;
5362}
5363
5364static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5365{
5366        int ret;
5367
5368        if (addr > (unsigned int)(-3 * PAGE_SIZE))
5369                return -EINVAL;
5370        ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5371        return ret;
5372}
5373
5374static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5375                                              u64 ident_addr)
5376{
5377        return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5378}
5379
5380static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5381                                         unsigned long kvm_nr_mmu_pages)
5382{
5383        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5384                return -EINVAL;
5385
5386        mutex_lock(&kvm->slots_lock);
5387
5388        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5389        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5390
5391        mutex_unlock(&kvm->slots_lock);
5392        return 0;
5393}
5394
5395static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5396{
5397        return kvm->arch.n_max_mmu_pages;
5398}
5399
5400static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5401{
5402        struct kvm_pic *pic = kvm->arch.vpic;
5403        int r;
5404
5405        r = 0;
5406        switch (chip->chip_id) {
5407        case KVM_IRQCHIP_PIC_MASTER:
5408                memcpy(&chip->chip.pic, &pic->pics[0],
5409                        sizeof(struct kvm_pic_state));
5410                break;
5411        case KVM_IRQCHIP_PIC_SLAVE:
5412                memcpy(&chip->chip.pic, &pic->pics[1],
5413                        sizeof(struct kvm_pic_state));
5414                break;
5415        case KVM_IRQCHIP_IOAPIC:
5416                kvm_get_ioapic(kvm, &chip->chip.ioapic);
5417                break;
5418        default:
5419                r = -EINVAL;
5420                break;
5421        }
5422        return r;
5423}
5424
5425static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5426{
5427        struct kvm_pic *pic = kvm->arch.vpic;
5428        int r;
5429
5430        r = 0;
5431        switch (chip->chip_id) {
5432        case KVM_IRQCHIP_PIC_MASTER:
5433                spin_lock(&pic->lock);
5434                memcpy(&pic->pics[0], &chip->chip.pic,
5435                        sizeof(struct kvm_pic_state));
5436                spin_unlock(&pic->lock);
5437                break;
5438        case KVM_IRQCHIP_PIC_SLAVE:
5439                spin_lock(&pic->lock);
5440                memcpy(&pic->pics[1], &chip->chip.pic,
5441                        sizeof(struct kvm_pic_state));
5442                spin_unlock(&pic->lock);
5443                break;
5444        case KVM_IRQCHIP_IOAPIC:
5445                kvm_set_ioapic(kvm, &chip->chip.ioapic);
5446                break;
5447        default:
5448                r = -EINVAL;
5449                break;
5450        }
5451        kvm_pic_update_irq(pic);
5452        return r;
5453}
5454
5455static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5456{
5457        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5458
5459        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5460
5461        mutex_lock(&kps->lock);
5462        memcpy(ps, &kps->channels, sizeof(*ps));
5463        mutex_unlock(&kps->lock);
5464        return 0;
5465}
5466
5467static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5468{
5469        int i;
5470        struct kvm_pit *pit = kvm->arch.vpit;
5471
5472        mutex_lock(&pit->pit_state.lock);
5473        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5474        for (i = 0; i < 3; i++)
5475                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5476        mutex_unlock(&pit->pit_state.lock);
5477        return 0;
5478}
5479
5480static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5481{
5482        mutex_lock(&kvm->arch.vpit->pit_state.lock);
5483        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5484                sizeof(ps->channels));
5485        ps->flags = kvm->arch.vpit->pit_state.flags;
5486        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5487        memset(&ps->reserved, 0, sizeof(ps->reserved));
5488        return 0;
5489}
5490
5491static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5492{
5493        int start = 0;
5494        int i;
5495        u32 prev_legacy, cur_legacy;
5496        struct kvm_pit *pit = kvm->arch.vpit;
5497
5498        mutex_lock(&pit->pit_state.lock);
5499        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5500        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5501        if (!prev_legacy && cur_legacy)
5502                start = 1;
5503        memcpy(&pit->pit_state.channels, &ps->channels,
5504               sizeof(pit->pit_state.channels));
5505        pit->pit_state.flags = ps->flags;
5506        for (i = 0; i < 3; i++)
5507                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5508                                   start && i == 0);
5509        mutex_unlock(&pit->pit_state.lock);
5510        return 0;
5511}
5512
5513static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5514                                 struct kvm_reinject_control *control)
5515{
5516        struct kvm_pit *pit = kvm->arch.vpit;
5517
5518        /* pit->pit_state.lock was overloaded to prevent userspace from getting
5519         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5520         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5521         */
5522        mutex_lock(&pit->pit_state.lock);
5523        kvm_pit_set_reinject(pit, control->pit_reinject);
5524        mutex_unlock(&pit->pit_state.lock);
5525
5526        return 0;
5527}
5528
5529void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5530{
5531
5532        /*
5533         * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5534         * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5535         * on all VM-Exits, thus we only need to kick running vCPUs to force a
5536         * VM-Exit.
5537         */
5538        struct kvm_vcpu *vcpu;
5539        int i;
5540
5541        kvm_for_each_vcpu(i, vcpu, kvm)
5542                kvm_vcpu_kick(vcpu);
5543}
5544
5545int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5546                        bool line_status)
5547{
5548        if (!irqchip_in_kernel(kvm))
5549                return -ENXIO;
5550
5551        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5552                                        irq_event->irq, irq_event->level,
5553                                        line_status);
5554        return 0;
5555}
5556
5557int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5558                            struct kvm_enable_cap *cap)
5559{
5560        int r;
5561
5562        if (cap->flags)
5563                return -EINVAL;
5564
5565        switch (cap->cap) {
5566        case KVM_CAP_DISABLE_QUIRKS:
5567                kvm->arch.disabled_quirks = cap->args[0];
5568                r = 0;
5569                break;
5570        case KVM_CAP_SPLIT_IRQCHIP: {
5571                mutex_lock(&kvm->lock);
5572                r = -EINVAL;
5573                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5574                        goto split_irqchip_unlock;
5575                r = -EEXIST;
5576                if (irqchip_in_kernel(kvm))
5577                        goto split_irqchip_unlock;
5578                if (kvm->created_vcpus)
5579                        goto split_irqchip_unlock;
5580                r = kvm_setup_empty_irq_routing(kvm);
5581                if (r)
5582                        goto split_irqchip_unlock;
5583                /* Pairs with irqchip_in_kernel. */
5584                smp_wmb();
5585                kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5586                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5587                r = 0;
5588split_irqchip_unlock:
5589                mutex_unlock(&kvm->lock);
5590                break;
5591        }
5592        case KVM_CAP_X2APIC_API:
5593                r = -EINVAL;
5594                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5595                        break;
5596
5597                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5598                        kvm->arch.x2apic_format = true;
5599                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5600                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
5601
5602                r = 0;
5603                break;
5604        case KVM_CAP_X86_DISABLE_EXITS:
5605                r = -EINVAL;
5606                if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5607                        break;
5608
5609                if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5610                        kvm_can_mwait_in_guest())
5611                        kvm->arch.mwait_in_guest = true;
5612                if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5613                        kvm->arch.hlt_in_guest = true;
5614                if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5615                        kvm->arch.pause_in_guest = true;
5616                if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5617                        kvm->arch.cstate_in_guest = true;
5618                r = 0;
5619                break;
5620        case KVM_CAP_MSR_PLATFORM_INFO:
5621                kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5622                r = 0;
5623                break;
5624        case KVM_CAP_EXCEPTION_PAYLOAD:
5625                kvm->arch.exception_payload_enabled = cap->args[0];
5626                r = 0;
5627                break;
5628        case KVM_CAP_X86_USER_SPACE_MSR:
5629                kvm->arch.user_space_msr_mask = cap->args[0];
5630                r = 0;
5631                break;
5632        case KVM_CAP_X86_BUS_LOCK_EXIT:
5633                r = -EINVAL;
5634                if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5635                        break;
5636
5637                if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5638                    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5639                        break;
5640
5641                if (kvm_has_bus_lock_exit &&
5642                    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5643                        kvm->arch.bus_lock_detection_enabled = true;
5644                r = 0;
5645                break;
5646#ifdef CONFIG_X86_SGX_KVM
5647        case KVM_CAP_SGX_ATTRIBUTE: {
5648                unsigned long allowed_attributes = 0;
5649
5650                r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5651                if (r)
5652                        break;
5653
5654                /* KVM only supports the PROVISIONKEY privileged attribute. */
5655                if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5656                    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5657                        kvm->arch.sgx_provisioning_allowed = true;
5658                else
5659                        r = -EINVAL;
5660                break;
5661        }
5662#endif
5663        case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5664                r = -EINVAL;
5665                if (kvm_x86_ops.vm_copy_enc_context_from)
5666                        r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5667                return r;
5668        case KVM_CAP_EXIT_HYPERCALL:
5669                if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5670                        r = -EINVAL;
5671                        break;
5672                }
5673                kvm->arch.hypercall_exit_enabled = cap->args[0];
5674                r = 0;
5675                break;
5676        case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5677                r = -EINVAL;
5678                if (cap->args[0] & ~1)
5679                        break;
5680                kvm->arch.exit_on_emulation_error = cap->args[0];
5681                r = 0;
5682                break;
5683        default:
5684                r = -EINVAL;
5685                break;
5686        }
5687        return r;
5688}
5689
5690static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5691{
5692        struct kvm_x86_msr_filter *msr_filter;
5693
5694        msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5695        if (!msr_filter)
5696                return NULL;
5697
5698        msr_filter->default_allow = default_allow;
5699        return msr_filter;
5700}
5701
5702static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5703{
5704        u32 i;
5705
5706        if (!msr_filter)
5707                return;
5708
5709        for (i = 0; i < msr_filter->count; i++)
5710                kfree(msr_filter->ranges[i].bitmap);
5711
5712        kfree(msr_filter);
5713}
5714
5715static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5716                              struct kvm_msr_filter_range *user_range)
5717{
5718        unsigned long *bitmap = NULL;
5719        size_t bitmap_size;
5720
5721        if (!user_range->nmsrs)
5722                return 0;
5723
5724        if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5725                return -EINVAL;
5726
5727        if (!user_range->flags)
5728                return -EINVAL;
5729
5730        bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5731        if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5732                return -EINVAL;
5733
5734        bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5735        if (IS_ERR(bitmap))
5736                return PTR_ERR(bitmap);
5737
5738        msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5739                .flags = user_range->flags,
5740                .base = user_range->base,
5741                .nmsrs = user_range->nmsrs,
5742                .bitmap = bitmap,
5743        };
5744
5745        msr_filter->count++;
5746        return 0;
5747}
5748
5749static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5750{
5751        struct kvm_msr_filter __user *user_msr_filter = argp;
5752        struct kvm_x86_msr_filter *new_filter, *old_filter;
5753        struct kvm_msr_filter filter;
5754        bool default_allow;
5755        bool empty = true;
5756        int r = 0;
5757        u32 i;
5758
5759        if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5760                return -EFAULT;
5761
5762        for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5763                empty &= !filter.ranges[i].nmsrs;
5764
5765        default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5766        if (empty && !default_allow)
5767                return -EINVAL;
5768
5769        new_filter = kvm_alloc_msr_filter(default_allow);
5770        if (!new_filter)
5771                return -ENOMEM;
5772
5773        for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5774                r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5775                if (r) {
5776                        kvm_free_msr_filter(new_filter);
5777                        return r;
5778                }
5779        }
5780
5781        mutex_lock(&kvm->lock);
5782
5783        /* The per-VM filter is protected by kvm->lock... */
5784        old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5785
5786        rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5787        synchronize_srcu(&kvm->srcu);
5788
5789        kvm_free_msr_filter(old_filter);
5790
5791        kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5792        mutex_unlock(&kvm->lock);
5793
5794        return 0;
5795}
5796
5797#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5798static int kvm_arch_suspend_notifier(struct kvm *kvm)
5799{
5800        struct kvm_vcpu *vcpu;
5801        int i, ret = 0;
5802
5803        mutex_lock(&kvm->lock);
5804        kvm_for_each_vcpu(i, vcpu, kvm) {
5805                if (!vcpu->arch.pv_time_enabled)
5806                        continue;
5807
5808                ret = kvm_set_guest_paused(vcpu);
5809                if (ret) {
5810                        kvm_err("Failed to pause guest VCPU%d: %d\n",
5811                                vcpu->vcpu_id, ret);
5812                        break;
5813                }
5814        }
5815        mutex_unlock(&kvm->lock);
5816
5817        return ret ? NOTIFY_BAD : NOTIFY_DONE;
5818}
5819
5820int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5821{
5822        switch (state) {
5823        case PM_HIBERNATION_PREPARE:
5824        case PM_SUSPEND_PREPARE:
5825                return kvm_arch_suspend_notifier(kvm);
5826        }
5827
5828        return NOTIFY_DONE;
5829}
5830#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5831
5832long kvm_arch_vm_ioctl(struct file *filp,
5833                       unsigned int ioctl, unsigned long arg)
5834{
5835        struct kvm *kvm = filp->private_data;
5836        void __user *argp = (void __user *)arg;
5837        int r = -ENOTTY;
5838        /*
5839         * This union makes it completely explicit to gcc-3.x
5840         * that these two variables' stack usage should be
5841         * combined, not added together.
5842         */
5843        union {
5844                struct kvm_pit_state ps;
5845                struct kvm_pit_state2 ps2;
5846                struct kvm_pit_config pit_config;
5847        } u;
5848
5849        switch (ioctl) {
5850        case KVM_SET_TSS_ADDR:
5851                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
5852                break;
5853        case KVM_SET_IDENTITY_MAP_ADDR: {
5854                u64 ident_addr;
5855
5856                mutex_lock(&kvm->lock);
5857                r = -EINVAL;
5858                if (kvm->created_vcpus)
5859                        goto set_identity_unlock;
5860                r = -EFAULT;
5861                if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
5862                        goto set_identity_unlock;
5863                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
5864set_identity_unlock:
5865                mutex_unlock(&kvm->lock);
5866                break;
5867        }
5868        case KVM_SET_NR_MMU_PAGES:
5869                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
5870                break;
5871        case KVM_GET_NR_MMU_PAGES:
5872                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5873                break;
5874        case KVM_CREATE_IRQCHIP: {
5875                mutex_lock(&kvm->lock);
5876
5877                r = -EEXIST;
5878                if (irqchip_in_kernel(kvm))
5879                        goto create_irqchip_unlock;
5880
5881                r = -EINVAL;
5882                if (kvm->created_vcpus)
5883                        goto create_irqchip_unlock;
5884
5885                r = kvm_pic_init(kvm);
5886                if (r)
5887                        goto create_irqchip_unlock;
5888
5889                r = kvm_ioapic_init(kvm);
5890                if (r) {
5891                        kvm_pic_destroy(kvm);
5892                        goto create_irqchip_unlock;
5893                }
5894
5895                r = kvm_setup_default_irq_routing(kvm);
5896                if (r) {
5897                        kvm_ioapic_destroy(kvm);
5898                        kvm_pic_destroy(kvm);
5899                        goto create_irqchip_unlock;
5900                }
5901                /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
5902                smp_wmb();
5903                kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
5904        create_irqchip_unlock:
5905                mutex_unlock(&kvm->lock);
5906                break;
5907        }
5908        case KVM_CREATE_PIT:
5909                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5910                goto create_pit;
5911        case KVM_CREATE_PIT2:
5912                r = -EFAULT;
5913                if (copy_from_user(&u.pit_config, argp,
5914                                   sizeof(struct kvm_pit_config)))
5915                        goto out;
5916        create_pit:
5917                mutex_lock(&kvm->lock);
5918                r = -EEXIST;
5919                if (kvm->arch.vpit)
5920                        goto create_pit_unlock;
5921                r = -ENOMEM;
5922                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
5923                if (kvm->arch.vpit)
5924                        r = 0;
5925        create_pit_unlock:
5926                mutex_unlock(&kvm->lock);
5927                break;
5928        case KVM_GET_IRQCHIP: {
5929                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5930                struct kvm_irqchip *chip;
5931
5932                chip = memdup_user(argp, sizeof(*chip));
5933                if (IS_ERR(chip)) {
5934                        r = PTR_ERR(chip);
5935                        goto out;
5936                }
5937
5938                r = -ENXIO;
5939                if (!irqchip_kernel(kvm))
5940                        goto get_irqchip_out;
5941                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5942                if (r)
5943                        goto get_irqchip_out;
5944                r = -EFAULT;
5945                if (copy_to_user(argp, chip, sizeof(*chip)))
5946                        goto get_irqchip_out;
5947                r = 0;
5948        get_irqchip_out:
5949                kfree(chip);
5950                break;
5951        }
5952        case KVM_SET_IRQCHIP: {
5953                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5954                struct kvm_irqchip *chip;
5955
5956                chip = memdup_user(argp, sizeof(*chip));
5957                if (IS_ERR(chip)) {
5958                        r = PTR_ERR(chip);
5959                        goto out;
5960                }
5961
5962                r = -ENXIO;
5963                if (!irqchip_kernel(kvm))
5964                        goto set_irqchip_out;
5965                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5966        set_irqchip_out:
5967                kfree(chip);
5968                break;
5969        }
5970        case KVM_GET_PIT: {
5971                r = -EFAULT;
5972                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5973                        goto out;
5974                r = -ENXIO;
5975                if (!kvm->arch.vpit)
5976                        goto out;
5977                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5978                if (r)
5979                        goto out;
5980                r = -EFAULT;
5981                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5982                        goto out;
5983                r = 0;
5984                break;
5985        }
5986        case KVM_SET_PIT: {
5987                r = -EFAULT;
5988                if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5989                        goto out;
5990                mutex_lock(&kvm->lock);
5991                r = -ENXIO;
5992                if (!kvm->arch.vpit)
5993                        goto set_pit_out;
5994                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5995set_pit_out:
5996                mutex_unlock(&kvm->lock);
5997                break;
5998        }
5999        case KVM_GET_PIT2: {
6000                r = -ENXIO;
6001                if (!kvm->arch.vpit)
6002                        goto out;
6003                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6004                if (r)
6005                        goto out;
6006                r = -EFAULT;
6007                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6008                        goto out;
6009                r = 0;
6010                break;
6011        }
6012        case KVM_SET_PIT2: {
6013                r = -EFAULT;
6014                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6015                        goto out;
6016                mutex_lock(&kvm->lock);
6017                r = -ENXIO;
6018                if (!kvm->arch.vpit)
6019                        goto set_pit2_out;
6020                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6021set_pit2_out:
6022                mutex_unlock(&kvm->lock);
6023                break;
6024        }
6025        case KVM_REINJECT_CONTROL: {
6026                struct kvm_reinject_control control;
6027                r =  -EFAULT;
6028                if (copy_from_user(&control, argp, sizeof(control)))
6029                        goto out;
6030                r = -ENXIO;
6031                if (!kvm->arch.vpit)
6032                        goto out;
6033                r = kvm_vm_ioctl_reinject(kvm, &control);
6034                break;
6035        }
6036        case KVM_SET_BOOT_CPU_ID:
6037                r = 0;
6038                mutex_lock(&kvm->lock);
6039                if (kvm->created_vcpus)
6040                        r = -EBUSY;
6041                else
6042                        kvm->arch.bsp_vcpu_id = arg;
6043                mutex_unlock(&kvm->lock);
6044                break;
6045#ifdef CONFIG_KVM_XEN
6046        case KVM_XEN_HVM_CONFIG: {
6047                struct kvm_xen_hvm_config xhc;
6048                r = -EFAULT;
6049                if (copy_from_user(&xhc, argp, sizeof(xhc)))
6050                        goto out;
6051                r = kvm_xen_hvm_config(kvm, &xhc);
6052                break;
6053        }
6054        case KVM_XEN_HVM_GET_ATTR: {
6055                struct kvm_xen_hvm_attr xha;
6056
6057                r = -EFAULT;
6058                if (copy_from_user(&xha, argp, sizeof(xha)))
6059                        goto out;
6060                r = kvm_xen_hvm_get_attr(kvm, &xha);
6061                if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6062                        r = -EFAULT;
6063                break;
6064        }
6065        case KVM_XEN_HVM_SET_ATTR: {
6066                struct kvm_xen_hvm_attr xha;
6067
6068                r = -EFAULT;
6069                if (copy_from_user(&xha, argp, sizeof(xha)))
6070                        goto out;
6071                r = kvm_xen_hvm_set_attr(kvm, &xha);
6072                break;
6073        }
6074#endif
6075        case KVM_SET_CLOCK: {
6076                struct kvm_arch *ka = &kvm->arch;
6077                struct kvm_clock_data user_ns;
6078                u64 now_ns;
6079
6080                r = -EFAULT;
6081                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6082                        goto out;
6083
6084                r = -EINVAL;
6085                if (user_ns.flags)
6086                        goto out;
6087
6088                r = 0;
6089                /*
6090                 * TODO: userspace has to take care of races with VCPU_RUN, so
6091                 * kvm_gen_update_masterclock() can be cut down to locked
6092                 * pvclock_update_vm_gtod_copy().
6093                 */
6094                kvm_gen_update_masterclock(kvm);
6095
6096                /*
6097                 * This pairs with kvm_guest_time_update(): when masterclock is
6098                 * in use, we use master_kernel_ns + kvmclock_offset to set
6099                 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6100                 * is slightly ahead) here we risk going negative on unsigned
6101                 * 'system_time' when 'user_ns.clock' is very small.
6102                 */
6103                raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6104                if (kvm->arch.use_master_clock)
6105                        now_ns = ka->master_kernel_ns;
6106                else
6107                        now_ns = get_kvmclock_base_ns();
6108                ka->kvmclock_offset = user_ns.clock - now_ns;
6109                raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6110
6111                kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6112                break;
6113        }
6114        case KVM_GET_CLOCK: {
6115                struct kvm_clock_data user_ns;
6116                u64 now_ns;
6117
6118                now_ns = get_kvmclock_ns(kvm);
6119                user_ns.clock = now_ns;
6120                user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6121                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6122
6123                r = -EFAULT;
6124                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6125                        goto out;
6126                r = 0;
6127                break;
6128        }
6129        case KVM_MEMORY_ENCRYPT_OP: {
6130                r = -ENOTTY;
6131                if (kvm_x86_ops.mem_enc_op)
6132                        r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6133                break;
6134        }
6135        case KVM_MEMORY_ENCRYPT_REG_REGION: {
6136                struct kvm_enc_region region;
6137
6138                r = -EFAULT;
6139                if (copy_from_user(&region, argp, sizeof(region)))
6140                        goto out;
6141
6142                r = -ENOTTY;
6143                if (kvm_x86_ops.mem_enc_reg_region)
6144                        r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6145                break;
6146        }
6147        case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6148                struct kvm_enc_region region;
6149
6150                r = -EFAULT;
6151                if (copy_from_user(&region, argp, sizeof(region)))
6152                        goto out;
6153
6154                r = -ENOTTY;
6155                if (kvm_x86_ops.mem_enc_unreg_region)
6156                        r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6157                break;
6158        }
6159        case KVM_HYPERV_EVENTFD: {
6160                struct kvm_hyperv_eventfd hvevfd;
6161
6162                r = -EFAULT;
6163                if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6164                        goto out;
6165                r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6166                break;
6167        }
6168        case KVM_SET_PMU_EVENT_FILTER:
6169                r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6170                break;
6171        case KVM_X86_SET_MSR_FILTER:
6172                r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6173                break;
6174        default:
6175                r = -ENOTTY;
6176        }
6177out:
6178        return r;
6179}
6180
6181static void kvm_init_msr_list(void)
6182{
6183        struct x86_pmu_capability x86_pmu;
6184        u32 dummy[2];
6185        unsigned i;
6186
6187        BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6188                         "Please update the fixed PMCs in msrs_to_saved_all[]");
6189
6190        perf_get_x86_pmu_capability(&x86_pmu);
6191
6192        num_msrs_to_save = 0;
6193        num_emulated_msrs = 0;
6194        num_msr_based_features = 0;
6195
6196        for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6197                if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6198                        continue;
6199
6200                /*
6201                 * Even MSRs that are valid in the host may not be exposed
6202                 * to the guests in some cases.
6203                 */
6204                switch (msrs_to_save_all[i]) {
6205                case MSR_IA32_BNDCFGS:
6206                        if (!kvm_mpx_supported())
6207                                continue;
6208                        break;
6209                case MSR_TSC_AUX:
6210                        if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6211                            !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6212                                continue;
6213                        break;
6214                case MSR_IA32_UMWAIT_CONTROL:
6215                        if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6216                                continue;
6217                        break;
6218                case MSR_IA32_RTIT_CTL:
6219                case MSR_IA32_RTIT_STATUS:
6220                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6221                                continue;
6222                        break;
6223                case MSR_IA32_RTIT_CR3_MATCH:
6224                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6225                            !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6226                                continue;
6227                        break;
6228                case MSR_IA32_RTIT_OUTPUT_BASE:
6229                case MSR_IA32_RTIT_OUTPUT_MASK:
6230                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6231                                (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6232                                 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6233                                continue;
6234                        break;
6235                case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6236                        if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6237                                msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6238                                intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6239                                continue;
6240                        break;
6241                case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6242                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6243                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6244                                continue;
6245                        break;
6246                case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6247                        if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6248                            min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6249                                continue;
6250                        break;
6251                default:
6252                        break;
6253                }
6254
6255                msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6256        }
6257
6258        for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6259                if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6260                        continue;
6261
6262                emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6263        }
6264
6265        for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6266                struct kvm_msr_entry msr;
6267
6268                msr.index = msr_based_features_all[i];
6269                if (kvm_get_msr_feature(&msr))
6270                        continue;
6271
6272                msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6273        }
6274}
6275
6276static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6277                           const void *v)
6278{
6279        int handled = 0;
6280        int n;
6281
6282        do {
6283                n = min(len, 8);
6284                if (!(lapic_in_kernel(vcpu) &&
6285                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6286                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6287                        break;
6288                handled += n;
6289                addr += n;
6290                len -= n;
6291                v += n;
6292        } while (len);
6293
6294        return handled;
6295}
6296
6297static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6298{
6299        int handled = 0;
6300        int n;
6301
6302        do {
6303                n = min(len, 8);
6304                if (!(lapic_in_kernel(vcpu) &&
6305                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6306                                         addr, n, v))
6307                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6308                        break;
6309                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6310                handled += n;
6311                addr += n;
6312                len -= n;
6313                v += n;
6314        } while (len);
6315
6316        return handled;
6317}
6318
6319static void kvm_set_segment(struct kvm_vcpu *vcpu,
6320                        struct kvm_segment *var, int seg)
6321{
6322        static_call(kvm_x86_set_segment)(vcpu, var, seg);
6323}
6324
6325void kvm_get_segment(struct kvm_vcpu *vcpu,
6326                     struct kvm_segment *var, int seg)
6327{
6328        static_call(kvm_x86_get_segment)(vcpu, var, seg);
6329}
6330
6331gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6332                           struct x86_exception *exception)
6333{
6334        gpa_t t_gpa;
6335
6336        BUG_ON(!mmu_is_nested(vcpu));
6337
6338        /* NPT walks are always user-walks */
6339        access |= PFERR_USER_MASK;
6340        t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6341
6342        return t_gpa;
6343}
6344
6345gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6346                              struct x86_exception *exception)
6347{
6348        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6349        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6350}
6351EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6352
6353 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6354                                struct x86_exception *exception)
6355{
6356        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6357        access |= PFERR_FETCH_MASK;
6358        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6359}
6360
6361gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6362                               struct x86_exception *exception)
6363{
6364        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6365        access |= PFERR_WRITE_MASK;
6366        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6367}
6368EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6369
6370/* uses this to access any guest's mapped memory without checking CPL */
6371gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6372                                struct x86_exception *exception)
6373{
6374        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6375}
6376
6377static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6378                                      struct kvm_vcpu *vcpu, u32 access,
6379                                      struct x86_exception *exception)
6380{
6381        void *data = val;
6382        int r = X86EMUL_CONTINUE;
6383
6384        while (bytes) {
6385                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6386                                                            exception);
6387                unsigned offset = addr & (PAGE_SIZE-1);
6388                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6389                int ret;
6390
6391                if (gpa == UNMAPPED_GVA)
6392                        return X86EMUL_PROPAGATE_FAULT;
6393                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6394                                               offset, toread);
6395                if (ret < 0) {
6396                        r = X86EMUL_IO_NEEDED;
6397                        goto out;
6398                }
6399
6400                bytes -= toread;
6401                data += toread;
6402                addr += toread;
6403        }
6404out:
6405        return r;
6406}
6407
6408/* used for instruction fetching */
6409static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6410                                gva_t addr, void *val, unsigned int bytes,
6411                                struct x86_exception *exception)
6412{
6413        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6414        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6415        unsigned offset;
6416        int ret;
6417
6418        /* Inline kvm_read_guest_virt_helper for speed.  */
6419        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6420                                                    exception);
6421        if (unlikely(gpa == UNMAPPED_GVA))
6422                return X86EMUL_PROPAGATE_FAULT;
6423
6424        offset = addr & (PAGE_SIZE-1);
6425        if (WARN_ON(offset + bytes > PAGE_SIZE))
6426                bytes = (unsigned)PAGE_SIZE - offset;
6427        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6428                                       offset, bytes);
6429        if (unlikely(ret < 0))
6430                return X86EMUL_IO_NEEDED;
6431
6432        return X86EMUL_CONTINUE;
6433}
6434
6435int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6436                               gva_t addr, void *val, unsigned int bytes,
6437                               struct x86_exception *exception)
6438{
6439        u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6440
6441        /*
6442         * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6443         * is returned, but our callers are not ready for that and they blindly
6444         * call kvm_inject_page_fault.  Ensure that they at least do not leak
6445         * uninitialized kernel stack memory into cr2 and error code.
6446         */
6447        memset(exception, 0, sizeof(*exception));
6448        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6449                                          exception);
6450}
6451EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6452
6453static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6454                             gva_t addr, void *val, unsigned int bytes,
6455                             struct x86_exception *exception, bool system)
6456{
6457        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6458        u32 access = 0;
6459
6460        if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6461                access |= PFERR_USER_MASK;
6462
6463        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6464}
6465
6466static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6467                unsigned long addr, void *val, unsigned int bytes)
6468{
6469        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6470        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6471
6472        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6473}
6474
6475static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6476                                      struct kvm_vcpu *vcpu, u32 access,
6477                                      struct x86_exception *exception)
6478{
6479        void *data = val;
6480        int r = X86EMUL_CONTINUE;
6481
6482        while (bytes) {
6483                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6484                                                             access,
6485                                                             exception);
6486                unsigned offset = addr & (PAGE_SIZE-1);
6487                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6488                int ret;
6489
6490                if (gpa == UNMAPPED_GVA)
6491                        return X86EMUL_PROPAGATE_FAULT;
6492                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6493                if (ret < 0) {
6494                        r = X86EMUL_IO_NEEDED;
6495                        goto out;
6496                }
6497
6498                bytes -= towrite;
6499                data += towrite;
6500                addr += towrite;
6501        }
6502out:
6503        return r;
6504}
6505
6506static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6507                              unsigned int bytes, struct x86_exception *exception,
6508                              bool system)
6509{
6510        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6511        u32 access = PFERR_WRITE_MASK;
6512
6513        if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6514                access |= PFERR_USER_MASK;
6515
6516        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6517                                           access, exception);
6518}
6519
6520int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6521                                unsigned int bytes, struct x86_exception *exception)
6522{
6523        /* kvm_write_guest_virt_system can pull in tons of pages. */
6524        vcpu->arch.l1tf_flush_l1d = true;
6525
6526        return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6527                                           PFERR_WRITE_MASK, exception);
6528}
6529EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6530
6531int handle_ud(struct kvm_vcpu *vcpu)
6532{
6533        static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6534        int emul_type = EMULTYPE_TRAP_UD;
6535        char sig[5]; /* ud2; .ascii "kvm" */
6536        struct x86_exception e;
6537
6538        if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6539                return 1;
6540
6541        if (force_emulation_prefix &&
6542            kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6543                                sig, sizeof(sig), &e) == 0 &&
6544            memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6545                kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6546                emul_type = EMULTYPE_TRAP_UD_FORCED;
6547        }
6548
6549        return kvm_emulate_instruction(vcpu, emul_type);
6550}
6551EXPORT_SYMBOL_GPL(handle_ud);
6552
6553static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6554                            gpa_t gpa, bool write)
6555{
6556        /* For APIC access vmexit */
6557        if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6558                return 1;
6559
6560        if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6561                trace_vcpu_match_mmio(gva, gpa, write, true);
6562                return 1;
6563        }
6564
6565        return 0;
6566}
6567
6568static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6569                                gpa_t *gpa, struct x86_exception *exception,
6570                                bool write)
6571{
6572        u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6573                | (write ? PFERR_WRITE_MASK : 0);
6574
6575        /*
6576         * currently PKRU is only applied to ept enabled guest so
6577         * there is no pkey in EPT page table for L1 guest or EPT
6578         * shadow page table for L2 guest.
6579         */
6580        if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6581            !permission_fault(vcpu, vcpu->arch.walk_mmu,
6582                              vcpu->arch.mmio_access, 0, access))) {
6583                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6584                                        (gva & (PAGE_SIZE - 1));
6585                trace_vcpu_match_mmio(gva, *gpa, write, false);
6586                return 1;
6587        }
6588
6589        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6590
6591        if (*gpa == UNMAPPED_GVA)
6592                return -1;
6593
6594        return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6595}
6596
6597int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6598                        const void *val, int bytes)
6599{
6600        int ret;
6601
6602        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6603        if (ret < 0)
6604                return 0;
6605        kvm_page_track_write(vcpu, gpa, val, bytes);
6606        return 1;
6607}
6608
6609struct read_write_emulator_ops {
6610        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6611                                  int bytes);
6612        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6613                                  void *val, int bytes);
6614        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6615                               int bytes, void *val);
6616        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6617                                    void *val, int bytes);
6618        bool write;
6619};
6620
6621static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6622{
6623        if (vcpu->mmio_read_completed) {
6624                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6625                               vcpu->mmio_fragments[0].gpa, val);
6626                vcpu->mmio_read_completed = 0;
6627                return 1;
6628        }
6629
6630        return 0;
6631}
6632
6633static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6634                        void *val, int bytes)
6635{
6636        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6637}
6638
6639static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6640                         void *val, int bytes)
6641{
6642        return emulator_write_phys(vcpu, gpa, val, bytes);
6643}
6644
6645static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6646{
6647        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6648        return vcpu_mmio_write(vcpu, gpa, bytes, val);
6649}
6650
6651static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6652                          void *val, int bytes)
6653{
6654        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6655        return X86EMUL_IO_NEEDED;
6656}
6657
6658static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6659                           void *val, int bytes)
6660{
6661        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6662
6663        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6664        return X86EMUL_CONTINUE;
6665}
6666
6667static const struct read_write_emulator_ops read_emultor = {
6668        .read_write_prepare = read_prepare,
6669        .read_write_emulate = read_emulate,
6670        .read_write_mmio = vcpu_mmio_read,
6671        .read_write_exit_mmio = read_exit_mmio,
6672};
6673
6674static const struct read_write_emulator_ops write_emultor = {
6675        .read_write_emulate = write_emulate,
6676        .read_write_mmio = write_mmio,
6677        .read_write_exit_mmio = write_exit_mmio,
6678        .write = true,
6679};
6680
6681static int emulator_read_write_onepage(unsigned long addr, void *val,
6682                                       unsigned int bytes,
6683                                       struct x86_exception *exception,
6684                                       struct kvm_vcpu *vcpu,
6685                                       const struct read_write_emulator_ops *ops)
6686{
6687        gpa_t gpa;
6688        int handled, ret;
6689        bool write = ops->write;
6690        struct kvm_mmio_fragment *frag;
6691        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6692
6693        /*
6694         * If the exit was due to a NPF we may already have a GPA.
6695         * If the GPA is present, use it to avoid the GVA to GPA table walk.
6696         * Note, this cannot be used on string operations since string
6697         * operation using rep will only have the initial GPA from the NPF
6698         * occurred.
6699         */
6700        if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6701            (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6702                gpa = ctxt->gpa_val;
6703                ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6704        } else {
6705                ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6706                if (ret < 0)
6707                        return X86EMUL_PROPAGATE_FAULT;
6708        }
6709
6710        if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6711                return X86EMUL_CONTINUE;
6712
6713        /*
6714         * Is this MMIO handled locally?
6715         */
6716        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6717        if (handled == bytes)
6718                return X86EMUL_CONTINUE;
6719
6720        gpa += handled;
6721        bytes -= handled;
6722        val += handled;
6723
6724        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6725        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6726        frag->gpa = gpa;
6727        frag->data = val;
6728        frag->len = bytes;
6729        return X86EMUL_CONTINUE;
6730}
6731
6732static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6733                        unsigned long addr,
6734                        void *val, unsigned int bytes,
6735                        struct x86_exception *exception,
6736                        const struct read_write_emulator_ops *ops)
6737{
6738        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6739        gpa_t gpa;
6740        int rc;
6741
6742        if (ops->read_write_prepare &&
6743                  ops->read_write_prepare(vcpu, val, bytes))
6744                return X86EMUL_CONTINUE;
6745
6746        vcpu->mmio_nr_fragments = 0;
6747
6748        /* Crossing a page boundary? */
6749        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6750                int now;
6751
6752                now = -addr & ~PAGE_MASK;
6753                rc = emulator_read_write_onepage(addr, val, now, exception,
6754                                                 vcpu, ops);
6755
6756                if (rc != X86EMUL_CONTINUE)
6757                        return rc;
6758                addr += now;
6759                if (ctxt->mode != X86EMUL_MODE_PROT64)
6760                        addr = (u32)addr;
6761                val += now;
6762                bytes -= now;
6763        }
6764
6765        rc = emulator_read_write_onepage(addr, val, bytes, exception,
6766                                         vcpu, ops);
6767        if (rc != X86EMUL_CONTINUE)
6768                return rc;
6769
6770        if (!vcpu->mmio_nr_fragments)
6771                return rc;
6772
6773        gpa = vcpu->mmio_fragments[0].gpa;
6774
6775        vcpu->mmio_needed = 1;
6776        vcpu->mmio_cur_fragment = 0;
6777
6778        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6779        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6780        vcpu->run->exit_reason = KVM_EXIT_MMIO;
6781        vcpu->run->mmio.phys_addr = gpa;
6782
6783        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6784}
6785
6786static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6787                                  unsigned long addr,
6788                                  void *val,
6789                                  unsigned int bytes,
6790                                  struct x86_exception *exception)
6791{
6792        return emulator_read_write(ctxt, addr, val, bytes,
6793                                   exception, &read_emultor);
6794}
6795
6796static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6797                            unsigned long addr,
6798                            const void *val,
6799                            unsigned int bytes,
6800                            struct x86_exception *exception)
6801{
6802        return emulator_read_write(ctxt, addr, (void *)val, bytes,
6803                                   exception, &write_emultor);
6804}
6805
6806#define CMPXCHG_TYPE(t, ptr, old, new) \
6807        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6808
6809#ifdef CONFIG_X86_64
6810#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6811#else
6812#  define CMPXCHG64(ptr, old, new) \
6813        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6814#endif
6815
6816static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6817                                     unsigned long addr,
6818                                     const void *old,
6819                                     const void *new,
6820                                     unsigned int bytes,
6821                                     struct x86_exception *exception)
6822{
6823        struct kvm_host_map map;
6824        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6825        u64 page_line_mask;
6826        gpa_t gpa;
6827        char *kaddr;
6828        bool exchanged;
6829
6830        /* guests cmpxchg8b have to be emulated atomically */
6831        if (bytes > 8 || (bytes & (bytes - 1)))
6832                goto emul_write;
6833
6834        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6835
6836        if (gpa == UNMAPPED_GVA ||
6837            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6838                goto emul_write;
6839
6840        /*
6841         * Emulate the atomic as a straight write to avoid #AC if SLD is
6842         * enabled in the host and the access splits a cache line.
6843         */
6844        if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6845                page_line_mask = ~(cache_line_size() - 1);
6846        else
6847                page_line_mask = PAGE_MASK;
6848
6849        if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6850                goto emul_write;
6851
6852        if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6853                goto emul_write;
6854
6855        kaddr = map.hva + offset_in_page(gpa);
6856
6857        switch (bytes) {
6858        case 1:
6859                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6860                break;
6861        case 2:
6862                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6863                break;
6864        case 4:
6865                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6866                break;
6867        case 8:
6868                exchanged = CMPXCHG64(kaddr, old, new);
6869                break;
6870        default:
6871                BUG();
6872        }
6873
6874        kvm_vcpu_unmap(vcpu, &map, true);
6875
6876        if (!exchanged)
6877                return X86EMUL_CMPXCHG_FAILED;
6878
6879        kvm_page_track_write(vcpu, gpa, new, bytes);
6880
6881        return X86EMUL_CONTINUE;
6882
6883emul_write:
6884        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
6885
6886        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
6887}
6888
6889static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6890{
6891        int r = 0, i;
6892
6893        for (i = 0; i < vcpu->arch.pio.count; i++) {
6894                if (vcpu->arch.pio.in)
6895                        r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6896                                            vcpu->arch.pio.size, pd);
6897                else
6898                        r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6899                                             vcpu->arch.pio.port, vcpu->arch.pio.size,
6900                                             pd);
6901                if (r)
6902                        break;
6903                pd += vcpu->arch.pio.size;
6904        }
6905        return r;
6906}
6907
6908static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6909                               unsigned short port,
6910                               unsigned int count, bool in)
6911{
6912        vcpu->arch.pio.port = port;
6913        vcpu->arch.pio.in = in;
6914        vcpu->arch.pio.count  = count;
6915        vcpu->arch.pio.size = size;
6916
6917        if (!kernel_pio(vcpu, vcpu->arch.pio_data))
6918                return 1;
6919
6920        vcpu->run->exit_reason = KVM_EXIT_IO;
6921        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
6922        vcpu->run->io.size = size;
6923        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6924        vcpu->run->io.count = count;
6925        vcpu->run->io.port = port;
6926
6927        return 0;
6928}
6929
6930static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6931                             unsigned short port, unsigned int count)
6932{
6933        WARN_ON(vcpu->arch.pio.count);
6934        memset(vcpu->arch.pio_data, 0, size * count);
6935        return emulator_pio_in_out(vcpu, size, port, count, true);
6936}
6937
6938static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
6939{
6940        int size = vcpu->arch.pio.size;
6941        unsigned count = vcpu->arch.pio.count;
6942        memcpy(val, vcpu->arch.pio_data, size * count);
6943        trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
6944        vcpu->arch.pio.count = 0;
6945}
6946
6947static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6948                           unsigned short port, void *val, unsigned int count)
6949{
6950        if (vcpu->arch.pio.count) {
6951                /* Complete previous iteration.  */
6952        } else {
6953                int r = __emulator_pio_in(vcpu, size, port, count);
6954                if (!r)
6955                        return r;
6956
6957                /* Results already available, fall through.  */
6958        }
6959
6960        WARN_ON(count != vcpu->arch.pio.count);
6961        complete_emulator_pio_in(vcpu, val);
6962        return 1;
6963}
6964
6965static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6966                                    int size, unsigned short port, void *val,
6967                                    unsigned int count)
6968{
6969        return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6970
6971}
6972
6973static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6974                            unsigned short port, const void *val,
6975                            unsigned int count)
6976{
6977        int ret;
6978
6979        memcpy(vcpu->arch.pio_data, val, size * count);
6980        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6981        ret = emulator_pio_in_out(vcpu, size, port, count, false);
6982        if (ret)
6983                vcpu->arch.pio.count = 0;
6984
6985        return ret;
6986}
6987
6988static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6989                                     int size, unsigned short port,
6990                                     const void *val, unsigned int count)
6991{
6992        return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6993}
6994
6995static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6996{
6997        return static_call(kvm_x86_get_segment_base)(vcpu, seg);
6998}
6999
7000static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7001{
7002        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7003}
7004
7005static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7006{
7007        if (!need_emulate_wbinvd(vcpu))
7008                return X86EMUL_CONTINUE;
7009
7010        if (static_call(kvm_x86_has_wbinvd_exit)()) {
7011                int cpu = get_cpu();
7012
7013                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7014                on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7015                                wbinvd_ipi, NULL, 1);
7016                put_cpu();
7017                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7018        } else
7019                wbinvd();
7020        return X86EMUL_CONTINUE;
7021}
7022
7023int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7024{
7025        kvm_emulate_wbinvd_noskip(vcpu);
7026        return kvm_skip_emulated_instruction(vcpu);
7027}
7028EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7029
7030
7031
7032static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7033{
7034        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7035}
7036
7037static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7038                            unsigned long *dest)
7039{
7040        kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7041}
7042
7043static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7044                           unsigned long value)
7045{
7046
7047        return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7048}
7049
7050static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7051{
7052        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7053}
7054
7055static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7056{
7057        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7058        unsigned long value;
7059
7060        switch (cr) {
7061        case 0:
7062                value = kvm_read_cr0(vcpu);
7063                break;
7064        case 2:
7065                value = vcpu->arch.cr2;
7066                break;
7067        case 3:
7068                value = kvm_read_cr3(vcpu);
7069                break;
7070        case 4:
7071                value = kvm_read_cr4(vcpu);
7072                break;
7073        case 8:
7074                value = kvm_get_cr8(vcpu);
7075                break;
7076        default:
7077                kvm_err("%s: unexpected cr %u\n", __func__, cr);
7078                return 0;
7079        }
7080
7081        return value;
7082}
7083
7084static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7085{
7086        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7087        int res = 0;
7088
7089        switch (cr) {
7090        case 0:
7091                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7092                break;
7093        case 2:
7094                vcpu->arch.cr2 = val;
7095                break;
7096        case 3:
7097                res = kvm_set_cr3(vcpu, val);
7098                break;
7099        case 4:
7100                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7101                break;
7102        case 8:
7103                res = kvm_set_cr8(vcpu, val);
7104                break;
7105        default:
7106                kvm_err("%s: unexpected cr %u\n", __func__, cr);
7107                res = -1;
7108        }
7109
7110        return res;
7111}
7112
7113static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7114{
7115        return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7116}
7117
7118static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7119{
7120        static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7121}
7122
7123static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7124{
7125        static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7126}
7127
7128static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7129{
7130        static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7131}
7132
7133static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7134{
7135        static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7136}
7137
7138static unsigned long emulator_get_cached_segment_base(
7139        struct x86_emulate_ctxt *ctxt, int seg)
7140{
7141        return get_segment_base(emul_to_vcpu(ctxt), seg);
7142}
7143
7144static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7145                                 struct desc_struct *desc, u32 *base3,
7146                                 int seg)
7147{
7148        struct kvm_segment var;
7149
7150        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7151        *selector = var.selector;
7152
7153        if (var.unusable) {
7154                memset(desc, 0, sizeof(*desc));
7155                if (base3)
7156                        *base3 = 0;
7157                return false;
7158        }
7159
7160        if (var.g)
7161                var.limit >>= 12;
7162        set_desc_limit(desc, var.limit);
7163        set_desc_base(desc, (unsigned long)var.base);
7164#ifdef CONFIG_X86_64
7165        if (base3)
7166                *base3 = var.base >> 32;
7167#endif
7168        desc->type = var.type;
7169        desc->s = var.s;
7170        desc->dpl = var.dpl;
7171        desc->p = var.present;
7172        desc->avl = var.avl;
7173        desc->l = var.l;
7174        desc->d = var.db;
7175        desc->g = var.g;
7176
7177        return true;
7178}
7179
7180static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7181                                 struct desc_struct *desc, u32 base3,
7182                                 int seg)
7183{
7184        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7185        struct kvm_segment var;
7186
7187        var.selector = selector;
7188        var.base = get_desc_base(desc);
7189#ifdef CONFIG_X86_64
7190        var.base |= ((u64)base3) << 32;
7191#endif
7192        var.limit = get_desc_limit(desc);
7193        if (desc->g)
7194                var.limit = (var.limit << 12) | 0xfff;
7195        var.type = desc->type;
7196        var.dpl = desc->dpl;
7197        var.db = desc->d;
7198        var.s = desc->s;
7199        var.l = desc->l;
7200        var.g = desc->g;
7201        var.avl = desc->avl;
7202        var.present = desc->p;
7203        var.unusable = !var.present;
7204        var.padding = 0;
7205
7206        kvm_set_segment(vcpu, &var, seg);
7207        return;
7208}
7209
7210static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7211                            u32 msr_index, u64 *pdata)
7212{
7213        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7214        int r;
7215
7216        r = kvm_get_msr(vcpu, msr_index, pdata);
7217
7218        if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7219                /* Bounce to user space */
7220                return X86EMUL_IO_NEEDED;
7221        }
7222
7223        return r;
7224}
7225
7226static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7227                            u32 msr_index, u64 data)
7228{
7229        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7230        int r;
7231
7232        r = kvm_set_msr(vcpu, msr_index, data);
7233
7234        if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7235                /* Bounce to user space */
7236                return X86EMUL_IO_NEEDED;
7237        }
7238
7239        return r;
7240}
7241
7242static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7243{
7244        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7245
7246        return vcpu->arch.smbase;
7247}
7248
7249static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7250{
7251        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7252
7253        vcpu->arch.smbase = smbase;
7254}
7255
7256static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7257                              u32 pmc)
7258{
7259        return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7260}
7261
7262static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7263                             u32 pmc, u64 *pdata)
7264{
7265        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7266}
7267
7268static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7269{
7270        emul_to_vcpu(ctxt)->arch.halt_request = 1;
7271}
7272
7273static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7274                              struct x86_instruction_info *info,
7275                              enum x86_intercept_stage stage)
7276{
7277        return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7278                                            &ctxt->exception);
7279}
7280
7281static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7282                              u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7283                              bool exact_only)
7284{
7285        return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7286}
7287
7288static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7289{
7290        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7291}
7292
7293static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7294{
7295        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7296}
7297
7298static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7299{
7300        return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7301}
7302
7303static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7304{
7305        return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7306}
7307
7308static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7309{
7310        kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7311}
7312
7313static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7314{
7315        static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7316}
7317
7318static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7319{
7320        return emul_to_vcpu(ctxt)->arch.hflags;
7321}
7322
7323static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7324{
7325        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7326
7327        kvm_smm_changed(vcpu, false);
7328}
7329
7330static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7331                                  const char *smstate)
7332{
7333        return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7334}
7335
7336static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7337{
7338        kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7339}
7340
7341static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7342{
7343        return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7344}
7345
7346static const struct x86_emulate_ops emulate_ops = {
7347        .read_gpr            = emulator_read_gpr,
7348        .write_gpr           = emulator_write_gpr,
7349        .read_std            = emulator_read_std,
7350        .write_std           = emulator_write_std,
7351        .read_phys           = kvm_read_guest_phys_system,
7352        .fetch               = kvm_fetch_guest_virt,
7353        .read_emulated       = emulator_read_emulated,
7354        .write_emulated      = emulator_write_emulated,
7355        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7356        .invlpg              = emulator_invlpg,
7357        .pio_in_emulated     = emulator_pio_in_emulated,
7358        .pio_out_emulated    = emulator_pio_out_emulated,
7359        .get_segment         = emulator_get_segment,
7360        .set_segment         = emulator_set_segment,
7361        .get_cached_segment_base = emulator_get_cached_segment_base,
7362        .get_gdt             = emulator_get_gdt,
7363        .get_idt             = emulator_get_idt,
7364        .set_gdt             = emulator_set_gdt,
7365        .set_idt             = emulator_set_idt,
7366        .get_cr              = emulator_get_cr,
7367        .set_cr              = emulator_set_cr,
7368        .cpl                 = emulator_get_cpl,
7369        .get_dr              = emulator_get_dr,
7370        .set_dr              = emulator_set_dr,
7371        .get_smbase          = emulator_get_smbase,
7372        .set_smbase          = emulator_set_smbase,
7373        .set_msr             = emulator_set_msr,
7374        .get_msr             = emulator_get_msr,
7375        .check_pmc           = emulator_check_pmc,
7376        .read_pmc            = emulator_read_pmc,
7377        .halt                = emulator_halt,
7378        .wbinvd              = emulator_wbinvd,
7379        .fix_hypercall       = emulator_fix_hypercall,
7380        .intercept           = emulator_intercept,
7381        .get_cpuid           = emulator_get_cpuid,
7382        .guest_has_long_mode = emulator_guest_has_long_mode,
7383        .guest_has_movbe     = emulator_guest_has_movbe,
7384        .guest_has_fxsr      = emulator_guest_has_fxsr,
7385        .set_nmi_mask        = emulator_set_nmi_mask,
7386        .get_hflags          = emulator_get_hflags,
7387        .exiting_smm         = emulator_exiting_smm,
7388        .leave_smm           = emulator_leave_smm,
7389        .triple_fault        = emulator_triple_fault,
7390        .set_xcr             = emulator_set_xcr,
7391};
7392
7393static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7394{
7395        u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7396        /*
7397         * an sti; sti; sequence only disable interrupts for the first
7398         * instruction. So, if the last instruction, be it emulated or
7399         * not, left the system with the INT_STI flag enabled, it
7400         * means that the last instruction is an sti. We should not
7401         * leave the flag on in this case. The same goes for mov ss
7402         */
7403        if (int_shadow & mask)
7404                mask = 0;
7405        if (unlikely(int_shadow || mask)) {
7406                static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7407                if (!mask)
7408                        kvm_make_request(KVM_REQ_EVENT, vcpu);
7409        }
7410}
7411
7412static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7413{
7414        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7415        if (ctxt->exception.vector == PF_VECTOR)
7416                return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7417
7418        if (ctxt->exception.error_code_valid)
7419                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7420                                      ctxt->exception.error_code);
7421        else
7422                kvm_queue_exception(vcpu, ctxt->exception.vector);
7423        return false;
7424}
7425
7426static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7427{
7428        struct x86_emulate_ctxt *ctxt;
7429
7430        ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7431        if (!ctxt) {
7432                pr_err("kvm: failed to allocate vcpu's emulator\n");
7433                return NULL;
7434        }
7435
7436        ctxt->vcpu = vcpu;
7437        ctxt->ops = &emulate_ops;
7438        vcpu->arch.emulate_ctxt = ctxt;
7439
7440        return ctxt;
7441}
7442
7443static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7444{
7445        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7446        int cs_db, cs_l;
7447
7448        static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7449
7450        ctxt->gpa_available = false;
7451        ctxt->eflags = kvm_get_rflags(vcpu);
7452        ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7453
7454        ctxt->eip = kvm_rip_read(vcpu);
7455        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7456                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7457                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7458                     cs_db                              ? X86EMUL_MODE_PROT32 :
7459                                                          X86EMUL_MODE_PROT16;
7460        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7461        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7462        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7463
7464        ctxt->interruptibility = 0;
7465        ctxt->have_exception = false;
7466        ctxt->exception.vector = -1;
7467        ctxt->perm_ok = false;
7468
7469        init_decode_cache(ctxt);
7470        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7471}
7472
7473void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7474{
7475        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7476        int ret;
7477
7478        init_emulate_ctxt(vcpu);
7479
7480        ctxt->op_bytes = 2;
7481        ctxt->ad_bytes = 2;
7482        ctxt->_eip = ctxt->eip + inc_eip;
7483        ret = emulate_int_real(ctxt, irq);
7484
7485        if (ret != X86EMUL_CONTINUE) {
7486                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7487        } else {
7488                ctxt->eip = ctxt->_eip;
7489                kvm_rip_write(vcpu, ctxt->eip);
7490                kvm_set_rflags(vcpu, ctxt->eflags);
7491        }
7492}
7493EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7494
7495static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7496{
7497        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7498        u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7499        struct kvm_run *run = vcpu->run;
7500
7501        run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7502        run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7503        run->emulation_failure.ndata = 0;
7504        run->emulation_failure.flags = 0;
7505
7506        if (insn_size) {
7507                run->emulation_failure.ndata = 3;
7508                run->emulation_failure.flags |=
7509                        KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7510                run->emulation_failure.insn_size = insn_size;
7511                memset(run->emulation_failure.insn_bytes, 0x90,
7512                       sizeof(run->emulation_failure.insn_bytes));
7513                memcpy(run->emulation_failure.insn_bytes,
7514                       ctxt->fetch.data, insn_size);
7515        }
7516}
7517
7518static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7519{
7520        struct kvm *kvm = vcpu->kvm;
7521
7522        ++vcpu->stat.insn_emulation_fail;
7523        trace_kvm_emulate_insn_failed(vcpu);
7524
7525        if (emulation_type & EMULTYPE_VMWARE_GP) {
7526                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7527                return 1;
7528        }
7529
7530        if (kvm->arch.exit_on_emulation_error ||
7531            (emulation_type & EMULTYPE_SKIP)) {
7532                prepare_emulation_failure_exit(vcpu);
7533                return 0;
7534        }
7535
7536        kvm_queue_exception(vcpu, UD_VECTOR);
7537
7538        if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7539                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7540                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7541                vcpu->run->internal.ndata = 0;
7542                return 0;
7543        }
7544
7545        return 1;
7546}
7547
7548static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7549                                  bool write_fault_to_shadow_pgtable,
7550                                  int emulation_type)
7551{
7552        gpa_t gpa = cr2_or_gpa;
7553        kvm_pfn_t pfn;
7554
7555        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7556                return false;
7557
7558        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7559            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7560                return false;
7561
7562        if (!vcpu->arch.mmu->direct_map) {
7563                /*
7564                 * Write permission should be allowed since only
7565                 * write access need to be emulated.
7566                 */
7567                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7568
7569                /*
7570                 * If the mapping is invalid in guest, let cpu retry
7571                 * it to generate fault.
7572                 */
7573                if (gpa == UNMAPPED_GVA)
7574                        return true;
7575        }
7576
7577        /*
7578         * Do not retry the unhandleable instruction if it faults on the
7579         * readonly host memory, otherwise it will goto a infinite loop:
7580         * retry instruction -> write #PF -> emulation fail -> retry
7581         * instruction -> ...
7582         */
7583        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7584
7585        /*
7586         * If the instruction failed on the error pfn, it can not be fixed,
7587         * report the error to userspace.
7588         */
7589        if (is_error_noslot_pfn(pfn))
7590                return false;
7591
7592        kvm_release_pfn_clean(pfn);
7593
7594        /* The instructions are well-emulated on direct mmu. */
7595        if (vcpu->arch.mmu->direct_map) {
7596                unsigned int indirect_shadow_pages;
7597
7598                write_lock(&vcpu->kvm->mmu_lock);
7599                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7600                write_unlock(&vcpu->kvm->mmu_lock);
7601
7602                if (indirect_shadow_pages)
7603                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7604
7605                return true;
7606        }
7607
7608        /*
7609         * if emulation was due to access to shadowed page table
7610         * and it failed try to unshadow page and re-enter the
7611         * guest to let CPU execute the instruction.
7612         */
7613        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7614
7615        /*
7616         * If the access faults on its page table, it can not
7617         * be fixed by unprotecting shadow page and it should
7618         * be reported to userspace.
7619         */
7620        return !write_fault_to_shadow_pgtable;
7621}
7622
7623static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7624                              gpa_t cr2_or_gpa,  int emulation_type)
7625{
7626        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7627        unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7628
7629        last_retry_eip = vcpu->arch.last_retry_eip;
7630        last_retry_addr = vcpu->arch.last_retry_addr;
7631
7632        /*
7633         * If the emulation is caused by #PF and it is non-page_table
7634         * writing instruction, it means the VM-EXIT is caused by shadow
7635         * page protected, we can zap the shadow page and retry this
7636         * instruction directly.
7637         *
7638         * Note: if the guest uses a non-page-table modifying instruction
7639         * on the PDE that points to the instruction, then we will unmap
7640         * the instruction and go to an infinite loop. So, we cache the
7641         * last retried eip and the last fault address, if we meet the eip
7642         * and the address again, we can break out of the potential infinite
7643         * loop.
7644         */
7645        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7646
7647        if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7648                return false;
7649
7650        if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7651            WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7652                return false;
7653
7654        if (x86_page_table_writing_insn(ctxt))
7655                return false;
7656
7657        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7658                return false;
7659
7660        vcpu->arch.last_retry_eip = ctxt->eip;
7661        vcpu->arch.last_retry_addr = cr2_or_gpa;
7662
7663        if (!vcpu->arch.mmu->direct_map)
7664                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7665
7666        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7667
7668        return true;
7669}
7670
7671static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7672static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7673
7674static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7675{
7676        trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7677
7678        if (entering_smm) {
7679                vcpu->arch.hflags |= HF_SMM_MASK;
7680        } else {
7681                vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7682
7683                /* Process a latched INIT or SMI, if any.  */
7684                kvm_make_request(KVM_REQ_EVENT, vcpu);
7685
7686                /*
7687                 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7688                 * on SMM exit we still need to reload them from
7689                 * guest memory
7690                 */
7691                vcpu->arch.pdptrs_from_userspace = false;
7692        }
7693
7694        kvm_mmu_reset_context(vcpu);
7695}
7696
7697static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7698                                unsigned long *db)
7699{
7700        u32 dr6 = 0;
7701        int i;
7702        u32 enable, rwlen;
7703
7704        enable = dr7;
7705        rwlen = dr7 >> 16;
7706        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7707                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7708                        dr6 |= (1 << i);
7709        return dr6;
7710}
7711
7712static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7713{
7714        struct kvm_run *kvm_run = vcpu->run;
7715
7716        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7717                kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7718                kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7719                kvm_run->debug.arch.exception = DB_VECTOR;
7720                kvm_run->exit_reason = KVM_EXIT_DEBUG;
7721                return 0;
7722        }
7723        kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7724        return 1;
7725}
7726
7727int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7728{
7729        unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7730        int r;
7731
7732        r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7733        if (unlikely(!r))
7734                return 0;
7735
7736        /*
7737         * rflags is the old, "raw" value of the flags.  The new value has
7738         * not been saved yet.
7739         *
7740         * This is correct even for TF set by the guest, because "the
7741         * processor will not generate this exception after the instruction
7742         * that sets the TF flag".
7743         */
7744        if (unlikely(rflags & X86_EFLAGS_TF))
7745                r = kvm_vcpu_do_singlestep(vcpu);
7746        return r;
7747}
7748EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7749
7750static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7751{
7752        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7753            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7754                struct kvm_run *kvm_run = vcpu->run;
7755                unsigned long eip = kvm_get_linear_rip(vcpu);
7756                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7757                                           vcpu->arch.guest_debug_dr7,
7758                                           vcpu->arch.eff_db);
7759
7760                if (dr6 != 0) {
7761                        kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7762                        kvm_run->debug.arch.pc = eip;
7763                        kvm_run->debug.arch.exception = DB_VECTOR;
7764                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
7765                        *r = 0;
7766                        return true;
7767                }
7768        }
7769
7770        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7771            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7772                unsigned long eip = kvm_get_linear_rip(vcpu);
7773                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7774                                           vcpu->arch.dr7,
7775                                           vcpu->arch.db);
7776
7777                if (dr6 != 0) {
7778                        kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7779                        *r = 1;
7780                        return true;
7781                }
7782        }
7783
7784        return false;
7785}
7786
7787static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7788{
7789        switch (ctxt->opcode_len) {
7790        case 1:
7791                switch (ctxt->b) {
7792                case 0xe4:      /* IN */
7793                case 0xe5:
7794                case 0xec:
7795                case 0xed:
7796                case 0xe6:      /* OUT */
7797                case 0xe7:
7798                case 0xee:
7799                case 0xef:
7800                case 0x6c:      /* INS */
7801                case 0x6d:
7802                case 0x6e:      /* OUTS */
7803                case 0x6f:
7804                        return true;
7805                }
7806                break;
7807        case 2:
7808                switch (ctxt->b) {
7809                case 0x33:      /* RDPMC */
7810                        return true;
7811                }
7812                break;
7813        }
7814
7815        return false;
7816}
7817
7818/*
7819 * Decode to be emulated instruction. Return EMULATION_OK if success.
7820 */
7821int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
7822                                    void *insn, int insn_len)
7823{
7824        int r = EMULATION_OK;
7825        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7826
7827        init_emulate_ctxt(vcpu);
7828
7829        /*
7830         * We will reenter on the same instruction since we do not set
7831         * complete_userspace_io. This does not handle watchpoints yet,
7832         * those would be handled in the emulate_ops.
7833         */
7834        if (!(emulation_type & EMULTYPE_SKIP) &&
7835            kvm_vcpu_check_breakpoint(vcpu, &r))
7836                return r;
7837
7838        r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
7839
7840        trace_kvm_emulate_insn_start(vcpu);
7841        ++vcpu->stat.insn_emulation;
7842
7843        return r;
7844}
7845EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
7846
7847int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7848                            int emulation_type, void *insn, int insn_len)
7849{
7850        int r;
7851        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7852        bool writeback = true;
7853        bool write_fault_to_spt;
7854
7855        if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
7856                return 1;
7857
7858        vcpu->arch.l1tf_flush_l1d = true;
7859
7860        /*
7861         * Clear write_fault_to_shadow_pgtable here to ensure it is
7862         * never reused.
7863         */
7864        write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
7865        vcpu->arch.write_fault_to_shadow_pgtable = false;
7866
7867        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
7868                kvm_clear_exception_queue(vcpu);
7869
7870                r = x86_decode_emulated_instruction(vcpu, emulation_type,
7871                                                    insn, insn_len);
7872                if (r != EMULATION_OK)  {
7873                        if ((emulation_type & EMULTYPE_TRAP_UD) ||
7874                            (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7875                                kvm_queue_exception(vcpu, UD_VECTOR);
7876                                return 1;
7877                        }
7878                        if (reexecute_instruction(vcpu, cr2_or_gpa,
7879                                                  write_fault_to_spt,
7880                                                  emulation_type))
7881                                return 1;
7882                        if (ctxt->have_exception) {
7883                                /*
7884                                 * #UD should result in just EMULATION_FAILED, and trap-like
7885                                 * exception should not be encountered during decode.
7886                                 */
7887                                WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7888                                             exception_type(ctxt->exception.vector) == EXCPT_TRAP);
7889                                inject_emulated_exception(vcpu);
7890                                return 1;
7891                        }
7892                        return handle_emulation_failure(vcpu, emulation_type);
7893                }
7894        }
7895
7896        if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7897            !is_vmware_backdoor_opcode(ctxt)) {
7898                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7899                return 1;
7900        }
7901
7902        /*
7903         * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7904         * for kvm_skip_emulated_instruction().  The caller is responsible for
7905         * updating interruptibility state and injecting single-step #DBs.
7906         */
7907        if (emulation_type & EMULTYPE_SKIP) {
7908                kvm_rip_write(vcpu, ctxt->_eip);
7909                if (ctxt->eflags & X86_EFLAGS_RF)
7910                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
7911                return 1;
7912        }
7913
7914        if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
7915                return 1;
7916
7917        /* this is needed for vmware backdoor interface to work since it
7918           changes registers values  during IO operation */
7919        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7920                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7921                emulator_invalidate_register_cache(ctxt);
7922        }
7923
7924restart:
7925        if (emulation_type & EMULTYPE_PF) {
7926                /* Save the faulting GPA (cr2) in the address field */
7927                ctxt->exception.address = cr2_or_gpa;
7928
7929                /* With shadow page tables, cr2 contains a GVA or nGPA. */
7930                if (vcpu->arch.mmu->direct_map) {
7931                        ctxt->gpa_available = true;
7932                        ctxt->gpa_val = cr2_or_gpa;
7933                }
7934        } else {
7935                /* Sanitize the address out of an abundance of paranoia. */
7936                ctxt->exception.address = 0;
7937        }
7938
7939        r = x86_emulate_insn(ctxt);
7940
7941        if (r == EMULATION_INTERCEPTED)
7942                return 1;
7943
7944        if (r == EMULATION_FAILED) {
7945                if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
7946                                        emulation_type))
7947                        return 1;
7948
7949                return handle_emulation_failure(vcpu, emulation_type);
7950        }
7951
7952        if (ctxt->have_exception) {
7953                r = 1;
7954                if (inject_emulated_exception(vcpu))
7955                        return r;
7956        } else if (vcpu->arch.pio.count) {
7957                if (!vcpu->arch.pio.in) {
7958                        /* FIXME: return into emulator if single-stepping.  */
7959                        vcpu->arch.pio.count = 0;
7960                } else {
7961                        writeback = false;
7962                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
7963                }
7964                r = 0;
7965        } else if (vcpu->mmio_needed) {
7966                ++vcpu->stat.mmio_exits;
7967
7968                if (!vcpu->mmio_is_write)
7969                        writeback = false;
7970                r = 0;
7971                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7972        } else if (r == EMULATION_RESTART)
7973                goto restart;
7974        else
7975                r = 1;
7976
7977        if (writeback) {
7978                unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7979                toggle_interruptibility(vcpu, ctxt->interruptibility);
7980                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
7981                if (!ctxt->have_exception ||
7982                    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7983                        kvm_rip_write(vcpu, ctxt->eip);
7984                        if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
7985                                r = kvm_vcpu_do_singlestep(vcpu);
7986                        if (kvm_x86_ops.update_emulated_instruction)
7987                                static_call(kvm_x86_update_emulated_instruction)(vcpu);
7988                        __kvm_set_rflags(vcpu, ctxt->eflags);
7989                }
7990
7991                /*
7992                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7993                 * do nothing, and it will be requested again as soon as
7994                 * the shadow expires.  But we still need to check here,
7995                 * because POPF has no interrupt shadow.
7996                 */
7997                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7998                        kvm_make_request(KVM_REQ_EVENT, vcpu);
7999        } else
8000                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8001
8002        return r;
8003}
8004
8005int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8006{
8007        return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8008}
8009EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8010
8011int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8012                                        void *insn, int insn_len)
8013{
8014        return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8015}
8016EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8017
8018static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8019{
8020        vcpu->arch.pio.count = 0;
8021        return 1;
8022}
8023
8024static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8025{
8026        vcpu->arch.pio.count = 0;
8027
8028        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8029                return 1;
8030
8031        return kvm_skip_emulated_instruction(vcpu);
8032}
8033
8034static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8035                            unsigned short port)
8036{
8037        unsigned long val = kvm_rax_read(vcpu);
8038        int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8039
8040        if (ret)
8041                return ret;
8042
8043        /*
8044         * Workaround userspace that relies on old KVM behavior of %rip being
8045         * incremented prior to exiting to userspace to handle "OUT 0x7e".
8046         */
8047        if (port == 0x7e &&
8048            kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8049                vcpu->arch.complete_userspace_io =
8050                        complete_fast_pio_out_port_0x7e;
8051                kvm_skip_emulated_instruction(vcpu);
8052        } else {
8053                vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8054                vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8055        }
8056        return 0;
8057}
8058
8059static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8060{
8061        unsigned long val;
8062
8063        /* We should only ever be called with arch.pio.count equal to 1 */
8064        BUG_ON(vcpu->arch.pio.count != 1);
8065
8066        if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8067                vcpu->arch.pio.count = 0;
8068                return 1;
8069        }
8070
8071        /* For size less than 4 we merge, else we zero extend */
8072        val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8073
8074        /*
8075         * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8076         * the copy and tracing
8077         */
8078        emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8079        kvm_rax_write(vcpu, val);
8080
8081        return kvm_skip_emulated_instruction(vcpu);
8082}
8083
8084static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8085                           unsigned short port)
8086{
8087        unsigned long val;
8088        int ret;
8089
8090        /* For size less than 4 we merge, else we zero extend */
8091        val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8092
8093        ret = emulator_pio_in(vcpu, size, port, &val, 1);
8094        if (ret) {
8095                kvm_rax_write(vcpu, val);
8096                return ret;
8097        }
8098
8099        vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8100        vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8101
8102        return 0;
8103}
8104
8105int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8106{
8107        int ret;
8108
8109        if (in)
8110                ret = kvm_fast_pio_in(vcpu, size, port);
8111        else
8112                ret = kvm_fast_pio_out(vcpu, size, port);
8113        return ret && kvm_skip_emulated_instruction(vcpu);
8114}
8115EXPORT_SYMBOL_GPL(kvm_fast_pio);
8116
8117static int kvmclock_cpu_down_prep(unsigned int cpu)
8118{
8119        __this_cpu_write(cpu_tsc_khz, 0);
8120        return 0;
8121}
8122
8123static void tsc_khz_changed(void *data)
8124{
8125        struct cpufreq_freqs *freq = data;
8126        unsigned long khz = 0;
8127
8128        if (data)
8129                khz = freq->new;
8130        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8131                khz = cpufreq_quick_get(raw_smp_processor_id());
8132        if (!khz)
8133                khz = tsc_khz;
8134        __this_cpu_write(cpu_tsc_khz, khz);
8135}
8136
8137#ifdef CONFIG_X86_64
8138static void kvm_hyperv_tsc_notifier(void)
8139{
8140        struct kvm *kvm;
8141        struct kvm_vcpu *vcpu;
8142        int cpu;
8143        unsigned long flags;
8144
8145        mutex_lock(&kvm_lock);
8146        list_for_each_entry(kvm, &vm_list, vm_list)
8147                kvm_make_mclock_inprogress_request(kvm);
8148
8149        hyperv_stop_tsc_emulation();
8150
8151        /* TSC frequency always matches when on Hyper-V */
8152        for_each_present_cpu(cpu)
8153                per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8154        kvm_max_guest_tsc_khz = tsc_khz;
8155
8156        list_for_each_entry(kvm, &vm_list, vm_list) {
8157                struct kvm_arch *ka = &kvm->arch;
8158
8159                raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8160                pvclock_update_vm_gtod_copy(kvm);
8161                raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8162
8163                kvm_for_each_vcpu(cpu, vcpu, kvm)
8164                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8165
8166                kvm_for_each_vcpu(cpu, vcpu, kvm)
8167                        kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8168        }
8169        mutex_unlock(&kvm_lock);
8170}
8171#endif
8172
8173static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8174{
8175        struct kvm *kvm;
8176        struct kvm_vcpu *vcpu;
8177        int i, send_ipi = 0;
8178
8179        /*
8180         * We allow guests to temporarily run on slowing clocks,
8181         * provided we notify them after, or to run on accelerating
8182         * clocks, provided we notify them before.  Thus time never
8183         * goes backwards.
8184         *
8185         * However, we have a problem.  We can't atomically update
8186         * the frequency of a given CPU from this function; it is
8187         * merely a notifier, which can be called from any CPU.
8188         * Changing the TSC frequency at arbitrary points in time
8189         * requires a recomputation of local variables related to
8190         * the TSC for each VCPU.  We must flag these local variables
8191         * to be updated and be sure the update takes place with the
8192         * new frequency before any guests proceed.
8193         *
8194         * Unfortunately, the combination of hotplug CPU and frequency
8195         * change creates an intractable locking scenario; the order
8196         * of when these callouts happen is undefined with respect to
8197         * CPU hotplug, and they can race with each other.  As such,
8198         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8199         * undefined; you can actually have a CPU frequency change take
8200         * place in between the computation of X and the setting of the
8201         * variable.  To protect against this problem, all updates of
8202         * the per_cpu tsc_khz variable are done in an interrupt
8203         * protected IPI, and all callers wishing to update the value
8204         * must wait for a synchronous IPI to complete (which is trivial
8205         * if the caller is on the CPU already).  This establishes the
8206         * necessary total order on variable updates.
8207         *
8208         * Note that because a guest time update may take place
8209         * anytime after the setting of the VCPU's request bit, the
8210         * correct TSC value must be set before the request.  However,
8211         * to ensure the update actually makes it to any guest which
8212         * starts running in hardware virtualization between the set
8213         * and the acquisition of the spinlock, we must also ping the
8214         * CPU after setting the request bit.
8215         *
8216         */
8217
8218        smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8219
8220        mutex_lock(&kvm_lock);
8221        list_for_each_entry(kvm, &vm_list, vm_list) {
8222                kvm_for_each_vcpu(i, vcpu, kvm) {
8223                        if (vcpu->cpu != cpu)
8224                                continue;
8225                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8226                        if (vcpu->cpu != raw_smp_processor_id())
8227                                send_ipi = 1;
8228                }
8229        }
8230        mutex_unlock(&kvm_lock);
8231
8232        if (freq->old < freq->new && send_ipi) {
8233                /*
8234                 * We upscale the frequency.  Must make the guest
8235                 * doesn't see old kvmclock values while running with
8236                 * the new frequency, otherwise we risk the guest sees
8237                 * time go backwards.
8238                 *
8239                 * In case we update the frequency for another cpu
8240                 * (which might be in guest context) send an interrupt
8241                 * to kick the cpu out of guest context.  Next time
8242                 * guest context is entered kvmclock will be updated,
8243                 * so the guest will not see stale values.
8244                 */
8245                smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8246        }
8247}
8248
8249static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8250                                     void *data)
8251{
8252        struct cpufreq_freqs *freq = data;
8253        int cpu;
8254
8255        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8256                return 0;
8257        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8258                return 0;
8259
8260        for_each_cpu(cpu, freq->policy->cpus)
8261                __kvmclock_cpufreq_notifier(freq, cpu);
8262
8263        return 0;
8264}
8265
8266static struct notifier_block kvmclock_cpufreq_notifier_block = {
8267        .notifier_call  = kvmclock_cpufreq_notifier
8268};
8269
8270static int kvmclock_cpu_online(unsigned int cpu)
8271{
8272        tsc_khz_changed(NULL);
8273        return 0;
8274}
8275
8276static void kvm_timer_init(void)
8277{
8278        max_tsc_khz = tsc_khz;
8279
8280        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8281#ifdef CONFIG_CPU_FREQ
8282                struct cpufreq_policy *policy;
8283                int cpu;
8284
8285                cpu = get_cpu();
8286                policy = cpufreq_cpu_get(cpu);
8287                if (policy) {
8288                        if (policy->cpuinfo.max_freq)
8289                                max_tsc_khz = policy->cpuinfo.max_freq;
8290                        cpufreq_cpu_put(policy);
8291                }
8292                put_cpu();
8293#endif
8294                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8295                                          CPUFREQ_TRANSITION_NOTIFIER);
8296        }
8297
8298        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8299                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
8300}
8301
8302DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8303EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8304
8305int kvm_is_in_guest(void)
8306{
8307        return __this_cpu_read(current_vcpu) != NULL;
8308}
8309
8310static int kvm_is_user_mode(void)
8311{
8312        int user_mode = 3;
8313
8314        if (__this_cpu_read(current_vcpu))
8315                user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8316
8317        return user_mode != 0;
8318}
8319
8320static unsigned long kvm_get_guest_ip(void)
8321{
8322        unsigned long ip = 0;
8323
8324        if (__this_cpu_read(current_vcpu))
8325                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8326
8327        return ip;
8328}
8329
8330static void kvm_handle_intel_pt_intr(void)
8331{
8332        struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8333
8334        kvm_make_request(KVM_REQ_PMI, vcpu);
8335        __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8336                        (unsigned long *)&vcpu->arch.pmu.global_status);
8337}
8338
8339static struct perf_guest_info_callbacks kvm_guest_cbs = {
8340        .is_in_guest            = kvm_is_in_guest,
8341        .is_user_mode           = kvm_is_user_mode,
8342        .get_guest_ip           = kvm_get_guest_ip,
8343        .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8344};
8345
8346#ifdef CONFIG_X86_64
8347static void pvclock_gtod_update_fn(struct work_struct *work)
8348{
8349        struct kvm *kvm;
8350
8351        struct kvm_vcpu *vcpu;
8352        int i;
8353
8354        mutex_lock(&kvm_lock);
8355        list_for_each_entry(kvm, &vm_list, vm_list)
8356                kvm_for_each_vcpu(i, vcpu, kvm)
8357                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8358        atomic_set(&kvm_guest_has_master_clock, 0);
8359        mutex_unlock(&kvm_lock);
8360}
8361
8362static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8363
8364/*
8365 * Indirection to move queue_work() out of the tk_core.seq write held
8366 * region to prevent possible deadlocks against time accessors which
8367 * are invoked with work related locks held.
8368 */
8369static void pvclock_irq_work_fn(struct irq_work *w)
8370{
8371        queue_work(system_long_wq, &pvclock_gtod_work);
8372}
8373
8374static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8375
8376/*
8377 * Notification about pvclock gtod data update.
8378 */
8379static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8380                               void *priv)
8381{
8382        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8383        struct timekeeper *tk = priv;
8384
8385        update_pvclock_gtod(tk);
8386
8387        /*
8388         * Disable master clock if host does not trust, or does not use,
8389         * TSC based clocksource. Delegate queue_work() to irq_work as
8390         * this is invoked with tk_core.seq write held.
8391         */
8392        if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8393            atomic_read(&kvm_guest_has_master_clock) != 0)
8394                irq_work_queue(&pvclock_irq_work);
8395        return 0;
8396}
8397
8398static struct notifier_block pvclock_gtod_notifier = {
8399        .notifier_call = pvclock_gtod_notify,
8400};
8401#endif
8402
8403int kvm_arch_init(void *opaque)
8404{
8405        struct kvm_x86_init_ops *ops = opaque;
8406        int r;
8407
8408        if (kvm_x86_ops.hardware_enable) {
8409                printk(KERN_ERR "kvm: already loaded the other module\n");
8410                r = -EEXIST;
8411                goto out;
8412        }
8413
8414        if (!ops->cpu_has_kvm_support()) {
8415                pr_err_ratelimited("kvm: no hardware support\n");
8416                r = -EOPNOTSUPP;
8417                goto out;
8418        }
8419        if (ops->disabled_by_bios()) {
8420                pr_err_ratelimited("kvm: disabled by bios\n");
8421                r = -EOPNOTSUPP;
8422                goto out;
8423        }
8424
8425        /*
8426         * KVM explicitly assumes that the guest has an FPU and
8427         * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8428         * vCPU's FPU state as a fxregs_state struct.
8429         */
8430        if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8431                printk(KERN_ERR "kvm: inadequate fpu\n");
8432                r = -EOPNOTSUPP;
8433                goto out;
8434        }
8435
8436        r = -ENOMEM;
8437        x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8438                                          __alignof__(struct fpu), SLAB_ACCOUNT,
8439                                          NULL);
8440        if (!x86_fpu_cache) {
8441                printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8442                goto out;
8443        }
8444
8445        x86_emulator_cache = kvm_alloc_emulator_cache();
8446        if (!x86_emulator_cache) {
8447                pr_err("kvm: failed to allocate cache for x86 emulator\n");
8448                goto out_free_x86_fpu_cache;
8449        }
8450
8451        user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8452        if (!user_return_msrs) {
8453                printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8454                goto out_free_x86_emulator_cache;
8455        }
8456        kvm_nr_uret_msrs = 0;
8457
8458        r = kvm_mmu_module_init();
8459        if (r)
8460                goto out_free_percpu;
8461
8462        kvm_timer_init();
8463
8464        perf_register_guest_info_callbacks(&kvm_guest_cbs);
8465
8466        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8467                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8468                supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8469        }
8470
8471        if (pi_inject_timer == -1)
8472                pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8473#ifdef CONFIG_X86_64
8474        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8475
8476        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8477                set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8478#endif
8479
8480        return 0;
8481
8482out_free_percpu:
8483        free_percpu(user_return_msrs);
8484out_free_x86_emulator_cache:
8485        kmem_cache_destroy(x86_emulator_cache);
8486out_free_x86_fpu_cache:
8487        kmem_cache_destroy(x86_fpu_cache);
8488out:
8489        return r;
8490}
8491
8492void kvm_arch_exit(void)
8493{
8494#ifdef CONFIG_X86_64
8495        if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8496                clear_hv_tscchange_cb();
8497#endif
8498        kvm_lapic_exit();
8499        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8500
8501        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8502                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8503                                            CPUFREQ_TRANSITION_NOTIFIER);
8504        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8505#ifdef CONFIG_X86_64
8506        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8507        irq_work_sync(&pvclock_irq_work);
8508        cancel_work_sync(&pvclock_gtod_work);
8509#endif
8510        kvm_x86_ops.hardware_enable = NULL;
8511        kvm_mmu_module_exit();
8512        free_percpu(user_return_msrs);
8513        kmem_cache_destroy(x86_emulator_cache);
8514        kmem_cache_destroy(x86_fpu_cache);
8515#ifdef CONFIG_KVM_XEN
8516        static_key_deferred_flush(&kvm_xen_enabled);
8517        WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8518#endif
8519}
8520
8521static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8522{
8523        ++vcpu->stat.halt_exits;
8524        if (lapic_in_kernel(vcpu)) {
8525                vcpu->arch.mp_state = state;
8526                return 1;
8527        } else {
8528                vcpu->run->exit_reason = reason;
8529                return 0;
8530        }
8531}
8532
8533int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8534{
8535        return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8536}
8537EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8538
8539int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8540{
8541        int ret = kvm_skip_emulated_instruction(vcpu);
8542        /*
8543         * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8544         * KVM_EXIT_DEBUG here.
8545         */
8546        return kvm_vcpu_halt(vcpu) && ret;
8547}
8548EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8549
8550int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8551{
8552        int ret = kvm_skip_emulated_instruction(vcpu);
8553
8554        return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8555}
8556EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8557
8558#ifdef CONFIG_X86_64
8559static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8560                                unsigned long clock_type)
8561{
8562        struct kvm_clock_pairing clock_pairing;
8563        struct timespec64 ts;
8564        u64 cycle;
8565        int ret;
8566
8567        if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8568                return -KVM_EOPNOTSUPP;
8569
8570        if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8571                return -KVM_EOPNOTSUPP;
8572
8573        clock_pairing.sec = ts.tv_sec;
8574        clock_pairing.nsec = ts.tv_nsec;
8575        clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8576        clock_pairing.flags = 0;
8577        memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8578
8579        ret = 0;
8580        if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8581                            sizeof(struct kvm_clock_pairing)))
8582                ret = -KVM_EFAULT;
8583
8584        return ret;
8585}
8586#endif
8587
8588/*
8589 * kvm_pv_kick_cpu_op:  Kick a vcpu.
8590 *
8591 * @apicid - apicid of vcpu to be kicked.
8592 */
8593static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8594{
8595        struct kvm_lapic_irq lapic_irq;
8596
8597        lapic_irq.shorthand = APIC_DEST_NOSHORT;
8598        lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8599        lapic_irq.level = 0;
8600        lapic_irq.dest_id = apicid;
8601        lapic_irq.msi_redir_hint = false;
8602
8603        lapic_irq.delivery_mode = APIC_DM_REMRD;
8604        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8605}
8606
8607bool kvm_apicv_activated(struct kvm *kvm)
8608{
8609        return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8610}
8611EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8612
8613static void kvm_apicv_init(struct kvm *kvm)
8614{
8615        mutex_init(&kvm->arch.apicv_update_lock);
8616
8617        if (enable_apicv)
8618                clear_bit(APICV_INHIBIT_REASON_DISABLE,
8619                          &kvm->arch.apicv_inhibit_reasons);
8620        else
8621                set_bit(APICV_INHIBIT_REASON_DISABLE,
8622                        &kvm->arch.apicv_inhibit_reasons);
8623}
8624
8625static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8626{
8627        struct kvm_vcpu *target = NULL;
8628        struct kvm_apic_map *map;
8629
8630        vcpu->stat.directed_yield_attempted++;
8631
8632        if (single_task_running())
8633                goto no_yield;
8634
8635        rcu_read_lock();
8636        map = rcu_dereference(vcpu->kvm->arch.apic_map);
8637
8638        if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8639                target = map->phys_map[dest_id]->vcpu;
8640
8641        rcu_read_unlock();
8642
8643        if (!target || !READ_ONCE(target->ready))
8644                goto no_yield;
8645
8646        /* Ignore requests to yield to self */
8647        if (vcpu == target)
8648                goto no_yield;
8649
8650        if (kvm_vcpu_yield_to(target) <= 0)
8651                goto no_yield;
8652
8653        vcpu->stat.directed_yield_successful++;
8654
8655no_yield:
8656        return;
8657}
8658
8659static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8660{
8661        u64 ret = vcpu->run->hypercall.ret;
8662
8663        if (!is_64_bit_mode(vcpu))
8664                ret = (u32)ret;
8665        kvm_rax_write(vcpu, ret);
8666        ++vcpu->stat.hypercalls;
8667        return kvm_skip_emulated_instruction(vcpu);
8668}
8669
8670int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8671{
8672        unsigned long nr, a0, a1, a2, a3, ret;
8673        int op_64_bit;
8674
8675        if (kvm_xen_hypercall_enabled(vcpu->kvm))
8676                return kvm_xen_hypercall(vcpu);
8677
8678        if (kvm_hv_hypercall_enabled(vcpu))
8679                return kvm_hv_hypercall(vcpu);
8680
8681        nr = kvm_rax_read(vcpu);
8682        a0 = kvm_rbx_read(vcpu);
8683        a1 = kvm_rcx_read(vcpu);
8684        a2 = kvm_rdx_read(vcpu);
8685        a3 = kvm_rsi_read(vcpu);
8686
8687        trace_kvm_hypercall(nr, a0, a1, a2, a3);
8688
8689        op_64_bit = is_64_bit_mode(vcpu);
8690        if (!op_64_bit) {
8691                nr &= 0xFFFFFFFF;
8692                a0 &= 0xFFFFFFFF;
8693                a1 &= 0xFFFFFFFF;
8694                a2 &= 0xFFFFFFFF;
8695                a3 &= 0xFFFFFFFF;
8696        }
8697
8698        if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8699                ret = -KVM_EPERM;
8700                goto out;
8701        }
8702
8703        ret = -KVM_ENOSYS;
8704
8705        switch (nr) {
8706        case KVM_HC_VAPIC_POLL_IRQ:
8707                ret = 0;
8708                break;
8709        case KVM_HC_KICK_CPU:
8710                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8711                        break;
8712
8713                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8714                kvm_sched_yield(vcpu, a1);
8715                ret = 0;
8716                break;
8717#ifdef CONFIG_X86_64
8718        case KVM_HC_CLOCK_PAIRING:
8719                ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8720                break;
8721#endif
8722        case KVM_HC_SEND_IPI:
8723                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8724                        break;
8725
8726                ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8727                break;
8728        case KVM_HC_SCHED_YIELD:
8729                if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8730                        break;
8731
8732                kvm_sched_yield(vcpu, a0);
8733                ret = 0;
8734                break;
8735        case KVM_HC_MAP_GPA_RANGE: {
8736                u64 gpa = a0, npages = a1, attrs = a2;
8737
8738                ret = -KVM_ENOSYS;
8739                if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8740                        break;
8741
8742                if (!PAGE_ALIGNED(gpa) || !npages ||
8743                    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8744                        ret = -KVM_EINVAL;
8745                        break;
8746                }
8747
8748                vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8749                vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8750                vcpu->run->hypercall.args[0]  = gpa;
8751                vcpu->run->hypercall.args[1]  = npages;
8752                vcpu->run->hypercall.args[2]  = attrs;
8753                vcpu->run->hypercall.longmode = op_64_bit;
8754                vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8755                return 0;
8756        }
8757        default:
8758                ret = -KVM_ENOSYS;
8759                break;
8760        }
8761out:
8762        if (!op_64_bit)
8763                ret = (u32)ret;
8764        kvm_rax_write(vcpu, ret);
8765
8766        ++vcpu->stat.hypercalls;
8767        return kvm_skip_emulated_instruction(vcpu);
8768}
8769EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8770
8771static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8772{
8773        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8774        char instruction[3];
8775        unsigned long rip = kvm_rip_read(vcpu);
8776
8777        static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8778
8779        return emulator_write_emulated(ctxt, rip, instruction, 3,
8780                &ctxt->exception);
8781}
8782
8783static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8784{
8785        return vcpu->run->request_interrupt_window &&
8786                likely(!pic_in_kernel(vcpu->kvm));
8787}
8788
8789static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8790{
8791        struct kvm_run *kvm_run = vcpu->run;
8792
8793        /*
8794         * if_flag is obsolete and useless, so do not bother
8795         * setting it for SEV-ES guests.  Userspace can just
8796         * use kvm_run->ready_for_interrupt_injection.
8797         */
8798        kvm_run->if_flag = !vcpu->arch.guest_state_protected
8799                && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8800
8801        kvm_run->cr8 = kvm_get_cr8(vcpu);
8802        kvm_run->apic_base = kvm_get_apic_base(vcpu);
8803
8804        /*
8805         * The call to kvm_ready_for_interrupt_injection() may end up in
8806         * kvm_xen_has_interrupt() which may require the srcu lock to be
8807         * held, to protect against changes in the vcpu_info address.
8808         */
8809        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8810        kvm_run->ready_for_interrupt_injection =
8811                pic_in_kernel(vcpu->kvm) ||
8812                kvm_vcpu_ready_for_interrupt_injection(vcpu);
8813        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8814
8815        if (is_smm(vcpu))
8816                kvm_run->flags |= KVM_RUN_X86_SMM;
8817}
8818
8819static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8820{
8821        int max_irr, tpr;
8822
8823        if (!kvm_x86_ops.update_cr8_intercept)
8824                return;
8825
8826        if (!lapic_in_kernel(vcpu))
8827                return;
8828
8829        if (vcpu->arch.apicv_active)
8830                return;
8831
8832        if (!vcpu->arch.apic->vapic_addr)
8833                max_irr = kvm_lapic_find_highest_irr(vcpu);
8834        else
8835                max_irr = -1;
8836
8837        if (max_irr != -1)
8838                max_irr >>= 4;
8839
8840        tpr = kvm_lapic_get_cr8(vcpu);
8841
8842        static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
8843}
8844
8845
8846int kvm_check_nested_events(struct kvm_vcpu *vcpu)
8847{
8848        if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8849                kvm_x86_ops.nested_ops->triple_fault(vcpu);
8850                return 1;
8851        }
8852
8853        return kvm_x86_ops.nested_ops->check_events(vcpu);
8854}
8855
8856static void kvm_inject_exception(struct kvm_vcpu *vcpu)
8857{
8858        if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
8859                vcpu->arch.exception.error_code = false;
8860        static_call(kvm_x86_queue_exception)(vcpu);
8861}
8862
8863static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
8864{
8865        int r;
8866        bool can_inject = true;
8867
8868        /* try to reinject previous events if any */
8869
8870        if (vcpu->arch.exception.injected) {
8871                kvm_inject_exception(vcpu);
8872                can_inject = false;
8873        }
8874        /*
8875         * Do not inject an NMI or interrupt if there is a pending
8876         * exception.  Exceptions and interrupts are recognized at
8877         * instruction boundaries, i.e. the start of an instruction.
8878         * Trap-like exceptions, e.g. #DB, have higher priority than
8879         * NMIs and interrupts, i.e. traps are recognized before an
8880         * NMI/interrupt that's pending on the same instruction.
8881         * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8882         * priority, but are only generated (pended) during instruction
8883         * execution, i.e. a pending fault-like exception means the
8884         * fault occurred on the *previous* instruction and must be
8885         * serviced prior to recognizing any new events in order to
8886         * fully complete the previous instruction.
8887         */
8888        else if (!vcpu->arch.exception.pending) {
8889                if (vcpu->arch.nmi_injected) {
8890                        static_call(kvm_x86_set_nmi)(vcpu);
8891                        can_inject = false;
8892                } else if (vcpu->arch.interrupt.injected) {
8893                        static_call(kvm_x86_set_irq)(vcpu);
8894                        can_inject = false;
8895                }
8896        }
8897
8898        WARN_ON_ONCE(vcpu->arch.exception.injected &&
8899                     vcpu->arch.exception.pending);
8900
8901        /*
8902         * Call check_nested_events() even if we reinjected a previous event
8903         * in order for caller to determine if it should require immediate-exit
8904         * from L2 to L1 due to pending L1 events which require exit
8905         * from L2 to L1.
8906         */
8907        if (is_guest_mode(vcpu)) {
8908                r = kvm_check_nested_events(vcpu);
8909                if (r < 0)
8910                        goto out;
8911        }
8912
8913        /* try to inject new event if pending */
8914        if (vcpu->arch.exception.pending) {
8915                trace_kvm_inj_exception(vcpu->arch.exception.nr,
8916                                        vcpu->arch.exception.has_error_code,
8917                                        vcpu->arch.exception.error_code);
8918
8919                vcpu->arch.exception.pending = false;
8920                vcpu->arch.exception.injected = true;
8921
8922                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8923                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8924                                             X86_EFLAGS_RF);
8925
8926                if (vcpu->arch.exception.nr == DB_VECTOR) {
8927                        kvm_deliver_exception_payload(vcpu);
8928                        if (vcpu->arch.dr7 & DR7_GD) {
8929                                vcpu->arch.dr7 &= ~DR7_GD;
8930                                kvm_update_dr7(vcpu);
8931                        }
8932                }
8933
8934                kvm_inject_exception(vcpu);
8935                can_inject = false;
8936        }
8937
8938        /* Don't inject interrupts if the user asked to avoid doing so */
8939        if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
8940                return 0;
8941
8942        /*
8943         * Finally, inject interrupt events.  If an event cannot be injected
8944         * due to architectural conditions (e.g. IF=0) a window-open exit
8945         * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
8946         * and can architecturally be injected, but we cannot do it right now:
8947         * an interrupt could have arrived just now and we have to inject it
8948         * as a vmexit, or there could already an event in the queue, which is
8949         * indicated by can_inject.  In that case we request an immediate exit
8950         * in order to make progress and get back here for another iteration.
8951         * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8952         */
8953        if (vcpu->arch.smi_pending) {
8954                r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
8955                if (r < 0)
8956                        goto out;
8957                if (r) {
8958                        vcpu->arch.smi_pending = false;
8959                        ++vcpu->arch.smi_count;
8960                        enter_smm(vcpu);
8961                        can_inject = false;
8962                } else
8963                        static_call(kvm_x86_enable_smi_window)(vcpu);
8964        }
8965
8966        if (vcpu->arch.nmi_pending) {
8967                r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
8968                if (r < 0)
8969                        goto out;
8970                if (r) {
8971                        --vcpu->arch.nmi_pending;
8972                        vcpu->arch.nmi_injected = true;
8973                        static_call(kvm_x86_set_nmi)(vcpu);
8974                        can_inject = false;
8975                        WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
8976                }
8977                if (vcpu->arch.nmi_pending)
8978                        static_call(kvm_x86_enable_nmi_window)(vcpu);
8979        }
8980
8981        if (kvm_cpu_has_injectable_intr(vcpu)) {
8982                r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
8983                if (r < 0)
8984                        goto out;
8985                if (r) {
8986                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8987                        static_call(kvm_x86_set_irq)(vcpu);
8988                        WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
8989                }
8990                if (kvm_cpu_has_injectable_intr(vcpu))
8991                        static_call(kvm_x86_enable_irq_window)(vcpu);
8992        }
8993
8994        if (is_guest_mode(vcpu) &&
8995            kvm_x86_ops.nested_ops->hv_timer_pending &&
8996            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8997                *req_immediate_exit = true;
8998
8999        WARN_ON(vcpu->arch.exception.pending);
9000        return 0;
9001
9002out:
9003        if (r == -EBUSY) {
9004                *req_immediate_exit = true;
9005                r = 0;
9006        }
9007        return r;
9008}
9009
9010static void process_nmi(struct kvm_vcpu *vcpu)
9011{
9012        unsigned limit = 2;
9013
9014        /*
9015         * x86 is limited to one NMI running, and one NMI pending after it.
9016         * If an NMI is already in progress, limit further NMIs to just one.
9017         * Otherwise, allow two (and we'll inject the first one immediately).
9018         */
9019        if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9020                limit = 1;
9021
9022        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9023        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9024        kvm_make_request(KVM_REQ_EVENT, vcpu);
9025}
9026
9027static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9028{
9029        u32 flags = 0;
9030        flags |= seg->g       << 23;
9031        flags |= seg->db      << 22;
9032        flags |= seg->l       << 21;
9033        flags |= seg->avl     << 20;
9034        flags |= seg->present << 15;
9035        flags |= seg->dpl     << 13;
9036        flags |= seg->s       << 12;
9037        flags |= seg->type    << 8;
9038        return flags;
9039}
9040
9041static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9042{
9043        struct kvm_segment seg;
9044        int offset;
9045
9046        kvm_get_segment(vcpu, &seg, n);
9047        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9048
9049        if (n < 3)
9050                offset = 0x7f84 + n * 12;
9051        else
9052                offset = 0x7f2c + (n - 3) * 12;
9053
9054        put_smstate(u32, buf, offset + 8, seg.base);
9055        put_smstate(u32, buf, offset + 4, seg.limit);
9056        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9057}
9058
9059#ifdef CONFIG_X86_64
9060static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9061{
9062        struct kvm_segment seg;
9063        int offset;
9064        u16 flags;
9065
9066        kvm_get_segment(vcpu, &seg, n);
9067        offset = 0x7e00 + n * 16;
9068
9069        flags = enter_smm_get_segment_flags(&seg) >> 8;
9070        put_smstate(u16, buf, offset, seg.selector);
9071        put_smstate(u16, buf, offset + 2, flags);
9072        put_smstate(u32, buf, offset + 4, seg.limit);
9073        put_smstate(u64, buf, offset + 8, seg.base);
9074}
9075#endif
9076
9077static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9078{
9079        struct desc_ptr dt;
9080        struct kvm_segment seg;
9081        unsigned long val;
9082        int i;
9083
9084        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9085        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9086        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9087        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9088
9089        for (i = 0; i < 8; i++)
9090                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9091
9092        kvm_get_dr(vcpu, 6, &val);
9093        put_smstate(u32, buf, 0x7fcc, (u32)val);
9094        kvm_get_dr(vcpu, 7, &val);
9095        put_smstate(u32, buf, 0x7fc8, (u32)val);
9096
9097        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9098        put_smstate(u32, buf, 0x7fc4, seg.selector);
9099        put_smstate(u32, buf, 0x7f64, seg.base);
9100        put_smstate(u32, buf, 0x7f60, seg.limit);
9101        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9102
9103        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9104        put_smstate(u32, buf, 0x7fc0, seg.selector);
9105        put_smstate(u32, buf, 0x7f80, seg.base);
9106        put_smstate(u32, buf, 0x7f7c, seg.limit);
9107        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9108
9109        static_call(kvm_x86_get_gdt)(vcpu, &dt);
9110        put_smstate(u32, buf, 0x7f74, dt.address);
9111        put_smstate(u32, buf, 0x7f70, dt.size);
9112
9113        static_call(kvm_x86_get_idt)(vcpu, &dt);
9114        put_smstate(u32, buf, 0x7f58, dt.address);
9115        put_smstate(u32, buf, 0x7f54, dt.size);
9116
9117        for (i = 0; i < 6; i++)
9118                enter_smm_save_seg_32(vcpu, buf, i);
9119
9120        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9121
9122        /* revision id */
9123        put_smstate(u32, buf, 0x7efc, 0x00020000);
9124        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9125}
9126
9127#ifdef CONFIG_X86_64
9128static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9129{
9130        struct desc_ptr dt;
9131        struct kvm_segment seg;
9132        unsigned long val;
9133        int i;
9134
9135        for (i = 0; i < 16; i++)
9136                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9137
9138        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9139        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9140
9141        kvm_get_dr(vcpu, 6, &val);
9142        put_smstate(u64, buf, 0x7f68, val);
9143        kvm_get_dr(vcpu, 7, &val);
9144        put_smstate(u64, buf, 0x7f60, val);
9145
9146        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9147        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9148        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9149
9150        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9151
9152        /* revision id */
9153        put_smstate(u32, buf, 0x7efc, 0x00020064);
9154
9155        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9156
9157        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9158        put_smstate(u16, buf, 0x7e90, seg.selector);
9159        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9160        put_smstate(u32, buf, 0x7e94, seg.limit);
9161        put_smstate(u64, buf, 0x7e98, seg.base);
9162
9163        static_call(kvm_x86_get_idt)(vcpu, &dt);
9164        put_smstate(u32, buf, 0x7e84, dt.size);
9165        put_smstate(u64, buf, 0x7e88, dt.address);
9166
9167        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9168        put_smstate(u16, buf, 0x7e70, seg.selector);
9169        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9170        put_smstate(u32, buf, 0x7e74, seg.limit);
9171        put_smstate(u64, buf, 0x7e78, seg.base);
9172
9173        static_call(kvm_x86_get_gdt)(vcpu, &dt);
9174        put_smstate(u32, buf, 0x7e64, dt.size);
9175        put_smstate(u64, buf, 0x7e68, dt.address);
9176
9177        for (i = 0; i < 6; i++)
9178                enter_smm_save_seg_64(vcpu, buf, i);
9179}
9180#endif
9181
9182static void enter_smm(struct kvm_vcpu *vcpu)
9183{
9184        struct kvm_segment cs, ds;
9185        struct desc_ptr dt;
9186        unsigned long cr0;
9187        char buf[512];
9188
9189        memset(buf, 0, 512);
9190#ifdef CONFIG_X86_64
9191        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9192                enter_smm_save_state_64(vcpu, buf);
9193        else
9194#endif
9195                enter_smm_save_state_32(vcpu, buf);
9196
9197        /*
9198         * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9199         * state (e.g. leave guest mode) after we've saved the state into the
9200         * SMM state-save area.
9201         */
9202        static_call(kvm_x86_enter_smm)(vcpu, buf);
9203
9204        kvm_smm_changed(vcpu, true);
9205        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9206
9207        if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9208                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9209        else
9210                static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9211
9212        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9213        kvm_rip_write(vcpu, 0x8000);
9214
9215        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9216        static_call(kvm_x86_set_cr0)(vcpu, cr0);
9217        vcpu->arch.cr0 = cr0;
9218
9219        static_call(kvm_x86_set_cr4)(vcpu, 0);
9220
9221        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9222        dt.address = dt.size = 0;
9223        static_call(kvm_x86_set_idt)(vcpu, &dt);
9224
9225        kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9226
9227        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9228        cs.base = vcpu->arch.smbase;
9229
9230        ds.selector = 0;
9231        ds.base = 0;
9232
9233        cs.limit    = ds.limit = 0xffffffff;
9234        cs.type     = ds.type = 0x3;
9235        cs.dpl      = ds.dpl = 0;
9236        cs.db       = ds.db = 0;
9237        cs.s        = ds.s = 1;
9238        cs.l        = ds.l = 0;
9239        cs.g        = ds.g = 1;
9240        cs.avl      = ds.avl = 0;
9241        cs.present  = ds.present = 1;
9242        cs.unusable = ds.unusable = 0;
9243        cs.padding  = ds.padding = 0;
9244
9245        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9246        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9247        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9248        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9249        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9250        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9251
9252#ifdef CONFIG_X86_64
9253        if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9254                static_call(kvm_x86_set_efer)(vcpu, 0);
9255#endif
9256
9257        kvm_update_cpuid_runtime(vcpu);
9258        kvm_mmu_reset_context(vcpu);
9259}
9260
9261static void process_smi(struct kvm_vcpu *vcpu)
9262{
9263        vcpu->arch.smi_pending = true;
9264        kvm_make_request(KVM_REQ_EVENT, vcpu);
9265}
9266
9267void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9268                                       unsigned long *vcpu_bitmap)
9269{
9270        cpumask_var_t cpus;
9271
9272        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9273
9274        kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9275                                    NULL, vcpu_bitmap, cpus);
9276
9277        free_cpumask_var(cpus);
9278}
9279
9280void kvm_make_scan_ioapic_request(struct kvm *kvm)
9281{
9282        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9283}
9284
9285void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9286{
9287        bool activate;
9288
9289        if (!lapic_in_kernel(vcpu))
9290                return;
9291
9292        mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9293
9294        activate = kvm_apicv_activated(vcpu->kvm);
9295        if (vcpu->arch.apicv_active == activate)
9296                goto out;
9297
9298        vcpu->arch.apicv_active = activate;
9299        kvm_apic_update_apicv(vcpu);
9300        static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9301
9302        /*
9303         * When APICv gets disabled, we may still have injected interrupts
9304         * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9305         * still active when the interrupt got accepted. Make sure
9306         * inject_pending_event() is called to check for that.
9307         */
9308        if (!vcpu->arch.apicv_active)
9309                kvm_make_request(KVM_REQ_EVENT, vcpu);
9310
9311out:
9312        mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9313}
9314EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9315
9316void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9317{
9318        unsigned long old, new;
9319
9320        if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9321            !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9322                return;
9323
9324        old = new = kvm->arch.apicv_inhibit_reasons;
9325
9326        if (activate)
9327                __clear_bit(bit, &new);
9328        else
9329                __set_bit(bit, &new);
9330
9331        if (!!old != !!new) {
9332                trace_kvm_apicv_update_request(activate, bit);
9333                kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9334                kvm->arch.apicv_inhibit_reasons = new;
9335                if (new) {
9336                        unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9337                        kvm_zap_gfn_range(kvm, gfn, gfn+1);
9338                }
9339        } else
9340                kvm->arch.apicv_inhibit_reasons = new;
9341}
9342EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9343
9344void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9345{
9346        mutex_lock(&kvm->arch.apicv_update_lock);
9347        __kvm_request_apicv_update(kvm, activate, bit);
9348        mutex_unlock(&kvm->arch.apicv_update_lock);
9349}
9350EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9351
9352static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9353{
9354        if (!kvm_apic_present(vcpu))
9355                return;
9356
9357        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9358
9359        if (irqchip_split(vcpu->kvm))
9360                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9361        else {
9362                if (vcpu->arch.apicv_active)
9363                        static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9364                if (ioapic_in_kernel(vcpu->kvm))
9365                        kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9366        }
9367
9368        if (is_guest_mode(vcpu))
9369                vcpu->arch.load_eoi_exitmap_pending = true;
9370        else
9371                kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9372}
9373
9374static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9375{
9376        u64 eoi_exit_bitmap[4];
9377
9378        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9379                return;
9380
9381        if (to_hv_vcpu(vcpu))
9382                bitmap_or((ulong *)eoi_exit_bitmap,
9383                          vcpu->arch.ioapic_handled_vectors,
9384                          to_hv_synic(vcpu)->vec_bitmap, 256);
9385
9386        static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9387}
9388
9389void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9390                                            unsigned long start, unsigned long end)
9391{
9392        unsigned long apic_address;
9393
9394        /*
9395         * The physical address of apic access page is stored in the VMCS.
9396         * Update it when it becomes invalid.
9397         */
9398        apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9399        if (start <= apic_address && apic_address < end)
9400                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9401}
9402
9403void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9404{
9405        if (!lapic_in_kernel(vcpu))
9406                return;
9407
9408        if (!kvm_x86_ops.set_apic_access_page_addr)
9409                return;
9410
9411        static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9412}
9413
9414void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9415{
9416        smp_send_reschedule(vcpu->cpu);
9417}
9418EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9419
9420/*
9421 * Returns 1 to let vcpu_run() continue the guest execution loop without
9422 * exiting to the userspace.  Otherwise, the value will be returned to the
9423 * userspace.
9424 */
9425static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9426{
9427        int r;
9428        bool req_int_win =
9429                dm_request_for_irq_injection(vcpu) &&
9430                kvm_cpu_accept_dm_intr(vcpu);
9431        fastpath_t exit_fastpath;
9432
9433        bool req_immediate_exit = false;
9434
9435        /* Forbid vmenter if vcpu dirty ring is soft-full */
9436        if (unlikely(vcpu->kvm->dirty_ring_size &&
9437                     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9438                vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9439                trace_kvm_dirty_ring_exit(vcpu);
9440                r = 0;
9441                goto out;
9442        }
9443
9444        if (kvm_request_pending(vcpu)) {
9445                if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9446                        r = -EIO;
9447                        goto out;
9448                }
9449                if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9450                        if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9451                                r = 0;
9452                                goto out;
9453                        }
9454                }
9455                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9456                        kvm_mmu_unload(vcpu);
9457                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9458                        __kvm_migrate_timers(vcpu);
9459                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9460                        kvm_gen_update_masterclock(vcpu->kvm);
9461                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9462                        kvm_gen_kvmclock_update(vcpu);
9463                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9464                        r = kvm_guest_time_update(vcpu);
9465                        if (unlikely(r))
9466                                goto out;
9467                }
9468                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9469                        kvm_mmu_sync_roots(vcpu);
9470                if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9471                        kvm_mmu_load_pgd(vcpu);
9472                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9473                        kvm_vcpu_flush_tlb_all(vcpu);
9474
9475                        /* Flushing all ASIDs flushes the current ASID... */
9476                        kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9477                }
9478                if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9479                        kvm_vcpu_flush_tlb_current(vcpu);
9480                if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9481                        kvm_vcpu_flush_tlb_guest(vcpu);
9482
9483                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9484                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9485                        r = 0;
9486                        goto out;
9487                }
9488                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9489                        if (is_guest_mode(vcpu)) {
9490                                kvm_x86_ops.nested_ops->triple_fault(vcpu);
9491                        } else {
9492                                vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9493                                vcpu->mmio_needed = 0;
9494                                r = 0;
9495                                goto out;
9496                        }
9497                }
9498                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9499                        /* Page is swapped out. Do synthetic halt */
9500                        vcpu->arch.apf.halted = true;
9501                        r = 1;
9502                        goto out;
9503                }
9504                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9505                        record_steal_time(vcpu);
9506                if (kvm_check_request(KVM_REQ_SMI, vcpu))
9507                        process_smi(vcpu);
9508                if (kvm_check_request(KVM_REQ_NMI, vcpu))
9509                        process_nmi(vcpu);
9510                if (kvm_check_request(KVM_REQ_PMU, vcpu))
9511                        kvm_pmu_handle_event(vcpu);
9512                if (kvm_check_request(KVM_REQ_PMI, vcpu))
9513                        kvm_pmu_deliver_pmi(vcpu);
9514                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9515                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9516                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
9517                                     vcpu->arch.ioapic_handled_vectors)) {
9518                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9519                                vcpu->run->eoi.vector =
9520                                                vcpu->arch.pending_ioapic_eoi;
9521                                r = 0;
9522                                goto out;
9523                        }
9524                }
9525                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9526                        vcpu_scan_ioapic(vcpu);
9527                if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9528                        vcpu_load_eoi_exitmap(vcpu);
9529                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9530                        kvm_vcpu_reload_apic_access_page(vcpu);
9531                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9532                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9533                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9534                        r = 0;
9535                        goto out;
9536                }
9537                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9538                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9539                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9540                        r = 0;
9541                        goto out;
9542                }
9543                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9544                        struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9545
9546                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9547                        vcpu->run->hyperv = hv_vcpu->exit;
9548                        r = 0;
9549                        goto out;
9550                }
9551
9552                /*
9553                 * KVM_REQ_HV_STIMER has to be processed after
9554                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9555                 * depend on the guest clock being up-to-date
9556                 */
9557                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9558                        kvm_hv_process_stimers(vcpu);
9559                if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9560                        kvm_vcpu_update_apicv(vcpu);
9561                if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9562                        kvm_check_async_pf_completion(vcpu);
9563                if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9564                        static_call(kvm_x86_msr_filter_changed)(vcpu);
9565
9566                if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9567                        static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9568        }
9569
9570        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9571            kvm_xen_has_interrupt(vcpu)) {
9572                ++vcpu->stat.req_event;
9573                r = kvm_apic_accept_events(vcpu);
9574                if (r < 0) {
9575                        r = 0;
9576                        goto out;
9577                }
9578                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9579                        r = 1;
9580                        goto out;
9581                }
9582
9583                r = inject_pending_event(vcpu, &req_immediate_exit);
9584                if (r < 0) {
9585                        r = 0;
9586                        goto out;
9587                }
9588                if (req_int_win)
9589                        static_call(kvm_x86_enable_irq_window)(vcpu);
9590
9591                if (kvm_lapic_enabled(vcpu)) {
9592                        update_cr8_intercept(vcpu);
9593                        kvm_lapic_sync_to_vapic(vcpu);
9594                }
9595        }
9596
9597        r = kvm_mmu_reload(vcpu);
9598        if (unlikely(r)) {
9599                goto cancel_injection;
9600        }
9601
9602        preempt_disable();
9603
9604        static_call(kvm_x86_prepare_guest_switch)(vcpu);
9605
9606        /*
9607         * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9608         * IPI are then delayed after guest entry, which ensures that they
9609         * result in virtual interrupt delivery.
9610         */
9611        local_irq_disable();
9612        vcpu->mode = IN_GUEST_MODE;
9613
9614        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9615
9616        /*
9617         * 1) We should set ->mode before checking ->requests.  Please see
9618         * the comment in kvm_vcpu_exiting_guest_mode().
9619         *
9620         * 2) For APICv, we should set ->mode before checking PID.ON. This
9621         * pairs with the memory barrier implicit in pi_test_and_set_on
9622         * (see vmx_deliver_posted_interrupt).
9623         *
9624         * 3) This also orders the write to mode from any reads to the page
9625         * tables done while the VCPU is running.  Please see the comment
9626         * in kvm_flush_remote_tlbs.
9627         */
9628        smp_mb__after_srcu_read_unlock();
9629
9630        /*
9631         * This handles the case where a posted interrupt was
9632         * notified with kvm_vcpu_kick.
9633         */
9634        if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9635                static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9636
9637        if (kvm_vcpu_exit_request(vcpu)) {
9638                vcpu->mode = OUTSIDE_GUEST_MODE;
9639                smp_wmb();
9640                local_irq_enable();
9641                preempt_enable();
9642                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9643                r = 1;
9644                goto cancel_injection;
9645        }
9646
9647        if (req_immediate_exit) {
9648                kvm_make_request(KVM_REQ_EVENT, vcpu);
9649                static_call(kvm_x86_request_immediate_exit)(vcpu);
9650        }
9651
9652        fpregs_assert_state_consistent();
9653        if (test_thread_flag(TIF_NEED_FPU_LOAD))
9654                switch_fpu_return();
9655
9656        if (unlikely(vcpu->arch.switch_db_regs)) {
9657                set_debugreg(0, 7);
9658                set_debugreg(vcpu->arch.eff_db[0], 0);
9659                set_debugreg(vcpu->arch.eff_db[1], 1);
9660                set_debugreg(vcpu->arch.eff_db[2], 2);
9661                set_debugreg(vcpu->arch.eff_db[3], 3);
9662        } else if (unlikely(hw_breakpoint_active())) {
9663                set_debugreg(0, 7);
9664        }
9665
9666        for (;;) {
9667                exit_fastpath = static_call(kvm_x86_run)(vcpu);
9668                if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9669                        break;
9670
9671                if (vcpu->arch.apicv_active)
9672                        static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9673
9674                if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9675                        exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9676                        break;
9677                }
9678        }
9679
9680        /*
9681         * Do this here before restoring debug registers on the host.  And
9682         * since we do this before handling the vmexit, a DR access vmexit
9683         * can (a) read the correct value of the debug registers, (b) set
9684         * KVM_DEBUGREG_WONT_EXIT again.
9685         */
9686        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9687                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9688                static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9689                kvm_update_dr0123(vcpu);
9690                kvm_update_dr7(vcpu);
9691        }
9692
9693        /*
9694         * If the guest has used debug registers, at least dr7
9695         * will be disabled while returning to the host.
9696         * If we don't have active breakpoints in the host, we don't
9697         * care about the messed up debug address registers. But if
9698         * we have some of them active, restore the old state.
9699         */
9700        if (hw_breakpoint_active())
9701                hw_breakpoint_restore();
9702
9703        vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9704        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9705
9706        vcpu->mode = OUTSIDE_GUEST_MODE;
9707        smp_wmb();
9708
9709        static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9710
9711        /*
9712         * Consume any pending interrupts, including the possible source of
9713         * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9714         * An instruction is required after local_irq_enable() to fully unblock
9715         * interrupts on processors that implement an interrupt shadow, the
9716         * stat.exits increment will do nicely.
9717         */
9718        kvm_before_interrupt(vcpu);
9719        local_irq_enable();
9720        ++vcpu->stat.exits;
9721        local_irq_disable();
9722        kvm_after_interrupt(vcpu);
9723
9724        /*
9725         * Wait until after servicing IRQs to account guest time so that any
9726         * ticks that occurred while running the guest are properly accounted
9727         * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9728         * of accounting via context tracking, but the loss of accuracy is
9729         * acceptable for all known use cases.
9730         */
9731        vtime_account_guest_exit();
9732
9733        if (lapic_in_kernel(vcpu)) {
9734                s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9735                if (delta != S64_MIN) {
9736                        trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9737                        vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9738                }
9739        }
9740
9741        local_irq_enable();
9742        preempt_enable();
9743
9744        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9745
9746        /*
9747         * Profile KVM exit RIPs:
9748         */
9749        if (unlikely(prof_on == KVM_PROFILING)) {
9750                unsigned long rip = kvm_rip_read(vcpu);
9751                profile_hit(KVM_PROFILING, (void *)rip);
9752        }
9753
9754        if (unlikely(vcpu->arch.tsc_always_catchup))
9755                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9756
9757        if (vcpu->arch.apic_attention)
9758                kvm_lapic_sync_from_vapic(vcpu);
9759
9760        r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9761        return r;
9762
9763cancel_injection:
9764        if (req_immediate_exit)
9765                kvm_make_request(KVM_REQ_EVENT, vcpu);
9766        static_call(kvm_x86_cancel_injection)(vcpu);
9767        if (unlikely(vcpu->arch.apic_attention))
9768                kvm_lapic_sync_from_vapic(vcpu);
9769out:
9770        return r;
9771}
9772
9773static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9774{
9775        if (!kvm_arch_vcpu_runnable(vcpu) &&
9776            (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9777                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9778                kvm_vcpu_block(vcpu);
9779                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9780
9781                if (kvm_x86_ops.post_block)
9782                        static_call(kvm_x86_post_block)(vcpu);
9783
9784                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9785                        return 1;
9786        }
9787
9788        if (kvm_apic_accept_events(vcpu) < 0)
9789                return 0;
9790        switch(vcpu->arch.mp_state) {
9791        case KVM_MP_STATE_HALTED:
9792        case KVM_MP_STATE_AP_RESET_HOLD:
9793                vcpu->arch.pv.pv_unhalted = false;
9794                vcpu->arch.mp_state =
9795                        KVM_MP_STATE_RUNNABLE;
9796                fallthrough;
9797        case KVM_MP_STATE_RUNNABLE:
9798                vcpu->arch.apf.halted = false;
9799                break;
9800        case KVM_MP_STATE_INIT_RECEIVED:
9801                break;
9802        default:
9803                return -EINTR;
9804        }
9805        return 1;
9806}
9807
9808static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9809{
9810        if (is_guest_mode(vcpu))
9811                kvm_check_nested_events(vcpu);
9812
9813        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9814                !vcpu->arch.apf.halted);
9815}
9816
9817static int vcpu_run(struct kvm_vcpu *vcpu)
9818{
9819        int r;
9820        struct kvm *kvm = vcpu->kvm;
9821
9822        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9823        vcpu->arch.l1tf_flush_l1d = true;
9824
9825        for (;;) {
9826                if (kvm_vcpu_running(vcpu)) {
9827                        r = vcpu_enter_guest(vcpu);
9828                } else {
9829                        r = vcpu_block(kvm, vcpu);
9830                }
9831
9832                if (r <= 0)
9833                        break;
9834
9835                kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
9836                if (kvm_cpu_has_pending_timer(vcpu))
9837                        kvm_inject_pending_timer_irqs(vcpu);
9838
9839                if (dm_request_for_irq_injection(vcpu) &&
9840                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
9841                        r = 0;
9842                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
9843                        ++vcpu->stat.request_irq_exits;
9844                        break;
9845                }
9846
9847                if (__xfer_to_guest_mode_work_pending()) {
9848                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9849                        r = xfer_to_guest_mode_handle_work(vcpu);
9850                        if (r)
9851                                return r;
9852                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9853                }
9854        }
9855
9856        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9857
9858        return r;
9859}
9860
9861static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9862{
9863        int r;
9864
9865        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9866        r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
9867        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9868        return r;
9869}
9870
9871static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9872{
9873        BUG_ON(!vcpu->arch.pio.count);
9874
9875        return complete_emulated_io(vcpu);
9876}
9877
9878/*
9879 * Implements the following, as a state machine:
9880 *
9881 * read:
9882 *   for each fragment
9883 *     for each mmio piece in the fragment
9884 *       write gpa, len
9885 *       exit
9886 *       copy data
9887 *   execute insn
9888 *
9889 * write:
9890 *   for each fragment
9891 *     for each mmio piece in the fragment
9892 *       write gpa, len
9893 *       copy data
9894 *       exit
9895 */
9896static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
9897{
9898        struct kvm_run *run = vcpu->run;
9899        struct kvm_mmio_fragment *frag;
9900        unsigned len;
9901
9902        BUG_ON(!vcpu->mmio_needed);
9903
9904        /* Complete previous fragment */
9905        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9906        len = min(8u, frag->len);
9907        if (!vcpu->mmio_is_write)
9908                memcpy(frag->data, run->mmio.data, len);
9909
9910        if (frag->len <= 8) {
9911                /* Switch to the next fragment. */
9912                frag++;
9913                vcpu->mmio_cur_fragment++;
9914        } else {
9915                /* Go forward to the next mmio piece. */
9916                frag->data += len;
9917                frag->gpa += len;
9918                frag->len -= len;
9919        }
9920
9921        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
9922                vcpu->mmio_needed = 0;
9923
9924                /* FIXME: return into emulator if single-stepping.  */
9925                if (vcpu->mmio_is_write)
9926                        return 1;
9927                vcpu->mmio_read_completed = 1;
9928                return complete_emulated_io(vcpu);
9929        }
9930
9931        run->exit_reason = KVM_EXIT_MMIO;
9932        run->mmio.phys_addr = frag->gpa;
9933        if (vcpu->mmio_is_write)
9934                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9935        run->mmio.len = min(8u, frag->len);
9936        run->mmio.is_write = vcpu->mmio_is_write;
9937        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9938        return 0;
9939}
9940
9941static void kvm_save_current_fpu(struct fpu *fpu)
9942{
9943        /*
9944         * If the target FPU state is not resident in the CPU registers, just
9945         * memcpy() from current, else save CPU state directly to the target.
9946         */
9947        if (test_thread_flag(TIF_NEED_FPU_LOAD))
9948                memcpy(&fpu->state, &current->thread.fpu.state,
9949                       fpu_kernel_xstate_size);
9950        else
9951                save_fpregs_to_fpstate(fpu);
9952}
9953
9954/* Swap (qemu) user FPU context for the guest FPU context. */
9955static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9956{
9957        fpregs_lock();
9958
9959        kvm_save_current_fpu(vcpu->arch.user_fpu);
9960
9961        /*
9962         * Guests with protected state can't have it set by the hypervisor,
9963         * so skip trying to set it.
9964         */
9965        if (vcpu->arch.guest_fpu)
9966                /* PKRU is separately restored in kvm_x86_ops.run. */
9967                __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
9968                                        ~XFEATURE_MASK_PKRU);
9969
9970        fpregs_mark_activate();
9971        fpregs_unlock();
9972
9973        trace_kvm_fpu(1);
9974}
9975
9976/* When vcpu_run ends, restore user space FPU context. */
9977static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9978{
9979        fpregs_lock();
9980
9981        /*
9982         * Guests with protected state can't have it read by the hypervisor,
9983         * so skip trying to save it.
9984         */
9985        if (vcpu->arch.guest_fpu)
9986                kvm_save_current_fpu(vcpu->arch.guest_fpu);
9987
9988        restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
9989
9990        fpregs_mark_activate();
9991        fpregs_unlock();
9992
9993        ++vcpu->stat.fpu_reload;
9994        trace_kvm_fpu(0);
9995}
9996
9997int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
9998{
9999        struct kvm_run *kvm_run = vcpu->run;
10000        int r;
10001
10002        vcpu_load(vcpu);
10003        kvm_sigset_activate(vcpu);
10004        kvm_run->flags = 0;
10005        kvm_load_guest_fpu(vcpu);
10006
10007        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10008                if (kvm_run->immediate_exit) {
10009                        r = -EINTR;
10010                        goto out;
10011                }
10012                kvm_vcpu_block(vcpu);
10013                if (kvm_apic_accept_events(vcpu) < 0) {
10014                        r = 0;
10015                        goto out;
10016                }
10017                kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10018                r = -EAGAIN;
10019                if (signal_pending(current)) {
10020                        r = -EINTR;
10021                        kvm_run->exit_reason = KVM_EXIT_INTR;
10022                        ++vcpu->stat.signal_exits;
10023                }
10024                goto out;
10025        }
10026
10027        if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10028            (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10029                r = -EINVAL;
10030                goto out;
10031        }
10032
10033        if (kvm_run->kvm_dirty_regs) {
10034                r = sync_regs(vcpu);
10035                if (r != 0)
10036                        goto out;
10037        }
10038
10039        /* re-sync apic's tpr */
10040        if (!lapic_in_kernel(vcpu)) {
10041                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10042                        r = -EINVAL;
10043                        goto out;
10044                }
10045        }
10046
10047        if (unlikely(vcpu->arch.complete_userspace_io)) {
10048                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10049                vcpu->arch.complete_userspace_io = NULL;
10050                r = cui(vcpu);
10051                if (r <= 0)
10052                        goto out;
10053        } else
10054                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10055
10056        if (kvm_run->immediate_exit)
10057                r = -EINTR;
10058        else
10059                r = vcpu_run(vcpu);
10060
10061out:
10062        kvm_put_guest_fpu(vcpu);
10063        if (kvm_run->kvm_valid_regs)
10064                store_regs(vcpu);
10065        post_kvm_run_save(vcpu);
10066        kvm_sigset_deactivate(vcpu);
10067
10068        vcpu_put(vcpu);
10069        return r;
10070}
10071
10072static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10073{
10074        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10075                /*
10076                 * We are here if userspace calls get_regs() in the middle of
10077                 * instruction emulation. Registers state needs to be copied
10078                 * back from emulation context to vcpu. Userspace shouldn't do
10079                 * that usually, but some bad designed PV devices (vmware
10080                 * backdoor interface) need this to work
10081                 */
10082                emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10083                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10084        }
10085        regs->rax = kvm_rax_read(vcpu);
10086        regs->rbx = kvm_rbx_read(vcpu);
10087        regs->rcx = kvm_rcx_read(vcpu);
10088        regs->rdx = kvm_rdx_read(vcpu);
10089        regs->rsi = kvm_rsi_read(vcpu);
10090        regs->rdi = kvm_rdi_read(vcpu);
10091        regs->rsp = kvm_rsp_read(vcpu);
10092        regs->rbp = kvm_rbp_read(vcpu);
10093#ifdef CONFIG_X86_64
10094        regs->r8 = kvm_r8_read(vcpu);
10095        regs->r9 = kvm_r9_read(vcpu);
10096        regs->r10 = kvm_r10_read(vcpu);
10097        regs->r11 = kvm_r11_read(vcpu);
10098        regs->r12 = kvm_r12_read(vcpu);
10099        regs->r13 = kvm_r13_read(vcpu);
10100        regs->r14 = kvm_r14_read(vcpu);
10101        regs->r15 = kvm_r15_read(vcpu);
10102#endif
10103
10104        regs->rip = kvm_rip_read(vcpu);
10105        regs->rflags = kvm_get_rflags(vcpu);
10106}
10107
10108int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10109{
10110        vcpu_load(vcpu);
10111        __get_regs(vcpu, regs);
10112        vcpu_put(vcpu);
10113        return 0;
10114}
10115
10116static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10117{
10118        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10119        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10120
10121        kvm_rax_write(vcpu, regs->rax);
10122        kvm_rbx_write(vcpu, regs->rbx);
10123        kvm_rcx_write(vcpu, regs->rcx);
10124        kvm_rdx_write(vcpu, regs->rdx);
10125        kvm_rsi_write(vcpu, regs->rsi);
10126        kvm_rdi_write(vcpu, regs->rdi);
10127        kvm_rsp_write(vcpu, regs->rsp);
10128        kvm_rbp_write(vcpu, regs->rbp);
10129#ifdef CONFIG_X86_64
10130        kvm_r8_write(vcpu, regs->r8);
10131        kvm_r9_write(vcpu, regs->r9);
10132        kvm_r10_write(vcpu, regs->r10);
10133        kvm_r11_write(vcpu, regs->r11);
10134        kvm_r12_write(vcpu, regs->r12);
10135        kvm_r13_write(vcpu, regs->r13);
10136        kvm_r14_write(vcpu, regs->r14);
10137        kvm_r15_write(vcpu, regs->r15);
10138#endif
10139
10140        kvm_rip_write(vcpu, regs->rip);
10141        kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10142
10143        vcpu->arch.exception.pending = false;
10144
10145        kvm_make_request(KVM_REQ_EVENT, vcpu);
10146}
10147
10148int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10149{
10150        vcpu_load(vcpu);
10151        __set_regs(vcpu, regs);
10152        vcpu_put(vcpu);
10153        return 0;
10154}
10155
10156void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10157{
10158        struct kvm_segment cs;
10159
10160        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10161        *db = cs.db;
10162        *l = cs.l;
10163}
10164EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10165
10166static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10167{
10168        struct desc_ptr dt;
10169
10170        if (vcpu->arch.guest_state_protected)
10171                goto skip_protected_regs;
10172
10173        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10174        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10175        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10176        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10177        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10178        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10179
10180        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10181        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10182
10183        static_call(kvm_x86_get_idt)(vcpu, &dt);
10184        sregs->idt.limit = dt.size;
10185        sregs->idt.base = dt.address;
10186        static_call(kvm_x86_get_gdt)(vcpu, &dt);
10187        sregs->gdt.limit = dt.size;
10188        sregs->gdt.base = dt.address;
10189
10190        sregs->cr2 = vcpu->arch.cr2;
10191        sregs->cr3 = kvm_read_cr3(vcpu);
10192
10193skip_protected_regs:
10194        sregs->cr0 = kvm_read_cr0(vcpu);
10195        sregs->cr4 = kvm_read_cr4(vcpu);
10196        sregs->cr8 = kvm_get_cr8(vcpu);
10197        sregs->efer = vcpu->arch.efer;
10198        sregs->apic_base = kvm_get_apic_base(vcpu);
10199}
10200
10201static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10202{
10203        __get_sregs_common(vcpu, sregs);
10204
10205        if (vcpu->arch.guest_state_protected)
10206                return;
10207
10208        if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10209                set_bit(vcpu->arch.interrupt.nr,
10210                        (unsigned long *)sregs->interrupt_bitmap);
10211}
10212
10213static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10214{
10215        int i;
10216
10217        __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10218
10219        if (vcpu->arch.guest_state_protected)
10220                return;
10221
10222        if (is_pae_paging(vcpu)) {
10223                for (i = 0 ; i < 4 ; i++)
10224                        sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10225                sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10226        }
10227}
10228
10229int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10230                                  struct kvm_sregs *sregs)
10231{
10232        vcpu_load(vcpu);
10233        __get_sregs(vcpu, sregs);
10234        vcpu_put(vcpu);
10235        return 0;
10236}
10237
10238int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10239                                    struct kvm_mp_state *mp_state)
10240{
10241        int r;
10242
10243        vcpu_load(vcpu);
10244        if (kvm_mpx_supported())
10245                kvm_load_guest_fpu(vcpu);
10246
10247        r = kvm_apic_accept_events(vcpu);
10248        if (r < 0)
10249                goto out;
10250        r = 0;
10251
10252        if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10253             vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10254            vcpu->arch.pv.pv_unhalted)
10255                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10256        else
10257                mp_state->mp_state = vcpu->arch.mp_state;
10258
10259out:
10260        if (kvm_mpx_supported())
10261                kvm_put_guest_fpu(vcpu);
10262        vcpu_put(vcpu);
10263        return r;
10264}
10265
10266int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10267                                    struct kvm_mp_state *mp_state)
10268{
10269        int ret = -EINVAL;
10270
10271        vcpu_load(vcpu);
10272
10273        if (!lapic_in_kernel(vcpu) &&
10274            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10275                goto out;
10276
10277        /*
10278         * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10279         * INIT state; latched init should be reported using
10280         * KVM_SET_VCPU_EVENTS, so reject it here.
10281         */
10282        if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10283            (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10284             mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10285                goto out;
10286
10287        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10288                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10289                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10290        } else
10291                vcpu->arch.mp_state = mp_state->mp_state;
10292        kvm_make_request(KVM_REQ_EVENT, vcpu);
10293
10294        ret = 0;
10295out:
10296        vcpu_put(vcpu);
10297        return ret;
10298}
10299
10300int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10301                    int reason, bool has_error_code, u32 error_code)
10302{
10303        struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10304        int ret;
10305
10306        init_emulate_ctxt(vcpu);
10307
10308        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10309                                   has_error_code, error_code);
10310        if (ret) {
10311                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10312                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10313                vcpu->run->internal.ndata = 0;
10314                return 0;
10315        }
10316
10317        kvm_rip_write(vcpu, ctxt->eip);
10318        kvm_set_rflags(vcpu, ctxt->eflags);
10319        return 1;
10320}
10321EXPORT_SYMBOL_GPL(kvm_task_switch);
10322
10323static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10324{
10325        if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10326                /*
10327                 * When EFER.LME and CR0.PG are set, the processor is in
10328                 * 64-bit mode (though maybe in a 32-bit code segment).
10329                 * CR4.PAE and EFER.LMA must be set.
10330                 */
10331                if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10332                        return false;
10333                if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10334                        return false;
10335        } else {
10336                /*
10337                 * Not in 64-bit mode: EFER.LMA is clear and the code
10338                 * segment cannot be 64-bit.
10339                 */
10340                if (sregs->efer & EFER_LMA || sregs->cs.l)
10341                        return false;
10342        }
10343
10344        return kvm_is_valid_cr4(vcpu, sregs->cr4);
10345}
10346
10347static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10348                int *mmu_reset_needed, bool update_pdptrs)
10349{
10350        struct msr_data apic_base_msr;
10351        int idx;
10352        struct desc_ptr dt;
10353
10354        if (!kvm_is_valid_sregs(vcpu, sregs))
10355                return -EINVAL;
10356
10357        apic_base_msr.data = sregs->apic_base;
10358        apic_base_msr.host_initiated = true;
10359        if (kvm_set_apic_base(vcpu, &apic_base_msr))
10360                return -EINVAL;
10361
10362        if (vcpu->arch.guest_state_protected)
10363                return 0;
10364
10365        dt.size = sregs->idt.limit;
10366        dt.address = sregs->idt.base;
10367        static_call(kvm_x86_set_idt)(vcpu, &dt);
10368        dt.size = sregs->gdt.limit;
10369        dt.address = sregs->gdt.base;
10370        static_call(kvm_x86_set_gdt)(vcpu, &dt);
10371
10372        vcpu->arch.cr2 = sregs->cr2;
10373        *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10374        vcpu->arch.cr3 = sregs->cr3;
10375        kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10376
10377        kvm_set_cr8(vcpu, sregs->cr8);
10378
10379        *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10380        static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10381
10382        *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10383        static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10384        vcpu->arch.cr0 = sregs->cr0;
10385
10386        *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10387        static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10388
10389        if (update_pdptrs) {
10390                idx = srcu_read_lock(&vcpu->kvm->srcu);
10391                if (is_pae_paging(vcpu)) {
10392                        load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10393                        *mmu_reset_needed = 1;
10394                }
10395                srcu_read_unlock(&vcpu->kvm->srcu, idx);
10396        }
10397
10398        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10399        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10400        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10401        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10402        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10403        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10404
10405        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10406        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10407
10408        update_cr8_intercept(vcpu);
10409
10410        /* Older userspace won't unhalt the vcpu on reset. */
10411        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10412            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10413            !is_protmode(vcpu))
10414                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10415
10416        return 0;
10417}
10418
10419static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10420{
10421        int pending_vec, max_bits;
10422        int mmu_reset_needed = 0;
10423        int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10424
10425        if (ret)
10426                return ret;
10427
10428        if (mmu_reset_needed)
10429                kvm_mmu_reset_context(vcpu);
10430
10431        max_bits = KVM_NR_INTERRUPTS;
10432        pending_vec = find_first_bit(
10433                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10434
10435        if (pending_vec < max_bits) {
10436                kvm_queue_interrupt(vcpu, pending_vec, false);
10437                pr_debug("Set back pending irq %d\n", pending_vec);
10438                kvm_make_request(KVM_REQ_EVENT, vcpu);
10439        }
10440        return 0;
10441}
10442
10443static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10444{
10445        int mmu_reset_needed = 0;
10446        bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10447        bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10448                !(sregs2->efer & EFER_LMA);
10449        int i, ret;
10450
10451        if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10452                return -EINVAL;
10453
10454        if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10455                return -EINVAL;
10456
10457        ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10458                                 &mmu_reset_needed, !valid_pdptrs);
10459        if (ret)
10460                return ret;
10461
10462        if (valid_pdptrs) {
10463                for (i = 0; i < 4 ; i++)
10464                        kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10465
10466                kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10467                mmu_reset_needed = 1;
10468                vcpu->arch.pdptrs_from_userspace = true;
10469        }
10470        if (mmu_reset_needed)
10471                kvm_mmu_reset_context(vcpu);
10472        return 0;
10473}
10474
10475int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10476                                  struct kvm_sregs *sregs)
10477{
10478        int ret;
10479
10480        vcpu_load(vcpu);
10481        ret = __set_sregs(vcpu, sregs);
10482        vcpu_put(vcpu);
10483        return ret;
10484}
10485
10486int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10487                                        struct kvm_guest_debug *dbg)
10488{
10489        unsigned long rflags;
10490        int i, r;
10491
10492        if (vcpu->arch.guest_state_protected)
10493                return -EINVAL;
10494
10495        vcpu_load(vcpu);
10496
10497        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10498                r = -EBUSY;
10499                if (vcpu->arch.exception.pending)
10500                        goto out;
10501                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10502                        kvm_queue_exception(vcpu, DB_VECTOR);
10503                else
10504                        kvm_queue_exception(vcpu, BP_VECTOR);
10505        }
10506
10507        /*
10508         * Read rflags as long as potentially injected trace flags are still
10509         * filtered out.
10510         */
10511        rflags = kvm_get_rflags(vcpu);
10512
10513        vcpu->guest_debug = dbg->control;
10514        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10515                vcpu->guest_debug = 0;
10516
10517        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10518                for (i = 0; i < KVM_NR_DB_REGS; ++i)
10519                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10520                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10521        } else {
10522                for (i = 0; i < KVM_NR_DB_REGS; i++)
10523                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10524        }
10525        kvm_update_dr7(vcpu);
10526
10527        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10528                vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10529
10530        /*
10531         * Trigger an rflags update that will inject or remove the trace
10532         * flags.
10533         */
10534        kvm_set_rflags(vcpu, rflags);
10535
10536        static_call(kvm_x86_update_exception_bitmap)(vcpu);
10537
10538        r = 0;
10539
10540out:
10541        vcpu_put(vcpu);
10542        return r;
10543}
10544
10545/*
10546 * Translate a guest virtual address to a guest physical address.
10547 */
10548int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10549                                    struct kvm_translation *tr)
10550{
10551        unsigned long vaddr = tr->linear_address;
10552        gpa_t gpa;
10553        int idx;
10554
10555        vcpu_load(vcpu);
10556
10557        idx = srcu_read_lock(&vcpu->kvm->srcu);
10558        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10559        srcu_read_unlock(&vcpu->kvm->srcu, idx);
10560        tr->physical_address = gpa;
10561        tr->valid = gpa != UNMAPPED_GVA;
10562        tr->writeable = 1;
10563        tr->usermode = 0;
10564
10565        vcpu_put(vcpu);
10566        return 0;
10567}
10568
10569int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10570{
10571        struct fxregs_state *fxsave;
10572
10573        if (!vcpu->arch.guest_fpu)
10574                return 0;
10575
10576        vcpu_load(vcpu);
10577
10578        fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10579        memcpy(fpu->fpr, fxsave->st_space, 128);
10580        fpu->fcw = fxsave->cwd;
10581        fpu->fsw = fxsave->swd;
10582        fpu->ftwx = fxsave->twd;
10583        fpu->last_opcode = fxsave->fop;
10584        fpu->last_ip = fxsave->rip;
10585        fpu->last_dp = fxsave->rdp;
10586        memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10587
10588        vcpu_put(vcpu);
10589        return 0;
10590}
10591
10592int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10593{
10594        struct fxregs_state *fxsave;
10595
10596        if (!vcpu->arch.guest_fpu)
10597                return 0;
10598
10599        vcpu_load(vcpu);
10600
10601        fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10602
10603        memcpy(fxsave->st_space, fpu->fpr, 128);
10604        fxsave->cwd = fpu->fcw;
10605        fxsave->swd = fpu->fsw;
10606        fxsave->twd = fpu->ftwx;
10607        fxsave->fop = fpu->last_opcode;
10608        fxsave->rip = fpu->last_ip;
10609        fxsave->rdp = fpu->last_dp;
10610        memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10611
10612        vcpu_put(vcpu);
10613        return 0;
10614}
10615
10616static void store_regs(struct kvm_vcpu *vcpu)
10617{
10618        BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10619
10620        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10621                __get_regs(vcpu, &vcpu->run->s.regs.regs);
10622
10623        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10624                __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10625
10626        if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10627                kvm_vcpu_ioctl_x86_get_vcpu_events(
10628                                vcpu, &vcpu->run->s.regs.events);
10629}
10630
10631static int sync_regs(struct kvm_vcpu *vcpu)
10632{
10633        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10634                __set_regs(vcpu, &vcpu->run->s.regs.regs);
10635                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10636        }
10637        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10638                if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10639                        return -EINVAL;
10640                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10641        }
10642        if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10643                if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10644                                vcpu, &vcpu->run->s.regs.events))
10645                        return -EINVAL;
10646                vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10647        }
10648
10649        return 0;
10650}
10651
10652static void fx_init(struct kvm_vcpu *vcpu)
10653{
10654        if (!vcpu->arch.guest_fpu)
10655                return;
10656
10657        fpstate_init(&vcpu->arch.guest_fpu->state);
10658        if (boot_cpu_has(X86_FEATURE_XSAVES))
10659                vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10660                        host_xcr0 | XSTATE_COMPACTION_ENABLED;
10661
10662        /*
10663         * Ensure guest xcr0 is valid for loading
10664         */
10665        vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10666
10667        vcpu->arch.cr0 |= X86_CR0_ET;
10668}
10669
10670void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10671{
10672        if (vcpu->arch.guest_fpu) {
10673                kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10674                vcpu->arch.guest_fpu = NULL;
10675        }
10676}
10677EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10678
10679int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10680{
10681        if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10682                pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10683                             "guest TSC will not be reliable\n");
10684
10685        return 0;
10686}
10687
10688int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10689{
10690        struct page *page;
10691        int r;
10692
10693        vcpu->arch.last_vmentry_cpu = -1;
10694        vcpu->arch.regs_avail = ~0;
10695        vcpu->arch.regs_dirty = ~0;
10696
10697        if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10698                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10699        else
10700                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10701
10702        r = kvm_mmu_create(vcpu);
10703        if (r < 0)
10704                return r;
10705
10706        if (irqchip_in_kernel(vcpu->kvm)) {
10707                r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10708                if (r < 0)
10709                        goto fail_mmu_destroy;
10710                if (kvm_apicv_activated(vcpu->kvm))
10711                        vcpu->arch.apicv_active = true;
10712        } else
10713                static_branch_inc(&kvm_has_noapic_vcpu);
10714
10715        r = -ENOMEM;
10716
10717        page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10718        if (!page)
10719                goto fail_free_lapic;
10720        vcpu->arch.pio_data = page_address(page);
10721
10722        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10723                                       GFP_KERNEL_ACCOUNT);
10724        if (!vcpu->arch.mce_banks)
10725                goto fail_free_pio_data;
10726        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10727
10728        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10729                                GFP_KERNEL_ACCOUNT))
10730                goto fail_free_mce_banks;
10731
10732        if (!alloc_emulate_ctxt(vcpu))
10733                goto free_wbinvd_dirty_mask;
10734
10735        vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
10736                                                GFP_KERNEL_ACCOUNT);
10737        if (!vcpu->arch.user_fpu) {
10738                pr_err("kvm: failed to allocate userspace's fpu\n");
10739                goto free_emulate_ctxt;
10740        }
10741
10742        vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
10743                                                 GFP_KERNEL_ACCOUNT);
10744        if (!vcpu->arch.guest_fpu) {
10745                pr_err("kvm: failed to allocate vcpu's fpu\n");
10746                goto free_user_fpu;
10747        }
10748        fx_init(vcpu);
10749
10750        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10751        vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10752
10753        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10754
10755        kvm_async_pf_hash_reset(vcpu);
10756        kvm_pmu_init(vcpu);
10757
10758        vcpu->arch.pending_external_vector = -1;
10759        vcpu->arch.preempted_in_kernel = false;
10760
10761#if IS_ENABLED(CONFIG_HYPERV)
10762        vcpu->arch.hv_root_tdp = INVALID_PAGE;
10763#endif
10764
10765        r = static_call(kvm_x86_vcpu_create)(vcpu);
10766        if (r)
10767                goto free_guest_fpu;
10768
10769        vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10770        vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10771        kvm_vcpu_mtrr_init(vcpu);
10772        vcpu_load(vcpu);
10773        kvm_set_tsc_khz(vcpu, max_tsc_khz);
10774        kvm_vcpu_reset(vcpu, false);
10775        kvm_init_mmu(vcpu);
10776        vcpu_put(vcpu);
10777        return 0;
10778
10779free_guest_fpu:
10780        kvm_free_guest_fpu(vcpu);
10781free_user_fpu:
10782        kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10783free_emulate_ctxt:
10784        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10785free_wbinvd_dirty_mask:
10786        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10787fail_free_mce_banks:
10788        kfree(vcpu->arch.mce_banks);
10789fail_free_pio_data:
10790        free_page((unsigned long)vcpu->arch.pio_data);
10791fail_free_lapic:
10792        kvm_free_lapic(vcpu);
10793fail_mmu_destroy:
10794        kvm_mmu_destroy(vcpu);
10795        return r;
10796}
10797
10798void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10799{
10800        struct kvm *kvm = vcpu->kvm;
10801
10802        if (mutex_lock_killable(&vcpu->mutex))
10803                return;
10804        vcpu_load(vcpu);
10805        kvm_synchronize_tsc(vcpu, 0);
10806        vcpu_put(vcpu);
10807
10808        /* poll control enabled by default */
10809        vcpu->arch.msr_kvm_poll_control = 1;
10810
10811        mutex_unlock(&vcpu->mutex);
10812
10813        if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10814                schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10815                                                KVMCLOCK_SYNC_PERIOD);
10816}
10817
10818void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10819{
10820        struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
10821        int idx;
10822
10823        kvm_release_pfn(cache->pfn, cache->dirty, cache);
10824
10825        kvmclock_reset(vcpu);
10826
10827        static_call(kvm_x86_vcpu_free)(vcpu);
10828
10829        kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10830        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10831        kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
10832        kvm_free_guest_fpu(vcpu);
10833
10834        kvm_hv_vcpu_uninit(vcpu);
10835        kvm_pmu_destroy(vcpu);
10836        kfree(vcpu->arch.mce_banks);
10837        kvm_free_lapic(vcpu);
10838        idx = srcu_read_lock(&vcpu->kvm->srcu);
10839        kvm_mmu_destroy(vcpu);
10840        srcu_read_unlock(&vcpu->kvm->srcu, idx);
10841        free_page((unsigned long)vcpu->arch.pio_data);
10842        kvfree(vcpu->arch.cpuid_entries);
10843        if (!lapic_in_kernel(vcpu))
10844                static_branch_dec(&kvm_has_noapic_vcpu);
10845}
10846
10847void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10848{
10849        unsigned long old_cr0 = kvm_read_cr0(vcpu);
10850        unsigned long new_cr0;
10851        u32 eax, dummy;
10852
10853        kvm_lapic_reset(vcpu, init_event);
10854
10855        vcpu->arch.hflags = 0;
10856
10857        vcpu->arch.smi_pending = 0;
10858        vcpu->arch.smi_count = 0;
10859        atomic_set(&vcpu->arch.nmi_queued, 0);
10860        vcpu->arch.nmi_pending = 0;
10861        vcpu->arch.nmi_injected = false;
10862        kvm_clear_interrupt_queue(vcpu);
10863        kvm_clear_exception_queue(vcpu);
10864
10865        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10866        kvm_update_dr0123(vcpu);
10867        vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10868        vcpu->arch.dr7 = DR7_FIXED_1;
10869        kvm_update_dr7(vcpu);
10870
10871        vcpu->arch.cr2 = 0;
10872
10873        kvm_make_request(KVM_REQ_EVENT, vcpu);
10874        vcpu->arch.apf.msr_en_val = 0;
10875        vcpu->arch.apf.msr_int_val = 0;
10876        vcpu->arch.st.msr_val = 0;
10877
10878        kvmclock_reset(vcpu);
10879
10880        kvm_clear_async_pf_completion_queue(vcpu);
10881        kvm_async_pf_hash_reset(vcpu);
10882        vcpu->arch.apf.halted = false;
10883
10884        if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
10885                void *mpx_state_buffer;
10886
10887                /*
10888                 * To avoid have the INIT path from kvm_apic_has_events() that be
10889                 * called with loaded FPU and does not let userspace fix the state.
10890                 */
10891                if (init_event)
10892                        kvm_put_guest_fpu(vcpu);
10893                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10894                                        XFEATURE_BNDREGS);
10895                if (mpx_state_buffer)
10896                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
10897                mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
10898                                        XFEATURE_BNDCSR);
10899                if (mpx_state_buffer)
10900                        memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
10901                if (init_event)
10902                        kvm_load_guest_fpu(vcpu);
10903        }
10904
10905        if (!init_event) {
10906                kvm_pmu_reset(vcpu);
10907                vcpu->arch.smbase = 0x30000;
10908
10909                vcpu->arch.msr_misc_features_enables = 0;
10910
10911                vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10912        }
10913
10914        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10915        vcpu->arch.regs_avail = ~0;
10916        vcpu->arch.regs_dirty = ~0;
10917
10918        /*
10919         * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
10920         * if no CPUID match is found.  Note, it's impossible to get a match at
10921         * RESET since KVM emulates RESET before exposing the vCPU to userspace,
10922         * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
10923         * But, go through the motions in case that's ever remedied.
10924         */
10925        eax = 1;
10926        if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
10927                eax = 0x600;
10928        kvm_rdx_write(vcpu, eax);
10929
10930        vcpu->arch.ia32_xss = 0;
10931
10932        static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
10933
10934        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10935        kvm_rip_write(vcpu, 0xfff0);
10936
10937        vcpu->arch.cr3 = 0;
10938        kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10939
10940        /*
10941         * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
10942         * of Intel's SDM list CD/NW as being set on INIT, but they contradict
10943         * (or qualify) that with a footnote stating that CD/NW are preserved.
10944         */
10945        new_cr0 = X86_CR0_ET;
10946        if (init_event)
10947                new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
10948        else
10949                new_cr0 |= X86_CR0_NW | X86_CR0_CD;
10950
10951        static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
10952        static_call(kvm_x86_set_cr4)(vcpu, 0);
10953        static_call(kvm_x86_set_efer)(vcpu, 0);
10954        static_call(kvm_x86_update_exception_bitmap)(vcpu);
10955
10956        /*
10957         * Reset the MMU context if paging was enabled prior to INIT (which is
10958         * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
10959         * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
10960         * checked because it is unconditionally cleared on INIT and all other
10961         * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
10962         * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
10963         */
10964        if (old_cr0 & X86_CR0_PG)
10965                kvm_mmu_reset_context(vcpu);
10966
10967        /*
10968         * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
10969         * APM states the TLBs are untouched by INIT, but it also states that
10970         * the TLBs are flushed on "External initialization of the processor."
10971         * Flush the guest TLB regardless of vendor, there is no meaningful
10972         * benefit in relying on the guest to flush the TLB immediately after
10973         * INIT.  A spurious TLB flush is benign and likely negligible from a
10974         * performance perspective.
10975         */
10976        if (init_event)
10977                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
10978}
10979EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
10980
10981void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
10982{
10983        struct kvm_segment cs;
10984
10985        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10986        cs.selector = vector << 8;
10987        cs.base = vector << 12;
10988        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10989        kvm_rip_write(vcpu, 0);
10990}
10991EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
10992
10993int kvm_arch_hardware_enable(void)
10994{
10995        struct kvm *kvm;
10996        struct kvm_vcpu *vcpu;
10997        int i;
10998        int ret;
10999        u64 local_tsc;
11000        u64 max_tsc = 0;
11001        bool stable, backwards_tsc = false;
11002
11003        kvm_user_return_msr_cpu_online();
11004        ret = static_call(kvm_x86_hardware_enable)();
11005        if (ret != 0)
11006                return ret;
11007
11008        local_tsc = rdtsc();
11009        stable = !kvm_check_tsc_unstable();
11010        list_for_each_entry(kvm, &vm_list, vm_list) {
11011                kvm_for_each_vcpu(i, vcpu, kvm) {
11012                        if (!stable && vcpu->cpu == smp_processor_id())
11013                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11014                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11015                                backwards_tsc = true;
11016                                if (vcpu->arch.last_host_tsc > max_tsc)
11017                                        max_tsc = vcpu->arch.last_host_tsc;
11018                        }
11019                }
11020        }
11021
11022        /*
11023         * Sometimes, even reliable TSCs go backwards.  This happens on
11024         * platforms that reset TSC during suspend or hibernate actions, but
11025         * maintain synchronization.  We must compensate.  Fortunately, we can
11026         * detect that condition here, which happens early in CPU bringup,
11027         * before any KVM threads can be running.  Unfortunately, we can't
11028         * bring the TSCs fully up to date with real time, as we aren't yet far
11029         * enough into CPU bringup that we know how much real time has actually
11030         * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11031         * variables that haven't been updated yet.
11032         *
11033         * So we simply find the maximum observed TSC above, then record the
11034         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11035         * the adjustment will be applied.  Note that we accumulate
11036         * adjustments, in case multiple suspend cycles happen before some VCPU
11037         * gets a chance to run again.  In the event that no KVM threads get a
11038         * chance to run, we will miss the entire elapsed period, as we'll have
11039         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11040         * loose cycle time.  This isn't too big a deal, since the loss will be
11041         * uniform across all VCPUs (not to mention the scenario is extremely
11042         * unlikely). It is possible that a second hibernate recovery happens
11043         * much faster than a first, causing the observed TSC here to be
11044         * smaller; this would require additional padding adjustment, which is
11045         * why we set last_host_tsc to the local tsc observed here.
11046         *
11047         * N.B. - this code below runs only on platforms with reliable TSC,
11048         * as that is the only way backwards_tsc is set above.  Also note
11049         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11050         * have the same delta_cyc adjustment applied if backwards_tsc
11051         * is detected.  Note further, this adjustment is only done once,
11052         * as we reset last_host_tsc on all VCPUs to stop this from being
11053         * called multiple times (one for each physical CPU bringup).
11054         *
11055         * Platforms with unreliable TSCs don't have to deal with this, they
11056         * will be compensated by the logic in vcpu_load, which sets the TSC to
11057         * catchup mode.  This will catchup all VCPUs to real time, but cannot
11058         * guarantee that they stay in perfect synchronization.
11059         */
11060        if (backwards_tsc) {
11061                u64 delta_cyc = max_tsc - local_tsc;
11062                list_for_each_entry(kvm, &vm_list, vm_list) {
11063                        kvm->arch.backwards_tsc_observed = true;
11064                        kvm_for_each_vcpu(i, vcpu, kvm) {
11065                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
11066                                vcpu->arch.last_host_tsc = local_tsc;
11067                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11068                        }
11069
11070                        /*
11071                         * We have to disable TSC offset matching.. if you were
11072                         * booting a VM while issuing an S4 host suspend....
11073                         * you may have some problem.  Solving this issue is
11074                         * left as an exercise to the reader.
11075                         */
11076                        kvm->arch.last_tsc_nsec = 0;
11077                        kvm->arch.last_tsc_write = 0;
11078                }
11079
11080        }
11081        return 0;
11082}
11083
11084void kvm_arch_hardware_disable(void)
11085{
11086        static_call(kvm_x86_hardware_disable)();
11087        drop_user_return_notifiers();
11088}
11089
11090int kvm_arch_hardware_setup(void *opaque)
11091{
11092        struct kvm_x86_init_ops *ops = opaque;
11093        int r;
11094
11095        rdmsrl_safe(MSR_EFER, &host_efer);
11096
11097        if (boot_cpu_has(X86_FEATURE_XSAVES))
11098                rdmsrl(MSR_IA32_XSS, host_xss);
11099
11100        r = ops->hardware_setup();
11101        if (r != 0)
11102                return r;
11103
11104        memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11105        kvm_ops_static_call_update();
11106
11107        if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11108                supported_xss = 0;
11109
11110#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11111        cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11112#undef __kvm_cpu_cap_has
11113
11114        if (kvm_has_tsc_control) {
11115                /*
11116                 * Make sure the user can only configure tsc_khz values that
11117                 * fit into a signed integer.
11118                 * A min value is not calculated because it will always
11119                 * be 1 on all machines.
11120                 */
11121                u64 max = min(0x7fffffffULL,
11122                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11123                kvm_max_guest_tsc_khz = max;
11124
11125                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11126        }
11127
11128        kvm_init_msr_list();
11129        return 0;
11130}
11131
11132void kvm_arch_hardware_unsetup(void)
11133{
11134        static_call(kvm_x86_hardware_unsetup)();
11135}
11136
11137int kvm_arch_check_processor_compat(void *opaque)
11138{
11139        struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11140        struct kvm_x86_init_ops *ops = opaque;
11141
11142        WARN_ON(!irqs_disabled());
11143
11144        if (__cr4_reserved_bits(cpu_has, c) !=
11145            __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11146                return -EIO;
11147
11148        return ops->check_processor_compatibility();
11149}
11150
11151bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11152{
11153        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11154}
11155EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11156
11157bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11158{
11159        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11160}
11161
11162__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11163EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11164
11165void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11166{
11167        struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11168
11169        vcpu->arch.l1tf_flush_l1d = true;
11170        if (pmu->version && unlikely(pmu->event_count)) {
11171                pmu->need_cleanup = true;
11172                kvm_make_request(KVM_REQ_PMU, vcpu);
11173        }
11174        static_call(kvm_x86_sched_in)(vcpu, cpu);
11175}
11176
11177void kvm_arch_free_vm(struct kvm *kvm)
11178{
11179        kfree(to_kvm_hv(kvm)->hv_pa_pg);
11180        vfree(kvm);
11181}
11182
11183
11184int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11185{
11186        int ret;
11187
11188        if (type)
11189                return -EINVAL;
11190
11191        ret = kvm_page_track_init(kvm);
11192        if (ret)
11193                return ret;
11194
11195        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11196        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11197        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11198        INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11199        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11200        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11201
11202        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11203        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11204        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11205        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11206                &kvm->arch.irq_sources_bitmap);
11207
11208        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11209        mutex_init(&kvm->arch.apic_map_lock);
11210        raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11211
11212        kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11213        pvclock_update_vm_gtod_copy(kvm);
11214
11215        kvm->arch.guest_can_read_msr_platform_info = true;
11216
11217#if IS_ENABLED(CONFIG_HYPERV)
11218        spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11219        kvm->arch.hv_root_tdp = INVALID_PAGE;
11220#endif
11221
11222        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11223        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11224
11225        kvm_apicv_init(kvm);
11226        kvm_hv_init_vm(kvm);
11227        kvm_mmu_init_vm(kvm);
11228        kvm_xen_init_vm(kvm);
11229
11230        return static_call(kvm_x86_vm_init)(kvm);
11231}
11232
11233int kvm_arch_post_init_vm(struct kvm *kvm)
11234{
11235        return kvm_mmu_post_init_vm(kvm);
11236}
11237
11238static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11239{
11240        vcpu_load(vcpu);
11241        kvm_mmu_unload(vcpu);
11242        vcpu_put(vcpu);
11243}
11244
11245static void kvm_free_vcpus(struct kvm *kvm)
11246{
11247        unsigned int i;
11248        struct kvm_vcpu *vcpu;
11249
11250        /*
11251         * Unpin any mmu pages first.
11252         */
11253        kvm_for_each_vcpu(i, vcpu, kvm) {
11254                kvm_clear_async_pf_completion_queue(vcpu);
11255                kvm_unload_vcpu_mmu(vcpu);
11256        }
11257        kvm_for_each_vcpu(i, vcpu, kvm)
11258                kvm_vcpu_destroy(vcpu);
11259
11260        mutex_lock(&kvm->lock);
11261        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11262                kvm->vcpus[i] = NULL;
11263
11264        atomic_set(&kvm->online_vcpus, 0);
11265        mutex_unlock(&kvm->lock);
11266}
11267
11268void kvm_arch_sync_events(struct kvm *kvm)
11269{
11270        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11271        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11272        kvm_free_pit(kvm);
11273}
11274
11275#define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11276
11277/**
11278 * __x86_set_memory_region: Setup KVM internal memory slot
11279 *
11280 * @kvm: the kvm pointer to the VM.
11281 * @id: the slot ID to setup.
11282 * @gpa: the GPA to install the slot (unused when @size == 0).
11283 * @size: the size of the slot. Set to zero to uninstall a slot.
11284 *
11285 * This function helps to setup a KVM internal memory slot.  Specify
11286 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11287 * slot.  The return code can be one of the following:
11288 *
11289 *   HVA:           on success (uninstall will return a bogus HVA)
11290 *   -errno:        on error
11291 *
11292 * The caller should always use IS_ERR() to check the return value
11293 * before use.  Note, the KVM internal memory slots are guaranteed to
11294 * remain valid and unchanged until the VM is destroyed, i.e., the
11295 * GPA->HVA translation will not change.  However, the HVA is a user
11296 * address, i.e. its accessibility is not guaranteed, and must be
11297 * accessed via __copy_{to,from}_user().
11298 */
11299void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11300                                      u32 size)
11301{
11302        int i, r;
11303        unsigned long hva, old_npages;
11304        struct kvm_memslots *slots = kvm_memslots(kvm);
11305        struct kvm_memory_slot *slot;
11306
11307        /* Called with kvm->slots_lock held.  */
11308        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11309                return ERR_PTR_USR(-EINVAL);
11310
11311        slot = id_to_memslot(slots, id);
11312        if (size) {
11313                if (slot && slot->npages)
11314                        return ERR_PTR_USR(-EEXIST);
11315
11316                /*
11317                 * MAP_SHARED to prevent internal slot pages from being moved
11318                 * by fork()/COW.
11319                 */
11320                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11321                              MAP_SHARED | MAP_ANONYMOUS, 0);
11322                if (IS_ERR((void *)hva))
11323                        return (void __user *)hva;
11324        } else {
11325                if (!slot || !slot->npages)
11326                        return NULL;
11327
11328                old_npages = slot->npages;
11329                hva = slot->userspace_addr;
11330        }
11331
11332        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11333                struct kvm_userspace_memory_region m;
11334
11335                m.slot = id | (i << 16);
11336                m.flags = 0;
11337                m.guest_phys_addr = gpa;
11338                m.userspace_addr = hva;
11339                m.memory_size = size;
11340                r = __kvm_set_memory_region(kvm, &m);
11341                if (r < 0)
11342                        return ERR_PTR_USR(r);
11343        }
11344
11345        if (!size)
11346                vm_munmap(hva, old_npages * PAGE_SIZE);
11347
11348        return (void __user *)hva;
11349}
11350EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11351
11352void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11353{
11354        kvm_mmu_pre_destroy_vm(kvm);
11355}
11356
11357void kvm_arch_destroy_vm(struct kvm *kvm)
11358{
11359        if (current->mm == kvm->mm) {
11360                /*
11361                 * Free memory regions allocated on behalf of userspace,
11362                 * unless the the memory map has changed due to process exit
11363                 * or fd copying.
11364                 */
11365                mutex_lock(&kvm->slots_lock);
11366                __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11367                                        0, 0);
11368                __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11369                                        0, 0);
11370                __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11371                mutex_unlock(&kvm->slots_lock);
11372        }
11373        static_call_cond(kvm_x86_vm_destroy)(kvm);
11374        kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11375        kvm_pic_destroy(kvm);
11376        kvm_ioapic_destroy(kvm);
11377        kvm_free_vcpus(kvm);
11378        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11379        kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11380        kvm_mmu_uninit_vm(kvm);
11381        kvm_page_track_cleanup(kvm);
11382        kvm_xen_destroy_vm(kvm);
11383        kvm_hv_destroy_vm(kvm);
11384}
11385
11386static void memslot_rmap_free(struct kvm_memory_slot *slot)
11387{
11388        int i;
11389
11390        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11391                kvfree(slot->arch.rmap[i]);
11392                slot->arch.rmap[i] = NULL;
11393        }
11394}
11395
11396void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11397{
11398        int i;
11399
11400        memslot_rmap_free(slot);
11401
11402        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11403                kvfree(slot->arch.lpage_info[i - 1]);
11404                slot->arch.lpage_info[i - 1] = NULL;
11405        }
11406
11407        kvm_page_track_free_memslot(slot);
11408}
11409
11410static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11411                              unsigned long npages)
11412{
11413        const int sz = sizeof(*slot->arch.rmap[0]);
11414        int i;
11415
11416        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11417                int level = i + 1;
11418                int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11419
11420                if (slot->arch.rmap[i])
11421                        continue;
11422
11423                slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11424                if (!slot->arch.rmap[i]) {
11425                        memslot_rmap_free(slot);
11426                        return -ENOMEM;
11427                }
11428        }
11429
11430        return 0;
11431}
11432
11433int alloc_all_memslots_rmaps(struct kvm *kvm)
11434{
11435        struct kvm_memslots *slots;
11436        struct kvm_memory_slot *slot;
11437        int r, i;
11438
11439        /*
11440         * Check if memslots alreday have rmaps early before acquiring
11441         * the slots_arch_lock below.
11442         */
11443        if (kvm_memslots_have_rmaps(kvm))
11444                return 0;
11445
11446        mutex_lock(&kvm->slots_arch_lock);
11447
11448        /*
11449         * Read memslots_have_rmaps again, under the slots arch lock,
11450         * before allocating the rmaps
11451         */
11452        if (kvm_memslots_have_rmaps(kvm)) {
11453                mutex_unlock(&kvm->slots_arch_lock);
11454                return 0;
11455        }
11456
11457        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11458                slots = __kvm_memslots(kvm, i);
11459                kvm_for_each_memslot(slot, slots) {
11460                        r = memslot_rmap_alloc(slot, slot->npages);
11461                        if (r) {
11462                                mutex_unlock(&kvm->slots_arch_lock);
11463                                return r;
11464                        }
11465                }
11466        }
11467
11468        /*
11469         * Ensure that memslots_have_rmaps becomes true strictly after
11470         * all the rmap pointers are set.
11471         */
11472        smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11473        mutex_unlock(&kvm->slots_arch_lock);
11474        return 0;
11475}
11476
11477static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11478                                      struct kvm_memory_slot *slot,
11479                                      unsigned long npages)
11480{
11481        int i, r;
11482
11483        /*
11484         * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11485         * old arrays will be freed by __kvm_set_memory_region() if installing
11486         * the new memslot is successful.
11487         */
11488        memset(&slot->arch, 0, sizeof(slot->arch));
11489
11490        if (kvm_memslots_have_rmaps(kvm)) {
11491                r = memslot_rmap_alloc(slot, npages);
11492                if (r)
11493                        return r;
11494        }
11495
11496        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11497                struct kvm_lpage_info *linfo;
11498                unsigned long ugfn;
11499                int lpages;
11500                int level = i + 1;
11501
11502                lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11503
11504                linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11505                if (!linfo)
11506                        goto out_free;
11507
11508                slot->arch.lpage_info[i - 1] = linfo;
11509
11510                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11511                        linfo[0].disallow_lpage = 1;
11512                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11513                        linfo[lpages - 1].disallow_lpage = 1;
11514                ugfn = slot->userspace_addr >> PAGE_SHIFT;
11515                /*
11516                 * If the gfn and userspace address are not aligned wrt each
11517                 * other, disable large page support for this slot.
11518                 */
11519                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11520                        unsigned long j;
11521
11522                        for (j = 0; j < lpages; ++j)
11523                                linfo[j].disallow_lpage = 1;
11524                }
11525        }
11526
11527        if (kvm_page_track_create_memslot(slot, npages))
11528                goto out_free;
11529
11530        return 0;
11531
11532out_free:
11533        memslot_rmap_free(slot);
11534
11535        for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11536                kvfree(slot->arch.lpage_info[i - 1]);
11537                slot->arch.lpage_info[i - 1] = NULL;
11538        }
11539        return -ENOMEM;
11540}
11541
11542void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11543{
11544        struct kvm_vcpu *vcpu;
11545        int i;
11546
11547        /*
11548         * memslots->generation has been incremented.
11549         * mmio generation may have reached its maximum value.
11550         */
11551        kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11552
11553        /* Force re-initialization of steal_time cache */
11554        kvm_for_each_vcpu(i, vcpu, kvm)
11555                kvm_vcpu_kick(vcpu);
11556}
11557
11558int kvm_arch_prepare_memory_region(struct kvm *kvm,
11559                                struct kvm_memory_slot *memslot,
11560                                const struct kvm_userspace_memory_region *mem,
11561                                enum kvm_mr_change change)
11562{
11563        if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11564                return kvm_alloc_memslot_metadata(kvm, memslot,
11565                                                  mem->memory_size >> PAGE_SHIFT);
11566        return 0;
11567}
11568
11569
11570static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11571{
11572        struct kvm_arch *ka = &kvm->arch;
11573
11574        if (!kvm_x86_ops.cpu_dirty_log_size)
11575                return;
11576
11577        if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11578            (!enable && --ka->cpu_dirty_logging_count == 0))
11579                kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11580
11581        WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11582}
11583
11584static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11585                                     struct kvm_memory_slot *old,
11586                                     const struct kvm_memory_slot *new,
11587                                     enum kvm_mr_change change)
11588{
11589        bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11590
11591        /*
11592         * Update CPU dirty logging if dirty logging is being toggled.  This
11593         * applies to all operations.
11594         */
11595        if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11596                kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11597
11598        /*
11599         * Nothing more to do for RO slots (which can't be dirtied and can't be
11600         * made writable) or CREATE/MOVE/DELETE of a slot.
11601         *
11602         * For a memslot with dirty logging disabled:
11603         * CREATE:      No dirty mappings will already exist.
11604         * MOVE/DELETE: The old mappings will already have been cleaned up by
11605         *              kvm_arch_flush_shadow_memslot()
11606         *
11607         * For a memslot with dirty logging enabled:
11608         * CREATE:      No shadow pages exist, thus nothing to write-protect
11609         *              and no dirty bits to clear.
11610         * MOVE/DELETE: The old mappings will already have been cleaned up by
11611         *              kvm_arch_flush_shadow_memslot().
11612         */
11613        if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11614                return;
11615
11616        /*
11617         * READONLY and non-flags changes were filtered out above, and the only
11618         * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11619         * logging isn't being toggled on or off.
11620         */
11621        if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11622                return;
11623
11624        if (!log_dirty_pages) {
11625                /*
11626                 * Dirty logging tracks sptes in 4k granularity, meaning that
11627                 * large sptes have to be split.  If live migration succeeds,
11628                 * the guest in the source machine will be destroyed and large
11629                 * sptes will be created in the destination.  However, if the
11630                 * guest continues to run in the source machine (for example if
11631                 * live migration fails), small sptes will remain around and
11632                 * cause bad performance.
11633                 *
11634                 * Scan sptes if dirty logging has been stopped, dropping those
11635                 * which can be collapsed into a single large-page spte.  Later
11636                 * page faults will create the large-page sptes.
11637                 */
11638                kvm_mmu_zap_collapsible_sptes(kvm, new);
11639        } else {
11640                /*
11641                 * Initially-all-set does not require write protecting any page,
11642                 * because they're all assumed to be dirty.
11643                 */
11644                if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11645                        return;
11646
11647                if (kvm_x86_ops.cpu_dirty_log_size) {
11648                        kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11649                        kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11650                } else {
11651                        kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11652                }
11653        }
11654}
11655
11656void kvm_arch_commit_memory_region(struct kvm *kvm,
11657                                const struct kvm_userspace_memory_region *mem,
11658                                struct kvm_memory_slot *old,
11659                                const struct kvm_memory_slot *new,
11660                                enum kvm_mr_change change)
11661{
11662        if (!kvm->arch.n_requested_mmu_pages)
11663                kvm_mmu_change_mmu_pages(kvm,
11664                                kvm_mmu_calculate_default_mmu_pages(kvm));
11665
11666        kvm_mmu_slot_apply_flags(kvm, old, new, change);
11667
11668        /* Free the arrays associated with the old memslot. */
11669        if (change == KVM_MR_MOVE)
11670                kvm_arch_free_memslot(kvm, old);
11671}
11672
11673void kvm_arch_flush_shadow_all(struct kvm *kvm)
11674{
11675        kvm_mmu_zap_all(kvm);
11676}
11677
11678void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11679                                   struct kvm_memory_slot *slot)
11680{
11681        kvm_page_track_flush_slot(kvm, slot);
11682}
11683
11684static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11685{
11686        return (is_guest_mode(vcpu) &&
11687                        kvm_x86_ops.guest_apic_has_interrupt &&
11688                        static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11689}
11690
11691static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11692{
11693        if (!list_empty_careful(&vcpu->async_pf.done))
11694                return true;
11695
11696        if (kvm_apic_has_events(vcpu))
11697                return true;
11698
11699        if (vcpu->arch.pv.pv_unhalted)
11700                return true;
11701
11702        if (vcpu->arch.exception.pending)
11703                return true;
11704
11705        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11706            (vcpu->arch.nmi_pending &&
11707             static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11708                return true;
11709
11710        if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11711            (vcpu->arch.smi_pending &&
11712             static_call(kvm_x86_smi_allowed)(vcpu, false)))
11713                return true;
11714
11715        if (kvm_arch_interrupt_allowed(vcpu) &&
11716            (kvm_cpu_has_interrupt(vcpu) ||
11717            kvm_guest_apic_has_interrupt(vcpu)))
11718                return true;
11719
11720        if (kvm_hv_has_stimer_pending(vcpu))
11721                return true;
11722
11723        if (is_guest_mode(vcpu) &&
11724            kvm_x86_ops.nested_ops->hv_timer_pending &&
11725            kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11726                return true;
11727
11728        return false;
11729}
11730
11731int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11732{
11733        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11734}
11735
11736bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11737{
11738        if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11739                return true;
11740
11741        return false;
11742}
11743
11744bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11745{
11746        if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11747                return true;
11748
11749        if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11750                kvm_test_request(KVM_REQ_SMI, vcpu) ||
11751                 kvm_test_request(KVM_REQ_EVENT, vcpu))
11752                return true;
11753
11754        return kvm_arch_dy_has_pending_interrupt(vcpu);
11755}
11756
11757bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11758{
11759        if (vcpu->arch.guest_state_protected)
11760                return true;
11761
11762        return vcpu->arch.preempted_in_kernel;
11763}
11764
11765int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11766{
11767        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11768}
11769
11770int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11771{
11772        return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11773}
11774
11775unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11776{
11777        /* Can't read the RIP when guest state is protected, just return 0 */
11778        if (vcpu->arch.guest_state_protected)
11779                return 0;
11780
11781        if (is_64_bit_mode(vcpu))
11782                return kvm_rip_read(vcpu);
11783        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11784                     kvm_rip_read(vcpu));
11785}
11786EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11787
11788bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11789{
11790        return kvm_get_linear_rip(vcpu) == linear_rip;
11791}
11792EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11793
11794unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11795{
11796        unsigned long rflags;
11797
11798        rflags = static_call(kvm_x86_get_rflags)(vcpu);
11799        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11800                rflags &= ~X86_EFLAGS_TF;
11801        return rflags;
11802}
11803EXPORT_SYMBOL_GPL(kvm_get_rflags);
11804
11805static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11806{
11807        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11808            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11809                rflags |= X86_EFLAGS_TF;
11810        static_call(kvm_x86_set_rflags)(vcpu, rflags);
11811}
11812
11813void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11814{
11815        __kvm_set_rflags(vcpu, rflags);
11816        kvm_make_request(KVM_REQ_EVENT, vcpu);
11817}
11818EXPORT_SYMBOL_GPL(kvm_set_rflags);
11819
11820void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11821{
11822        int r;
11823
11824        if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11825              work->wakeup_all)
11826                return;
11827
11828        r = kvm_mmu_reload(vcpu);
11829        if (unlikely(r))
11830                return;
11831
11832        if (!vcpu->arch.mmu->direct_map &&
11833              work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11834                return;
11835
11836        kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11837}
11838
11839static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11840{
11841        BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11842
11843        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11844}
11845
11846static inline u32 kvm_async_pf_next_probe(u32 key)
11847{
11848        return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11849}
11850
11851static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11852{
11853        u32 key = kvm_async_pf_hash_fn(gfn);
11854
11855        while (vcpu->arch.apf.gfns[key] != ~0)
11856                key = kvm_async_pf_next_probe(key);
11857
11858        vcpu->arch.apf.gfns[key] = gfn;
11859}
11860
11861static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11862{
11863        int i;
11864        u32 key = kvm_async_pf_hash_fn(gfn);
11865
11866        for (i = 0; i < ASYNC_PF_PER_VCPU &&
11867                     (vcpu->arch.apf.gfns[key] != gfn &&
11868                      vcpu->arch.apf.gfns[key] != ~0); i++)
11869                key = kvm_async_pf_next_probe(key);
11870
11871        return key;
11872}
11873
11874bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11875{
11876        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11877}
11878
11879static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11880{
11881        u32 i, j, k;
11882
11883        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11884
11885        if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11886                return;
11887
11888        while (true) {
11889                vcpu->arch.apf.gfns[i] = ~0;
11890                do {
11891                        j = kvm_async_pf_next_probe(j);
11892                        if (vcpu->arch.apf.gfns[j] == ~0)
11893                                return;
11894                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11895                        /*
11896                         * k lies cyclically in ]i,j]
11897                         * |    i.k.j |
11898                         * |....j i.k.| or  |.k..j i...|
11899                         */
11900                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11901                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11902                i = j;
11903        }
11904}
11905
11906static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11907{
11908        u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11909
11910        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11911                                      sizeof(reason));
11912}
11913
11914static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11915{
11916        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11917
11918        return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11919                                             &token, offset, sizeof(token));
11920}
11921
11922static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
11923{
11924        unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11925        u32 val;
11926
11927        if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11928                                         &val, offset, sizeof(val)))
11929                return false;
11930
11931        return !val;
11932}
11933
11934static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
11935{
11936        if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
11937                return false;
11938
11939        if (!kvm_pv_async_pf_enabled(vcpu) ||
11940            (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
11941                return false;
11942
11943        return true;
11944}
11945
11946bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
11947{
11948        if (unlikely(!lapic_in_kernel(vcpu) ||
11949                     kvm_event_needs_reinjection(vcpu) ||
11950                     vcpu->arch.exception.pending))
11951                return false;
11952
11953        if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
11954                return false;
11955
11956        /*
11957         * If interrupts are off we cannot even use an artificial
11958         * halt state.
11959         */
11960        return kvm_arch_interrupt_allowed(vcpu);
11961}
11962
11963bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
11964                                     struct kvm_async_pf *work)
11965{
11966        struct x86_exception fault;
11967
11968        trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
11969        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
11970
11971        if (kvm_can_deliver_async_pf(vcpu) &&
11972            !apf_put_user_notpresent(vcpu)) {
11973                fault.vector = PF_VECTOR;
11974                fault.error_code_valid = true;
11975                fault.error_code = 0;
11976                fault.nested_page_fault = false;
11977                fault.address = work->arch.token;
11978                fault.async_page_fault = true;
11979                kvm_inject_page_fault(vcpu, &fault);
11980                return true;
11981        } else {
11982                /*
11983                 * It is not possible to deliver a paravirtualized asynchronous
11984                 * page fault, but putting the guest in an artificial halt state
11985                 * can be beneficial nevertheless: if an interrupt arrives, we
11986                 * can deliver it timely and perhaps the guest will schedule
11987                 * another process.  When the instruction that triggered a page
11988                 * fault is retried, hopefully the page will be ready in the host.
11989                 */
11990                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
11991                return false;
11992        }
11993}
11994
11995void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
11996                                 struct kvm_async_pf *work)
11997{
11998        struct kvm_lapic_irq irq = {
11999                .delivery_mode = APIC_DM_FIXED,
12000                .vector = vcpu->arch.apf.vec
12001        };
12002
12003        if (work->wakeup_all)
12004                work->arch.token = ~0; /* broadcast wakeup */
12005        else
12006                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12007        trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12008
12009        if ((work->wakeup_all || work->notpresent_injected) &&
12010            kvm_pv_async_pf_enabled(vcpu) &&
12011            !apf_put_user_ready(vcpu, work->arch.token)) {
12012                vcpu->arch.apf.pageready_pending = true;
12013                kvm_apic_set_irq(vcpu, &irq, NULL);
12014        }
12015
12016        vcpu->arch.apf.halted = false;
12017        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12018}
12019
12020void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12021{
12022        kvm_make_request(KVM_REQ_APF_READY, vcpu);
12023        if (!vcpu->arch.apf.pageready_pending)
12024                kvm_vcpu_kick(vcpu);
12025}
12026
12027bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12028{
12029        if (!kvm_pv_async_pf_enabled(vcpu))
12030                return true;
12031        else
12032                return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12033}
12034
12035void kvm_arch_start_assignment(struct kvm *kvm)
12036{
12037        if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12038                static_call_cond(kvm_x86_start_assignment)(kvm);
12039}
12040EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12041
12042void kvm_arch_end_assignment(struct kvm *kvm)
12043{
12044        atomic_dec(&kvm->arch.assigned_device_count);
12045}
12046EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12047
12048bool kvm_arch_has_assigned_device(struct kvm *kvm)
12049{
12050        return atomic_read(&kvm->arch.assigned_device_count);
12051}
12052EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12053
12054void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12055{
12056        atomic_inc(&kvm->arch.noncoherent_dma_count);
12057}
12058EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12059
12060void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12061{
12062        atomic_dec(&kvm->arch.noncoherent_dma_count);
12063}
12064EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12065
12066bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12067{
12068        return atomic_read(&kvm->arch.noncoherent_dma_count);
12069}
12070EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12071
12072bool kvm_arch_has_irq_bypass(void)
12073{
12074        return true;
12075}
12076
12077int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12078                                      struct irq_bypass_producer *prod)
12079{
12080        struct kvm_kernel_irqfd *irqfd =
12081                container_of(cons, struct kvm_kernel_irqfd, consumer);
12082        int ret;
12083
12084        irqfd->producer = prod;
12085        kvm_arch_start_assignment(irqfd->kvm);
12086        ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12087                                         prod->irq, irqfd->gsi, 1);
12088
12089        if (ret)
12090                kvm_arch_end_assignment(irqfd->kvm);
12091
12092        return ret;
12093}
12094
12095void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12096                                      struct irq_bypass_producer *prod)
12097{
12098        int ret;
12099        struct kvm_kernel_irqfd *irqfd =
12100                container_of(cons, struct kvm_kernel_irqfd, consumer);
12101
12102        WARN_ON(irqfd->producer != prod);
12103        irqfd->producer = NULL;
12104
12105        /*
12106         * When producer of consumer is unregistered, we change back to
12107         * remapped mode, so we can re-use the current implementation
12108         * when the irq is masked/disabled or the consumer side (KVM
12109         * int this case doesn't want to receive the interrupts.
12110        */
12111        ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12112        if (ret)
12113                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12114                       " fails: %d\n", irqfd->consumer.token, ret);
12115
12116        kvm_arch_end_assignment(irqfd->kvm);
12117}
12118
12119int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12120                                   uint32_t guest_irq, bool set)
12121{
12122        return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12123}
12124
12125bool kvm_vector_hashing_enabled(void)
12126{
12127        return vector_hashing;
12128}
12129
12130bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12131{
12132        return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12133}
12134EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12135
12136
12137int kvm_spec_ctrl_test_value(u64 value)
12138{
12139        /*
12140         * test that setting IA32_SPEC_CTRL to given value
12141         * is allowed by the host processor
12142         */
12143
12144        u64 saved_value;
12145        unsigned long flags;
12146        int ret = 0;
12147
12148        local_irq_save(flags);
12149
12150        if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12151                ret = 1;
12152        else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12153                ret = 1;
12154        else
12155                wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12156
12157        local_irq_restore(flags);
12158
12159        return ret;
12160}
12161EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12162
12163void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12164{
12165        struct x86_exception fault;
12166        u32 access = error_code &
12167                (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12168
12169        if (!(error_code & PFERR_PRESENT_MASK) ||
12170            vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12171                /*
12172                 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12173                 * tables probably do not match the TLB.  Just proceed
12174                 * with the error code that the processor gave.
12175                 */
12176                fault.vector = PF_VECTOR;
12177                fault.error_code_valid = true;
12178                fault.error_code = error_code;
12179                fault.nested_page_fault = false;
12180                fault.address = gva;
12181        }
12182        vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12183}
12184EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12185
12186/*
12187 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12188 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12189 * indicates whether exit to userspace is needed.
12190 */
12191int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12192                              struct x86_exception *e)
12193{
12194        if (r == X86EMUL_PROPAGATE_FAULT) {
12195                kvm_inject_emulated_page_fault(vcpu, e);
12196                return 1;
12197        }
12198
12199        /*
12200         * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12201         * while handling a VMX instruction KVM could've handled the request
12202         * correctly by exiting to userspace and performing I/O but there
12203         * doesn't seem to be a real use-case behind such requests, just return
12204         * KVM_EXIT_INTERNAL_ERROR for now.
12205         */
12206        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12207        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12208        vcpu->run->internal.ndata = 0;
12209
12210        return 0;
12211}
12212EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12213
12214int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12215{
12216        bool pcid_enabled;
12217        struct x86_exception e;
12218        struct {
12219                u64 pcid;
12220                u64 gla;
12221        } operand;
12222        int r;
12223
12224        r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12225        if (r != X86EMUL_CONTINUE)
12226                return kvm_handle_memory_failure(vcpu, r, &e);
12227
12228        if (operand.pcid >> 12 != 0) {
12229                kvm_inject_gp(vcpu, 0);
12230                return 1;
12231        }
12232
12233        pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12234
12235        switch (type) {
12236        case INVPCID_TYPE_INDIV_ADDR:
12237                if ((!pcid_enabled && (operand.pcid != 0)) ||
12238                    is_noncanonical_address(operand.gla, vcpu)) {
12239                        kvm_inject_gp(vcpu, 0);
12240                        return 1;
12241                }
12242                kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12243                return kvm_skip_emulated_instruction(vcpu);
12244
12245        case INVPCID_TYPE_SINGLE_CTXT:
12246                if (!pcid_enabled && (operand.pcid != 0)) {
12247                        kvm_inject_gp(vcpu, 0);
12248                        return 1;
12249                }
12250
12251                kvm_invalidate_pcid(vcpu, operand.pcid);
12252                return kvm_skip_emulated_instruction(vcpu);
12253
12254        case INVPCID_TYPE_ALL_NON_GLOBAL:
12255                /*
12256                 * Currently, KVM doesn't mark global entries in the shadow
12257                 * page tables, so a non-global flush just degenerates to a
12258                 * global flush. If needed, we could optimize this later by
12259                 * keeping track of global entries in shadow page tables.
12260                 */
12261
12262                fallthrough;
12263        case INVPCID_TYPE_ALL_INCL_GLOBAL:
12264                kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12265                return kvm_skip_emulated_instruction(vcpu);
12266
12267        default:
12268                BUG(); /* We have already checked above that type <= 3 */
12269        }
12270}
12271EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12272
12273static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12274{
12275        struct kvm_run *run = vcpu->run;
12276        struct kvm_mmio_fragment *frag;
12277        unsigned int len;
12278
12279        BUG_ON(!vcpu->mmio_needed);
12280
12281        /* Complete previous fragment */
12282        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12283        len = min(8u, frag->len);
12284        if (!vcpu->mmio_is_write)
12285                memcpy(frag->data, run->mmio.data, len);
12286
12287        if (frag->len <= 8) {
12288                /* Switch to the next fragment. */
12289                frag++;
12290                vcpu->mmio_cur_fragment++;
12291        } else {
12292                /* Go forward to the next mmio piece. */
12293                frag->data += len;
12294                frag->gpa += len;
12295                frag->len -= len;
12296        }
12297
12298        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12299                vcpu->mmio_needed = 0;
12300
12301                // VMG change, at this point, we're always done
12302                // RIP has already been advanced
12303                return 1;
12304        }
12305
12306        // More MMIO is needed
12307        run->mmio.phys_addr = frag->gpa;
12308        run->mmio.len = min(8u, frag->len);
12309        run->mmio.is_write = vcpu->mmio_is_write;
12310        if (run->mmio.is_write)
12311                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12312        run->exit_reason = KVM_EXIT_MMIO;
12313
12314        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12315
12316        return 0;
12317}
12318
12319int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12320                          void *data)
12321{
12322        int handled;
12323        struct kvm_mmio_fragment *frag;
12324
12325        if (!data)
12326                return -EINVAL;
12327
12328        handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12329        if (handled == bytes)
12330                return 1;
12331
12332        bytes -= handled;
12333        gpa += handled;
12334        data += handled;
12335
12336        /*TODO: Check if need to increment number of frags */
12337        frag = vcpu->mmio_fragments;
12338        vcpu->mmio_nr_fragments = 1;
12339        frag->len = bytes;
12340        frag->gpa = gpa;
12341        frag->data = data;
12342
12343        vcpu->mmio_needed = 1;
12344        vcpu->mmio_cur_fragment = 0;
12345
12346        vcpu->run->mmio.phys_addr = gpa;
12347        vcpu->run->mmio.len = min(8u, frag->len);
12348        vcpu->run->mmio.is_write = 1;
12349        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12350        vcpu->run->exit_reason = KVM_EXIT_MMIO;
12351
12352        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12353
12354        return 0;
12355}
12356EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12357
12358int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12359                         void *data)
12360{
12361        int handled;
12362        struct kvm_mmio_fragment *frag;
12363
12364        if (!data)
12365                return -EINVAL;
12366
12367        handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12368        if (handled == bytes)
12369                return 1;
12370
12371        bytes -= handled;
12372        gpa += handled;
12373        data += handled;
12374
12375        /*TODO: Check if need to increment number of frags */
12376        frag = vcpu->mmio_fragments;
12377        vcpu->mmio_nr_fragments = 1;
12378        frag->len = bytes;
12379        frag->gpa = gpa;
12380        frag->data = data;
12381
12382        vcpu->mmio_needed = 1;
12383        vcpu->mmio_cur_fragment = 0;
12384
12385        vcpu->run->mmio.phys_addr = gpa;
12386        vcpu->run->mmio.len = min(8u, frag->len);
12387        vcpu->run->mmio.is_write = 0;
12388        vcpu->run->exit_reason = KVM_EXIT_MMIO;
12389
12390        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12391
12392        return 0;
12393}
12394EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12395
12396static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12397                           unsigned int port);
12398
12399static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12400{
12401        int size = vcpu->arch.pio.size;
12402        int port = vcpu->arch.pio.port;
12403
12404        vcpu->arch.pio.count = 0;
12405        if (vcpu->arch.sev_pio_count)
12406                return kvm_sev_es_outs(vcpu, size, port);
12407        return 1;
12408}
12409
12410static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12411                           unsigned int port)
12412{
12413        for (;;) {
12414                unsigned int count =
12415                        min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12416                int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12417
12418                /* memcpy done already by emulator_pio_out.  */
12419                vcpu->arch.sev_pio_count -= count;
12420                vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12421                if (!ret)
12422                        break;
12423
12424                /* Emulation done by the kernel.  */
12425                if (!vcpu->arch.sev_pio_count)
12426                        return 1;
12427        }
12428
12429        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12430        return 0;
12431}
12432
12433static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12434                          unsigned int port);
12435
12436static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12437{
12438        unsigned count = vcpu->arch.pio.count;
12439        complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12440        vcpu->arch.sev_pio_count -= count;
12441        vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12442}
12443
12444static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12445{
12446        int size = vcpu->arch.pio.size;
12447        int port = vcpu->arch.pio.port;
12448
12449        advance_sev_es_emulated_ins(vcpu);
12450        if (vcpu->arch.sev_pio_count)
12451                return kvm_sev_es_ins(vcpu, size, port);
12452        return 1;
12453}
12454
12455static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12456                          unsigned int port)
12457{
12458        for (;;) {
12459                unsigned int count =
12460                        min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12461                if (!__emulator_pio_in(vcpu, size, port, count))
12462                        break;
12463
12464                /* Emulation done by the kernel.  */
12465                advance_sev_es_emulated_ins(vcpu);
12466                if (!vcpu->arch.sev_pio_count)
12467                        return 1;
12468        }
12469
12470        vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12471        return 0;
12472}
12473
12474int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12475                         unsigned int port, void *data,  unsigned int count,
12476                         int in)
12477{
12478        vcpu->arch.sev_pio_data = data;
12479        vcpu->arch.sev_pio_count = count;
12480        return in ? kvm_sev_es_ins(vcpu, size, port)
12481                  : kvm_sev_es_outs(vcpu, size, port);
12482}
12483EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12484
12485EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12486EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12487EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12488EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12489EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12490EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12491EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12492EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12493EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12494EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12495EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12496EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12497EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12498EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12499EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12500EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12501EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12502EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12503EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12504EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12505EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12506EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12507EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12508EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12509EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12510EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12511EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12512