linux/arch/x86/lib/insn-eval.c
<<
>>
Prefs
   1/*
   2 * Utility functions for x86 operand and address decoding
   3 *
   4 * Copyright (C) Intel Corporation 2017
   5 */
   6#include <linux/kernel.h>
   7#include <linux/string.h>
   8#include <linux/ratelimit.h>
   9#include <linux/mmu_context.h>
  10#include <asm/desc_defs.h>
  11#include <asm/desc.h>
  12#include <asm/inat.h>
  13#include <asm/insn.h>
  14#include <asm/insn-eval.h>
  15#include <asm/ldt.h>
  16#include <asm/vm86.h>
  17
  18#undef pr_fmt
  19#define pr_fmt(fmt) "insn: " fmt
  20
  21enum reg_type {
  22        REG_TYPE_RM = 0,
  23        REG_TYPE_REG,
  24        REG_TYPE_INDEX,
  25        REG_TYPE_BASE,
  26};
  27
  28/**
  29 * is_string_insn() - Determine if instruction is a string instruction
  30 * @insn:       Instruction containing the opcode to inspect
  31 *
  32 * Returns:
  33 *
  34 * true if the instruction, determined by the opcode, is any of the
  35 * string instructions as defined in the Intel Software Development manual.
  36 * False otherwise.
  37 */
  38static bool is_string_insn(struct insn *insn)
  39{
  40        insn_get_opcode(insn);
  41
  42        /* All string instructions have a 1-byte opcode. */
  43        if (insn->opcode.nbytes != 1)
  44                return false;
  45
  46        switch (insn->opcode.bytes[0]) {
  47        case 0x6c ... 0x6f:     /* INS, OUTS */
  48        case 0xa4 ... 0xa7:     /* MOVS, CMPS */
  49        case 0xaa ... 0xaf:     /* STOS, LODS, SCAS */
  50                return true;
  51        default:
  52                return false;
  53        }
  54}
  55
  56/**
  57 * insn_has_rep_prefix() - Determine if instruction has a REP prefix
  58 * @insn:       Instruction containing the prefix to inspect
  59 *
  60 * Returns:
  61 *
  62 * true if the instruction has a REP prefix, false if not.
  63 */
  64bool insn_has_rep_prefix(struct insn *insn)
  65{
  66        insn_byte_t p;
  67        int i;
  68
  69        insn_get_prefixes(insn);
  70
  71        for_each_insn_prefix(insn, i, p) {
  72                if (p == 0xf2 || p == 0xf3)
  73                        return true;
  74        }
  75
  76        return false;
  77}
  78
  79/**
  80 * get_seg_reg_override_idx() - obtain segment register override index
  81 * @insn:       Valid instruction with segment override prefixes
  82 *
  83 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
  84 *
  85 * Returns:
  86 *
  87 * A constant identifying the segment register to use, among CS, SS, DS,
  88 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
  89 * prefixes were found.
  90 *
  91 * -EINVAL in case of error.
  92 */
  93static int get_seg_reg_override_idx(struct insn *insn)
  94{
  95        int idx = INAT_SEG_REG_DEFAULT;
  96        int num_overrides = 0, i;
  97        insn_byte_t p;
  98
  99        insn_get_prefixes(insn);
 100
 101        /* Look for any segment override prefixes. */
 102        for_each_insn_prefix(insn, i, p) {
 103                insn_attr_t attr;
 104
 105                attr = inat_get_opcode_attribute(p);
 106                switch (attr) {
 107                case INAT_MAKE_PREFIX(INAT_PFX_CS):
 108                        idx = INAT_SEG_REG_CS;
 109                        num_overrides++;
 110                        break;
 111                case INAT_MAKE_PREFIX(INAT_PFX_SS):
 112                        idx = INAT_SEG_REG_SS;
 113                        num_overrides++;
 114                        break;
 115                case INAT_MAKE_PREFIX(INAT_PFX_DS):
 116                        idx = INAT_SEG_REG_DS;
 117                        num_overrides++;
 118                        break;
 119                case INAT_MAKE_PREFIX(INAT_PFX_ES):
 120                        idx = INAT_SEG_REG_ES;
 121                        num_overrides++;
 122                        break;
 123                case INAT_MAKE_PREFIX(INAT_PFX_FS):
 124                        idx = INAT_SEG_REG_FS;
 125                        num_overrides++;
 126                        break;
 127                case INAT_MAKE_PREFIX(INAT_PFX_GS):
 128                        idx = INAT_SEG_REG_GS;
 129                        num_overrides++;
 130                        break;
 131                /* No default action needed. */
 132                }
 133        }
 134
 135        /* More than one segment override prefix leads to undefined behavior. */
 136        if (num_overrides > 1)
 137                return -EINVAL;
 138
 139        return idx;
 140}
 141
 142/**
 143 * check_seg_overrides() - check if segment override prefixes are allowed
 144 * @insn:       Valid instruction with segment override prefixes
 145 * @regoff:     Operand offset, in pt_regs, for which the check is performed
 146 *
 147 * For a particular register used in register-indirect addressing, determine if
 148 * segment override prefixes can be used. Specifically, no overrides are allowed
 149 * for rDI if used with a string instruction.
 150 *
 151 * Returns:
 152 *
 153 * True if segment override prefixes can be used with the register indicated
 154 * in @regoff. False if otherwise.
 155 */
 156static bool check_seg_overrides(struct insn *insn, int regoff)
 157{
 158        if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
 159                return false;
 160
 161        return true;
 162}
 163
 164/**
 165 * resolve_default_seg() - resolve default segment register index for an operand
 166 * @insn:       Instruction with opcode and address size. Must be valid.
 167 * @regs:       Register values as seen when entering kernel mode
 168 * @off:        Operand offset, in pt_regs, for which resolution is needed
 169 *
 170 * Resolve the default segment register index associated with the instruction
 171 * operand register indicated by @off. Such index is resolved based on defaults
 172 * described in the Intel Software Development Manual.
 173 *
 174 * Returns:
 175 *
 176 * If in protected mode, a constant identifying the segment register to use,
 177 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
 178 *
 179 * -EINVAL in case of error.
 180 */
 181static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
 182{
 183        if (any_64bit_mode(regs))
 184                return INAT_SEG_REG_IGNORE;
 185        /*
 186         * Resolve the default segment register as described in Section 3.7.4
 187         * of the Intel Software Development Manual Vol. 1:
 188         *
 189         *  + DS for all references involving r[ABCD]X, and rSI.
 190         *  + If used in a string instruction, ES for rDI. Otherwise, DS.
 191         *  + AX, CX and DX are not valid register operands in 16-bit address
 192         *    encodings but are valid for 32-bit and 64-bit encodings.
 193         *  + -EDOM is reserved to identify for cases in which no register
 194         *    is used (i.e., displacement-only addressing). Use DS.
 195         *  + SS for rSP or rBP.
 196         *  + CS for rIP.
 197         */
 198
 199        switch (off) {
 200        case offsetof(struct pt_regs, ax):
 201        case offsetof(struct pt_regs, cx):
 202        case offsetof(struct pt_regs, dx):
 203                /* Need insn to verify address size. */
 204                if (insn->addr_bytes == 2)
 205                        return -EINVAL;
 206
 207                fallthrough;
 208
 209        case -EDOM:
 210        case offsetof(struct pt_regs, bx):
 211        case offsetof(struct pt_regs, si):
 212                return INAT_SEG_REG_DS;
 213
 214        case offsetof(struct pt_regs, di):
 215                if (is_string_insn(insn))
 216                        return INAT_SEG_REG_ES;
 217                return INAT_SEG_REG_DS;
 218
 219        case offsetof(struct pt_regs, bp):
 220        case offsetof(struct pt_regs, sp):
 221                return INAT_SEG_REG_SS;
 222
 223        case offsetof(struct pt_regs, ip):
 224                return INAT_SEG_REG_CS;
 225
 226        default:
 227                return -EINVAL;
 228        }
 229}
 230
 231/**
 232 * resolve_seg_reg() - obtain segment register index
 233 * @insn:       Instruction with operands
 234 * @regs:       Register values as seen when entering kernel mode
 235 * @regoff:     Operand offset, in pt_regs, used to determine segment register
 236 *
 237 * Determine the segment register associated with the operands and, if
 238 * applicable, prefixes and the instruction pointed by @insn.
 239 *
 240 * The segment register associated to an operand used in register-indirect
 241 * addressing depends on:
 242 *
 243 * a) Whether running in long mode (in such a case segments are ignored, except
 244 * if FS or GS are used).
 245 *
 246 * b) Whether segment override prefixes can be used. Certain instructions and
 247 *    registers do not allow override prefixes.
 248 *
 249 * c) Whether segment overrides prefixes are found in the instruction prefixes.
 250 *
 251 * d) If there are not segment override prefixes or they cannot be used, the
 252 *    default segment register associated with the operand register is used.
 253 *
 254 * The function checks first if segment override prefixes can be used with the
 255 * operand indicated by @regoff. If allowed, obtain such overridden segment
 256 * register index. Lastly, if not prefixes were found or cannot be used, resolve
 257 * the segment register index to use based on the defaults described in the
 258 * Intel documentation. In long mode, all segment register indexes will be
 259 * ignored, except if overrides were found for FS or GS. All these operations
 260 * are done using helper functions.
 261 *
 262 * The operand register, @regoff, is represented as the offset from the base of
 263 * pt_regs.
 264 *
 265 * As stated, the main use of this function is to determine the segment register
 266 * index based on the instruction, its operands and prefixes. Hence, @insn
 267 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
 268 * @insn at all as in this case CS is used in all cases. This case is checked
 269 * before proceeding further.
 270 *
 271 * Please note that this function does not return the value in the segment
 272 * register (i.e., the segment selector) but our defined index. The segment
 273 * selector needs to be obtained using get_segment_selector() and passing the
 274 * segment register index resolved by this function.
 275 *
 276 * Returns:
 277 *
 278 * An index identifying the segment register to use, among CS, SS, DS,
 279 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
 280 *
 281 * -EINVAL in case of error.
 282 */
 283static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
 284{
 285        int idx;
 286
 287        /*
 288         * In the unlikely event of having to resolve the segment register
 289         * index for rIP, do it first. Segment override prefixes should not
 290         * be used. Hence, it is not necessary to inspect the instruction,
 291         * which may be invalid at this point.
 292         */
 293        if (regoff == offsetof(struct pt_regs, ip)) {
 294                if (any_64bit_mode(regs))
 295                        return INAT_SEG_REG_IGNORE;
 296                else
 297                        return INAT_SEG_REG_CS;
 298        }
 299
 300        if (!insn)
 301                return -EINVAL;
 302
 303        if (!check_seg_overrides(insn, regoff))
 304                return resolve_default_seg(insn, regs, regoff);
 305
 306        idx = get_seg_reg_override_idx(insn);
 307        if (idx < 0)
 308                return idx;
 309
 310        if (idx == INAT_SEG_REG_DEFAULT)
 311                return resolve_default_seg(insn, regs, regoff);
 312
 313        /*
 314         * In long mode, segment override prefixes are ignored, except for
 315         * overrides for FS and GS.
 316         */
 317        if (any_64bit_mode(regs)) {
 318                if (idx != INAT_SEG_REG_FS &&
 319                    idx != INAT_SEG_REG_GS)
 320                        idx = INAT_SEG_REG_IGNORE;
 321        }
 322
 323        return idx;
 324}
 325
 326/**
 327 * get_segment_selector() - obtain segment selector
 328 * @regs:               Register values as seen when entering kernel mode
 329 * @seg_reg_idx:        Segment register index to use
 330 *
 331 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
 332 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
 333 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
 334 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
 335 * registers. This done for only for completeness as in CONFIG_X86_64 segment
 336 * registers are ignored.
 337 *
 338 * Returns:
 339 *
 340 * Value of the segment selector, including null when running in
 341 * long mode.
 342 *
 343 * -EINVAL on error.
 344 */
 345static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
 346{
 347#ifdef CONFIG_X86_64
 348        unsigned short sel;
 349
 350        switch (seg_reg_idx) {
 351        case INAT_SEG_REG_IGNORE:
 352                return 0;
 353        case INAT_SEG_REG_CS:
 354                return (unsigned short)(regs->cs & 0xffff);
 355        case INAT_SEG_REG_SS:
 356                return (unsigned short)(regs->ss & 0xffff);
 357        case INAT_SEG_REG_DS:
 358                savesegment(ds, sel);
 359                return sel;
 360        case INAT_SEG_REG_ES:
 361                savesegment(es, sel);
 362                return sel;
 363        case INAT_SEG_REG_FS:
 364                savesegment(fs, sel);
 365                return sel;
 366        case INAT_SEG_REG_GS:
 367                savesegment(gs, sel);
 368                return sel;
 369        default:
 370                return -EINVAL;
 371        }
 372#else /* CONFIG_X86_32 */
 373        struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
 374
 375        if (v8086_mode(regs)) {
 376                switch (seg_reg_idx) {
 377                case INAT_SEG_REG_CS:
 378                        return (unsigned short)(regs->cs & 0xffff);
 379                case INAT_SEG_REG_SS:
 380                        return (unsigned short)(regs->ss & 0xffff);
 381                case INAT_SEG_REG_DS:
 382                        return vm86regs->ds;
 383                case INAT_SEG_REG_ES:
 384                        return vm86regs->es;
 385                case INAT_SEG_REG_FS:
 386                        return vm86regs->fs;
 387                case INAT_SEG_REG_GS:
 388                        return vm86regs->gs;
 389                case INAT_SEG_REG_IGNORE:
 390                default:
 391                        return -EINVAL;
 392                }
 393        }
 394
 395        switch (seg_reg_idx) {
 396        case INAT_SEG_REG_CS:
 397                return (unsigned short)(regs->cs & 0xffff);
 398        case INAT_SEG_REG_SS:
 399                return (unsigned short)(regs->ss & 0xffff);
 400        case INAT_SEG_REG_DS:
 401                return (unsigned short)(regs->ds & 0xffff);
 402        case INAT_SEG_REG_ES:
 403                return (unsigned short)(regs->es & 0xffff);
 404        case INAT_SEG_REG_FS:
 405                return (unsigned short)(regs->fs & 0xffff);
 406        case INAT_SEG_REG_GS:
 407                return get_user_gs(regs);
 408        case INAT_SEG_REG_IGNORE:
 409        default:
 410                return -EINVAL;
 411        }
 412#endif /* CONFIG_X86_64 */
 413}
 414
 415static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
 416                          enum reg_type type)
 417{
 418        int regno = 0;
 419
 420        static const int regoff[] = {
 421                offsetof(struct pt_regs, ax),
 422                offsetof(struct pt_regs, cx),
 423                offsetof(struct pt_regs, dx),
 424                offsetof(struct pt_regs, bx),
 425                offsetof(struct pt_regs, sp),
 426                offsetof(struct pt_regs, bp),
 427                offsetof(struct pt_regs, si),
 428                offsetof(struct pt_regs, di),
 429#ifdef CONFIG_X86_64
 430                offsetof(struct pt_regs, r8),
 431                offsetof(struct pt_regs, r9),
 432                offsetof(struct pt_regs, r10),
 433                offsetof(struct pt_regs, r11),
 434                offsetof(struct pt_regs, r12),
 435                offsetof(struct pt_regs, r13),
 436                offsetof(struct pt_regs, r14),
 437                offsetof(struct pt_regs, r15),
 438#endif
 439        };
 440        int nr_registers = ARRAY_SIZE(regoff);
 441        /*
 442         * Don't possibly decode a 32-bit instructions as
 443         * reading a 64-bit-only register.
 444         */
 445        if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 446                nr_registers -= 8;
 447
 448        switch (type) {
 449        case REG_TYPE_RM:
 450                regno = X86_MODRM_RM(insn->modrm.value);
 451
 452                /*
 453                 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
 454                 * follows the ModRM byte.
 455                 */
 456                if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 457                        return -EDOM;
 458
 459                if (X86_REX_B(insn->rex_prefix.value))
 460                        regno += 8;
 461                break;
 462
 463        case REG_TYPE_REG:
 464                regno = X86_MODRM_REG(insn->modrm.value);
 465
 466                if (X86_REX_R(insn->rex_prefix.value))
 467                        regno += 8;
 468                break;
 469
 470        case REG_TYPE_INDEX:
 471                regno = X86_SIB_INDEX(insn->sib.value);
 472                if (X86_REX_X(insn->rex_prefix.value))
 473                        regno += 8;
 474
 475                /*
 476                 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
 477                 * portion of the address computation is null. This is
 478                 * true only if REX.X is 0. In such a case, the SIB index
 479                 * is used in the address computation.
 480                 */
 481                if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
 482                        return -EDOM;
 483                break;
 484
 485        case REG_TYPE_BASE:
 486                regno = X86_SIB_BASE(insn->sib.value);
 487                /*
 488                 * If ModRM.mod is 0 and SIB.base == 5, the base of the
 489                 * register-indirect addressing is 0. In this case, a
 490                 * 32-bit displacement follows the SIB byte.
 491                 */
 492                if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 493                        return -EDOM;
 494
 495                if (X86_REX_B(insn->rex_prefix.value))
 496                        regno += 8;
 497                break;
 498
 499        default:
 500                pr_err_ratelimited("invalid register type: %d\n", type);
 501                return -EINVAL;
 502        }
 503
 504        if (regno >= nr_registers) {
 505                WARN_ONCE(1, "decoded an instruction with an invalid register");
 506                return -EINVAL;
 507        }
 508        return regoff[regno];
 509}
 510
 511/**
 512 * get_reg_offset_16() - Obtain offset of register indicated by instruction
 513 * @insn:       Instruction containing ModRM byte
 514 * @regs:       Register values as seen when entering kernel mode
 515 * @offs1:      Offset of the first operand register
 516 * @offs2:      Offset of the second operand register, if applicable
 517 *
 518 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
 519 * in @insn. This function is to be used with 16-bit address encodings. The
 520 * @offs1 and @offs2 will be written with the offset of the two registers
 521 * indicated by the instruction. In cases where any of the registers is not
 522 * referenced by the instruction, the value will be set to -EDOM.
 523 *
 524 * Returns:
 525 *
 526 * 0 on success, -EINVAL on error.
 527 */
 528static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
 529                             int *offs1, int *offs2)
 530{
 531        /*
 532         * 16-bit addressing can use one or two registers. Specifics of
 533         * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
 534         * ModR/M Byte" of the Intel Software Development Manual.
 535         */
 536        static const int regoff1[] = {
 537                offsetof(struct pt_regs, bx),
 538                offsetof(struct pt_regs, bx),
 539                offsetof(struct pt_regs, bp),
 540                offsetof(struct pt_regs, bp),
 541                offsetof(struct pt_regs, si),
 542                offsetof(struct pt_regs, di),
 543                offsetof(struct pt_regs, bp),
 544                offsetof(struct pt_regs, bx),
 545        };
 546
 547        static const int regoff2[] = {
 548                offsetof(struct pt_regs, si),
 549                offsetof(struct pt_regs, di),
 550                offsetof(struct pt_regs, si),
 551                offsetof(struct pt_regs, di),
 552                -EDOM,
 553                -EDOM,
 554                -EDOM,
 555                -EDOM,
 556        };
 557
 558        if (!offs1 || !offs2)
 559                return -EINVAL;
 560
 561        /* Operand is a register, use the generic function. */
 562        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 563                *offs1 = insn_get_modrm_rm_off(insn, regs);
 564                *offs2 = -EDOM;
 565                return 0;
 566        }
 567
 568        *offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
 569        *offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
 570
 571        /*
 572         * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
 573         * only addressing. This means that no registers are involved in
 574         * computing the effective address. Thus, ensure that the first
 575         * register offset is invalid. The second register offset is already
 576         * invalid under the aforementioned conditions.
 577         */
 578        if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
 579            (X86_MODRM_RM(insn->modrm.value) == 6))
 580                *offs1 = -EDOM;
 581
 582        return 0;
 583}
 584
 585/**
 586 * get_desc() - Obtain contents of a segment descriptor
 587 * @out:        Segment descriptor contents on success
 588 * @sel:        Segment selector
 589 *
 590 * Given a segment selector, obtain a pointer to the segment descriptor.
 591 * Both global and local descriptor tables are supported.
 592 *
 593 * Returns:
 594 *
 595 * True on success, false on failure.
 596 *
 597 * NULL on error.
 598 */
 599static bool get_desc(struct desc_struct *out, unsigned short sel)
 600{
 601        struct desc_ptr gdt_desc = {0, 0};
 602        unsigned long desc_base;
 603
 604#ifdef CONFIG_MODIFY_LDT_SYSCALL
 605        if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 606                bool success = false;
 607                struct ldt_struct *ldt;
 608
 609                /* Bits [15:3] contain the index of the desired entry. */
 610                sel >>= 3;
 611
 612                mutex_lock(&current->active_mm->context.lock);
 613                ldt = current->active_mm->context.ldt;
 614                if (ldt && sel < ldt->nr_entries) {
 615                        *out = ldt->entries[sel];
 616                        success = true;
 617                }
 618
 619                mutex_unlock(&current->active_mm->context.lock);
 620
 621                return success;
 622        }
 623#endif
 624        native_store_gdt(&gdt_desc);
 625
 626        /*
 627         * Segment descriptors have a size of 8 bytes. Thus, the index is
 628         * multiplied by 8 to obtain the memory offset of the desired descriptor
 629         * from the base of the GDT. As bits [15:3] of the segment selector
 630         * contain the index, it can be regarded as multiplied by 8 already.
 631         * All that remains is to clear bits [2:0].
 632         */
 633        desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
 634
 635        if (desc_base > gdt_desc.size)
 636                return false;
 637
 638        *out = *(struct desc_struct *)(gdt_desc.address + desc_base);
 639        return true;
 640}
 641
 642/**
 643 * insn_get_seg_base() - Obtain base address of segment descriptor.
 644 * @regs:               Register values as seen when entering kernel mode
 645 * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
 646 *
 647 * Obtain the base address of the segment as indicated by the segment descriptor
 648 * pointed by the segment selector. The segment selector is obtained from the
 649 * input segment register index @seg_reg_idx.
 650 *
 651 * Returns:
 652 *
 653 * In protected mode, base address of the segment. Zero in long mode,
 654 * except when FS or GS are used. In virtual-8086 mode, the segment
 655 * selector shifted 4 bits to the right.
 656 *
 657 * -1L in case of error.
 658 */
 659unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
 660{
 661        struct desc_struct desc;
 662        short sel;
 663
 664        sel = get_segment_selector(regs, seg_reg_idx);
 665        if (sel < 0)
 666                return -1L;
 667
 668        if (v8086_mode(regs))
 669                /*
 670                 * Base is simply the segment selector shifted 4
 671                 * bits to the right.
 672                 */
 673                return (unsigned long)(sel << 4);
 674
 675        if (any_64bit_mode(regs)) {
 676                /*
 677                 * Only FS or GS will have a base address, the rest of
 678                 * the segments' bases are forced to 0.
 679                 */
 680                unsigned long base;
 681
 682                if (seg_reg_idx == INAT_SEG_REG_FS) {
 683                        rdmsrl(MSR_FS_BASE, base);
 684                } else if (seg_reg_idx == INAT_SEG_REG_GS) {
 685                        /*
 686                         * swapgs was called at the kernel entry point. Thus,
 687                         * MSR_KERNEL_GS_BASE will have the user-space GS base.
 688                         */
 689                        if (user_mode(regs))
 690                                rdmsrl(MSR_KERNEL_GS_BASE, base);
 691                        else
 692                                rdmsrl(MSR_GS_BASE, base);
 693                } else {
 694                        base = 0;
 695                }
 696                return base;
 697        }
 698
 699        /* In protected mode the segment selector cannot be null. */
 700        if (!sel)
 701                return -1L;
 702
 703        if (!get_desc(&desc, sel))
 704                return -1L;
 705
 706        return get_desc_base(&desc);
 707}
 708
 709/**
 710 * get_seg_limit() - Obtain the limit of a segment descriptor
 711 * @regs:               Register values as seen when entering kernel mode
 712 * @seg_reg_idx:        Index of the segment register pointing to seg descriptor
 713 *
 714 * Obtain the limit of the segment as indicated by the segment descriptor
 715 * pointed by the segment selector. The segment selector is obtained from the
 716 * input segment register index @seg_reg_idx.
 717 *
 718 * Returns:
 719 *
 720 * In protected mode, the limit of the segment descriptor in bytes.
 721 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
 722 * limit is returned as -1L to imply a limit-less segment.
 723 *
 724 * Zero is returned on error.
 725 */
 726static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
 727{
 728        struct desc_struct desc;
 729        unsigned long limit;
 730        short sel;
 731
 732        sel = get_segment_selector(regs, seg_reg_idx);
 733        if (sel < 0)
 734                return 0;
 735
 736        if (any_64bit_mode(regs) || v8086_mode(regs))
 737                return -1L;
 738
 739        if (!sel)
 740                return 0;
 741
 742        if (!get_desc(&desc, sel))
 743                return 0;
 744
 745        /*
 746         * If the granularity bit is set, the limit is given in multiples
 747         * of 4096. This also means that the 12 least significant bits are
 748         * not tested when checking the segment limits. In practice,
 749         * this means that the segment ends in (limit << 12) + 0xfff.
 750         */
 751        limit = get_desc_limit(&desc);
 752        if (desc.g)
 753                limit = (limit << 12) + 0xfff;
 754
 755        return limit;
 756}
 757
 758/**
 759 * insn_get_code_seg_params() - Obtain code segment parameters
 760 * @regs:       Structure with register values as seen when entering kernel mode
 761 *
 762 * Obtain address and operand sizes of the code segment. It is obtained from the
 763 * selector contained in the CS register in regs. In protected mode, the default
 764 * address is determined by inspecting the L and D bits of the segment
 765 * descriptor. In virtual-8086 mode, the default is always two bytes for both
 766 * address and operand sizes.
 767 *
 768 * Returns:
 769 *
 770 * An int containing ORed-in default parameters on success.
 771 *
 772 * -EINVAL on error.
 773 */
 774int insn_get_code_seg_params(struct pt_regs *regs)
 775{
 776        struct desc_struct desc;
 777        short sel;
 778
 779        if (v8086_mode(regs))
 780                /* Address and operand size are both 16-bit. */
 781                return INSN_CODE_SEG_PARAMS(2, 2);
 782
 783        sel = get_segment_selector(regs, INAT_SEG_REG_CS);
 784        if (sel < 0)
 785                return sel;
 786
 787        if (!get_desc(&desc, sel))
 788                return -EINVAL;
 789
 790        /*
 791         * The most significant byte of the Type field of the segment descriptor
 792         * determines whether a segment contains data or code. If this is a data
 793         * segment, return error.
 794         */
 795        if (!(desc.type & BIT(3)))
 796                return -EINVAL;
 797
 798        switch ((desc.l << 1) | desc.d) {
 799        case 0: /*
 800                 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
 801                 * both 16-bit.
 802                 */
 803                return INSN_CODE_SEG_PARAMS(2, 2);
 804        case 1: /*
 805                 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
 806                 * both 32-bit.
 807                 */
 808                return INSN_CODE_SEG_PARAMS(4, 4);
 809        case 2: /*
 810                 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
 811                 * operand size is 32-bit.
 812                 */
 813                return INSN_CODE_SEG_PARAMS(4, 8);
 814        case 3: /* Invalid setting. CS.L=1, CS.D=1 */
 815                fallthrough;
 816        default:
 817                return -EINVAL;
 818        }
 819}
 820
 821/**
 822 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
 823 * @insn:       Instruction containing the ModRM byte
 824 * @regs:       Register values as seen when entering kernel mode
 825 *
 826 * Returns:
 827 *
 828 * The register indicated by the r/m part of the ModRM byte. The
 829 * register is obtained as an offset from the base of pt_regs. In specific
 830 * cases, the returned value can be -EDOM to indicate that the particular value
 831 * of ModRM does not refer to a register and shall be ignored.
 832 */
 833int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
 834{
 835        return get_reg_offset(insn, regs, REG_TYPE_RM);
 836}
 837
 838/**
 839 * insn_get_modrm_reg_off() - Obtain register in reg part of the ModRM byte
 840 * @insn:       Instruction containing the ModRM byte
 841 * @regs:       Register values as seen when entering kernel mode
 842 *
 843 * Returns:
 844 *
 845 * The register indicated by the reg part of the ModRM byte. The
 846 * register is obtained as an offset from the base of pt_regs.
 847 */
 848int insn_get_modrm_reg_off(struct insn *insn, struct pt_regs *regs)
 849{
 850        return get_reg_offset(insn, regs, REG_TYPE_REG);
 851}
 852
 853/**
 854 * get_seg_base_limit() - obtain base address and limit of a segment
 855 * @insn:       Instruction. Must be valid.
 856 * @regs:       Register values as seen when entering kernel mode
 857 * @regoff:     Operand offset, in pt_regs, used to resolve segment descriptor
 858 * @base:       Obtained segment base
 859 * @limit:      Obtained segment limit
 860 *
 861 * Obtain the base address and limit of the segment associated with the operand
 862 * @regoff and, if any or allowed, override prefixes in @insn. This function is
 863 * different from insn_get_seg_base() as the latter does not resolve the segment
 864 * associated with the instruction operand. If a limit is not needed (e.g.,
 865 * when running in long mode), @limit can be NULL.
 866 *
 867 * Returns:
 868 *
 869 * 0 on success. @base and @limit will contain the base address and of the
 870 * resolved segment, respectively.
 871 *
 872 * -EINVAL on error.
 873 */
 874static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
 875                              int regoff, unsigned long *base,
 876                              unsigned long *limit)
 877{
 878        int seg_reg_idx;
 879
 880        if (!base)
 881                return -EINVAL;
 882
 883        seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
 884        if (seg_reg_idx < 0)
 885                return seg_reg_idx;
 886
 887        *base = insn_get_seg_base(regs, seg_reg_idx);
 888        if (*base == -1L)
 889                return -EINVAL;
 890
 891        if (!limit)
 892                return 0;
 893
 894        *limit = get_seg_limit(regs, seg_reg_idx);
 895        if (!(*limit))
 896                return -EINVAL;
 897
 898        return 0;
 899}
 900
 901/**
 902 * get_eff_addr_reg() - Obtain effective address from register operand
 903 * @insn:       Instruction. Must be valid.
 904 * @regs:       Register values as seen when entering kernel mode
 905 * @regoff:     Obtained operand offset, in pt_regs, with the effective address
 906 * @eff_addr:   Obtained effective address
 907 *
 908 * Obtain the effective address stored in the register operand as indicated by
 909 * the ModRM byte. This function is to be used only with register addressing
 910 * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
 911 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
 912 * such offset can then be used to resolve the segment associated with the
 913 * operand. This function can be used with any of the supported address sizes
 914 * in x86.
 915 *
 916 * Returns:
 917 *
 918 * 0 on success. @eff_addr will have the effective address stored in the
 919 * operand indicated by ModRM. @regoff will have such operand as an offset from
 920 * the base of pt_regs.
 921 *
 922 * -EINVAL on error.
 923 */
 924static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
 925                            int *regoff, long *eff_addr)
 926{
 927        int ret;
 928
 929        ret = insn_get_modrm(insn);
 930        if (ret)
 931                return ret;
 932
 933        if (X86_MODRM_MOD(insn->modrm.value) != 3)
 934                return -EINVAL;
 935
 936        *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 937        if (*regoff < 0)
 938                return -EINVAL;
 939
 940        /* Ignore bytes that are outside the address size. */
 941        if (insn->addr_bytes == 2)
 942                *eff_addr = regs_get_register(regs, *regoff) & 0xffff;
 943        else if (insn->addr_bytes == 4)
 944                *eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
 945        else /* 64-bit address */
 946                *eff_addr = regs_get_register(regs, *regoff);
 947
 948        return 0;
 949}
 950
 951/**
 952 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
 953 * @insn:       Instruction. Must be valid.
 954 * @regs:       Register values as seen when entering kernel mode
 955 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
 956 * @eff_addr:   Obtained effective address
 957 *
 958 * Obtain the effective address referenced by the ModRM byte of @insn. After
 959 * identifying the registers involved in the register-indirect memory reference,
 960 * its value is obtained from the operands in @regs. The computed address is
 961 * stored @eff_addr. Also, the register operand that indicates the associated
 962 * segment is stored in @regoff, this parameter can later be used to determine
 963 * such segment.
 964 *
 965 * Returns:
 966 *
 967 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 968 * will have a register, as an offset from the base of pt_regs, that can be used
 969 * to resolve the associated segment.
 970 *
 971 * -EINVAL on error.
 972 */
 973static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
 974                              int *regoff, long *eff_addr)
 975{
 976        long tmp;
 977        int ret;
 978
 979        if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
 980                return -EINVAL;
 981
 982        ret = insn_get_modrm(insn);
 983        if (ret)
 984                return ret;
 985
 986        if (X86_MODRM_MOD(insn->modrm.value) > 2)
 987                return -EINVAL;
 988
 989        *regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 990
 991        /*
 992         * -EDOM means that we must ignore the address_offset. In such a case,
 993         * in 64-bit mode the effective address relative to the rIP of the
 994         * following instruction.
 995         */
 996        if (*regoff == -EDOM) {
 997                if (any_64bit_mode(regs))
 998                        tmp = regs->ip + insn->length;
 999                else
1000                        tmp = 0;
1001        } else if (*regoff < 0) {
1002                return -EINVAL;
1003        } else {
1004                tmp = regs_get_register(regs, *regoff);
1005        }
1006
1007        if (insn->addr_bytes == 4) {
1008                int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
1009
1010                *eff_addr = addr32 & 0xffffffff;
1011        } else {
1012                *eff_addr = tmp + insn->displacement.value;
1013        }
1014
1015        return 0;
1016}
1017
1018/**
1019 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
1020 * @insn:       Instruction. Must be valid.
1021 * @regs:       Register values as seen when entering kernel mode
1022 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
1023 * @eff_addr:   Obtained effective address
1024 *
1025 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
1026 * After identifying the registers involved in the register-indirect memory
1027 * reference, its value is obtained from the operands in @regs. The computed
1028 * address is stored @eff_addr. Also, the register operand that indicates
1029 * the associated segment is stored in @regoff, this parameter can later be used
1030 * to determine such segment.
1031 *
1032 * Returns:
1033 *
1034 * 0 on success. @eff_addr will have the referenced effective address. @regoff
1035 * will have a register, as an offset from the base of pt_regs, that can be used
1036 * to resolve the associated segment.
1037 *
1038 * -EINVAL on error.
1039 */
1040static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
1041                                 int *regoff, short *eff_addr)
1042{
1043        int addr_offset1, addr_offset2, ret;
1044        short addr1 = 0, addr2 = 0, displacement;
1045
1046        if (insn->addr_bytes != 2)
1047                return -EINVAL;
1048
1049        insn_get_modrm(insn);
1050
1051        if (!insn->modrm.nbytes)
1052                return -EINVAL;
1053
1054        if (X86_MODRM_MOD(insn->modrm.value) > 2)
1055                return -EINVAL;
1056
1057        ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1058        if (ret < 0)
1059                return -EINVAL;
1060
1061        /*
1062         * Don't fail on invalid offset values. They might be invalid because
1063         * they cannot be used for this particular value of ModRM. Instead, use
1064         * them in the computation only if they contain a valid value.
1065         */
1066        if (addr_offset1 != -EDOM)
1067                addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1068
1069        if (addr_offset2 != -EDOM)
1070                addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1071
1072        displacement = insn->displacement.value & 0xffff;
1073        *eff_addr = addr1 + addr2 + displacement;
1074
1075        /*
1076         * The first operand register could indicate to use of either SS or DS
1077         * registers to obtain the segment selector.  The second operand
1078         * register can only indicate the use of DS. Thus, the first operand
1079         * will be used to obtain the segment selector.
1080         */
1081        *regoff = addr_offset1;
1082
1083        return 0;
1084}
1085
1086/**
1087 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1088 * @insn:       Instruction. Must be valid.
1089 * @regs:       Register values as seen when entering kernel mode
1090 * @regoff:     Obtained operand offset, in pt_regs, associated with segment
1091 * @eff_addr:   Obtained effective address
1092 *
1093 * Obtain the effective address referenced by the SIB byte of @insn. After
1094 * identifying the registers involved in the indexed, register-indirect memory
1095 * reference, its value is obtained from the operands in @regs. The computed
1096 * address is stored @eff_addr. Also, the register operand that indicates the
1097 * associated segment is stored in @regoff, this parameter can later be used to
1098 * determine such segment.
1099 *
1100 * Returns:
1101 *
1102 * 0 on success. @eff_addr will have the referenced effective address.
1103 * @base_offset will have a register, as an offset from the base of pt_regs,
1104 * that can be used to resolve the associated segment.
1105 *
1106 * Negative value on error.
1107 */
1108static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1109                            int *base_offset, long *eff_addr)
1110{
1111        long base, indx;
1112        int indx_offset;
1113        int ret;
1114
1115        if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1116                return -EINVAL;
1117
1118        ret = insn_get_modrm(insn);
1119        if (ret)
1120                return ret;
1121
1122        if (!insn->modrm.nbytes)
1123                return -EINVAL;
1124
1125        if (X86_MODRM_MOD(insn->modrm.value) > 2)
1126                return -EINVAL;
1127
1128        ret = insn_get_sib(insn);
1129        if (ret)
1130                return ret;
1131
1132        if (!insn->sib.nbytes)
1133                return -EINVAL;
1134
1135        *base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1136        indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1137
1138        /*
1139         * Negative values in the base and index offset means an error when
1140         * decoding the SIB byte. Except -EDOM, which means that the registers
1141         * should not be used in the address computation.
1142         */
1143        if (*base_offset == -EDOM)
1144                base = 0;
1145        else if (*base_offset < 0)
1146                return -EINVAL;
1147        else
1148                base = regs_get_register(regs, *base_offset);
1149
1150        if (indx_offset == -EDOM)
1151                indx = 0;
1152        else if (indx_offset < 0)
1153                return -EINVAL;
1154        else
1155                indx = regs_get_register(regs, indx_offset);
1156
1157        if (insn->addr_bytes == 4) {
1158                int addr32, base32, idx32;
1159
1160                base32 = base & 0xffffffff;
1161                idx32 = indx & 0xffffffff;
1162
1163                addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1164                addr32 += insn->displacement.value;
1165
1166                *eff_addr = addr32 & 0xffffffff;
1167        } else {
1168                *eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1169                *eff_addr += insn->displacement.value;
1170        }
1171
1172        return 0;
1173}
1174
1175/**
1176 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1177 * @insn:       Instruction containing ModRM byte and displacement
1178 * @regs:       Register values as seen when entering kernel mode
1179 *
1180 * This function is to be used with 16-bit address encodings. Obtain the memory
1181 * address referred by the instruction's ModRM and displacement bytes. Also, the
1182 * segment used as base is determined by either any segment override prefixes in
1183 * @insn or the default segment of the registers involved in the address
1184 * computation. In protected mode, segment limits are enforced.
1185 *
1186 * Returns:
1187 *
1188 * Linear address referenced by the instruction operands on success.
1189 *
1190 * -1L on error.
1191 */
1192static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1193{
1194        unsigned long linear_addr = -1L, seg_base, seg_limit;
1195        int ret, regoff;
1196        short eff_addr;
1197        long tmp;
1198
1199        if (insn_get_displacement(insn))
1200                goto out;
1201
1202        if (insn->addr_bytes != 2)
1203                goto out;
1204
1205        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1206                ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1207                if (ret)
1208                        goto out;
1209
1210                eff_addr = tmp;
1211        } else {
1212                ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1213                if (ret)
1214                        goto out;
1215        }
1216
1217        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1218        if (ret)
1219                goto out;
1220
1221        /*
1222         * Before computing the linear address, make sure the effective address
1223         * is within the limits of the segment. In virtual-8086 mode, segment
1224         * limits are not enforced. In such a case, the segment limit is -1L to
1225         * reflect this fact.
1226         */
1227        if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1228                goto out;
1229
1230        linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1231
1232        /* Limit linear address to 20 bits */
1233        if (v8086_mode(regs))
1234                linear_addr &= 0xfffff;
1235
1236out:
1237        return (void __user *)linear_addr;
1238}
1239
1240/**
1241 * get_addr_ref_32() - Obtain a 32-bit linear address
1242 * @insn:       Instruction with ModRM, SIB bytes and displacement
1243 * @regs:       Register values as seen when entering kernel mode
1244 *
1245 * This function is to be used with 32-bit address encodings to obtain the
1246 * linear memory address referred by the instruction's ModRM, SIB,
1247 * displacement bytes and segment base address, as applicable. If in protected
1248 * mode, segment limits are enforced.
1249 *
1250 * Returns:
1251 *
1252 * Linear address referenced by instruction and registers on success.
1253 *
1254 * -1L on error.
1255 */
1256static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1257{
1258        unsigned long linear_addr = -1L, seg_base, seg_limit;
1259        int eff_addr, regoff;
1260        long tmp;
1261        int ret;
1262
1263        if (insn->addr_bytes != 4)
1264                goto out;
1265
1266        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1267                ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1268                if (ret)
1269                        goto out;
1270
1271                eff_addr = tmp;
1272
1273        } else {
1274                if (insn->sib.nbytes) {
1275                        ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1276                        if (ret)
1277                                goto out;
1278
1279                        eff_addr = tmp;
1280                } else {
1281                        ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1282                        if (ret)
1283                                goto out;
1284
1285                        eff_addr = tmp;
1286                }
1287        }
1288
1289        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1290        if (ret)
1291                goto out;
1292
1293        /*
1294         * In protected mode, before computing the linear address, make sure
1295         * the effective address is within the limits of the segment.
1296         * 32-bit addresses can be used in long and virtual-8086 modes if an
1297         * address override prefix is used. In such cases, segment limits are
1298         * not enforced. When in virtual-8086 mode, the segment limit is -1L
1299         * to reflect this situation.
1300         *
1301         * After computed, the effective address is treated as an unsigned
1302         * quantity.
1303         */
1304        if (!any_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1305                goto out;
1306
1307        /*
1308         * Even though 32-bit address encodings are allowed in virtual-8086
1309         * mode, the address range is still limited to [0x-0xffff].
1310         */
1311        if (v8086_mode(regs) && (eff_addr & ~0xffff))
1312                goto out;
1313
1314        /*
1315         * Data type long could be 64 bits in size. Ensure that our 32-bit
1316         * effective address is not sign-extended when computing the linear
1317         * address.
1318         */
1319        linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1320
1321        /* Limit linear address to 20 bits */
1322        if (v8086_mode(regs))
1323                linear_addr &= 0xfffff;
1324
1325out:
1326        return (void __user *)linear_addr;
1327}
1328
1329/**
1330 * get_addr_ref_64() - Obtain a 64-bit linear address
1331 * @insn:       Instruction struct with ModRM and SIB bytes and displacement
1332 * @regs:       Structure with register values as seen when entering kernel mode
1333 *
1334 * This function is to be used with 64-bit address encodings to obtain the
1335 * linear memory address referred by the instruction's ModRM, SIB,
1336 * displacement bytes and segment base address, as applicable.
1337 *
1338 * Returns:
1339 *
1340 * Linear address referenced by instruction and registers on success.
1341 *
1342 * -1L on error.
1343 */
1344#ifndef CONFIG_X86_64
1345static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1346{
1347        return (void __user *)-1L;
1348}
1349#else
1350static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1351{
1352        unsigned long linear_addr = -1L, seg_base;
1353        int regoff, ret;
1354        long eff_addr;
1355
1356        if (insn->addr_bytes != 8)
1357                goto out;
1358
1359        if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1360                ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1361                if (ret)
1362                        goto out;
1363
1364        } else {
1365                if (insn->sib.nbytes) {
1366                        ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1367                        if (ret)
1368                                goto out;
1369                } else {
1370                        ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1371                        if (ret)
1372                                goto out;
1373                }
1374
1375        }
1376
1377        ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1378        if (ret)
1379                goto out;
1380
1381        linear_addr = (unsigned long)eff_addr + seg_base;
1382
1383out:
1384        return (void __user *)linear_addr;
1385}
1386#endif /* CONFIG_X86_64 */
1387
1388/**
1389 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1390 * @insn:       Instruction structure containing ModRM byte and displacement
1391 * @regs:       Structure with register values as seen when entering kernel mode
1392 *
1393 * Obtain the linear address referred by the instruction's ModRM, SIB and
1394 * displacement bytes, and segment base, as applicable. In protected mode,
1395 * segment limits are enforced.
1396 *
1397 * Returns:
1398 *
1399 * Linear address referenced by instruction and registers on success.
1400 *
1401 * -1L on error.
1402 */
1403void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1404{
1405        if (!insn || !regs)
1406                return (void __user *)-1L;
1407
1408        switch (insn->addr_bytes) {
1409        case 2:
1410                return get_addr_ref_16(insn, regs);
1411        case 4:
1412                return get_addr_ref_32(insn, regs);
1413        case 8:
1414                return get_addr_ref_64(insn, regs);
1415        default:
1416                return (void __user *)-1L;
1417        }
1418}
1419
1420static int insn_get_effective_ip(struct pt_regs *regs, unsigned long *ip)
1421{
1422        unsigned long seg_base = 0;
1423
1424        /*
1425         * If not in user-space long mode, a custom code segment could be in
1426         * use. This is true in protected mode (if the process defined a local
1427         * descriptor table), or virtual-8086 mode. In most of the cases
1428         * seg_base will be zero as in USER_CS.
1429         */
1430        if (!user_64bit_mode(regs)) {
1431                seg_base = insn_get_seg_base(regs, INAT_SEG_REG_CS);
1432                if (seg_base == -1L)
1433                        return -EINVAL;
1434        }
1435
1436        *ip = seg_base + regs->ip;
1437
1438        return 0;
1439}
1440
1441/**
1442 * insn_fetch_from_user() - Copy instruction bytes from user-space memory
1443 * @regs:       Structure with register values as seen when entering kernel mode
1444 * @buf:        Array to store the fetched instruction
1445 *
1446 * Gets the linear address of the instruction and copies the instruction bytes
1447 * to the buf.
1448 *
1449 * Returns:
1450 *
1451 * - number of instruction bytes copied.
1452 * - 0 if nothing was copied.
1453 * - -EINVAL if the linear address of the instruction could not be calculated
1454 */
1455int insn_fetch_from_user(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1456{
1457        unsigned long ip;
1458        int not_copied;
1459
1460        if (insn_get_effective_ip(regs, &ip))
1461                return -EINVAL;
1462
1463        not_copied = copy_from_user(buf, (void __user *)ip, MAX_INSN_SIZE);
1464
1465        return MAX_INSN_SIZE - not_copied;
1466}
1467
1468/**
1469 * insn_fetch_from_user_inatomic() - Copy instruction bytes from user-space memory
1470 *                                   while in atomic code
1471 * @regs:       Structure with register values as seen when entering kernel mode
1472 * @buf:        Array to store the fetched instruction
1473 *
1474 * Gets the linear address of the instruction and copies the instruction bytes
1475 * to the buf. This function must be used in atomic context.
1476 *
1477 * Returns:
1478 *
1479 *  - number of instruction bytes copied.
1480 *  - 0 if nothing was copied.
1481 *  - -EINVAL if the linear address of the instruction could not be calculated.
1482 */
1483int insn_fetch_from_user_inatomic(struct pt_regs *regs, unsigned char buf[MAX_INSN_SIZE])
1484{
1485        unsigned long ip;
1486        int not_copied;
1487
1488        if (insn_get_effective_ip(regs, &ip))
1489                return -EINVAL;
1490
1491        not_copied = __copy_from_user_inatomic(buf, (void __user *)ip, MAX_INSN_SIZE);
1492
1493        return MAX_INSN_SIZE - not_copied;
1494}
1495
1496/**
1497 * insn_decode_from_regs() - Decode an instruction
1498 * @insn:       Structure to store decoded instruction
1499 * @regs:       Structure with register values as seen when entering kernel mode
1500 * @buf:        Buffer containing the instruction bytes
1501 * @buf_size:   Number of instruction bytes available in buf
1502 *
1503 * Decodes the instruction provided in buf and stores the decoding results in
1504 * insn. Also determines the correct address and operand sizes.
1505 *
1506 * Returns:
1507 *
1508 * True if instruction was decoded, False otherwise.
1509 */
1510bool insn_decode_from_regs(struct insn *insn, struct pt_regs *regs,
1511                           unsigned char buf[MAX_INSN_SIZE], int buf_size)
1512{
1513        int seg_defs;
1514
1515        insn_init(insn, buf, buf_size, user_64bit_mode(regs));
1516
1517        /*
1518         * Override the default operand and address sizes with what is specified
1519         * in the code segment descriptor. The instruction decoder only sets
1520         * the address size it to either 4 or 8 address bytes and does nothing
1521         * for the operand bytes. This OK for most of the cases, but we could
1522         * have special cases where, for instance, a 16-bit code segment
1523         * descriptor is used.
1524         * If there is an address override prefix, the instruction decoder
1525         * correctly updates these values, even for 16-bit defaults.
1526         */
1527        seg_defs = insn_get_code_seg_params(regs);
1528        if (seg_defs == -EINVAL)
1529                return false;
1530
1531        insn->addr_bytes = INSN_CODE_SEG_ADDR_SZ(seg_defs);
1532        insn->opnd_bytes = INSN_CODE_SEG_OPND_SZ(seg_defs);
1533
1534        if (insn_get_length(insn))
1535                return false;
1536
1537        if (buf_size < insn->length)
1538                return false;
1539
1540        return true;
1541}
1542