linux/arch/x86/mm/init.c
<<
>>
Prefs
   1#include <linux/gfp.h>
   2#include <linux/initrd.h>
   3#include <linux/ioport.h>
   4#include <linux/swap.h>
   5#include <linux/memblock.h>
   6#include <linux/swapfile.h>
   7#include <linux/swapops.h>
   8#include <linux/kmemleak.h>
   9#include <linux/sched/task.h>
  10
  11#include <asm/set_memory.h>
  12#include <asm/e820/api.h>
  13#include <asm/init.h>
  14#include <asm/page.h>
  15#include <asm/page_types.h>
  16#include <asm/sections.h>
  17#include <asm/setup.h>
  18#include <asm/tlbflush.h>
  19#include <asm/tlb.h>
  20#include <asm/proto.h>
  21#include <asm/dma.h>            /* for MAX_DMA_PFN */
  22#include <asm/microcode.h>
  23#include <asm/kaslr.h>
  24#include <asm/hypervisor.h>
  25#include <asm/cpufeature.h>
  26#include <asm/pti.h>
  27#include <asm/text-patching.h>
  28#include <asm/memtype.h>
  29
  30/*
  31 * We need to define the tracepoints somewhere, and tlb.c
  32 * is only compiled when SMP=y.
  33 */
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/tlb.h>
  36
  37#include "mm_internal.h"
  38
  39/*
  40 * Tables translating between page_cache_type_t and pte encoding.
  41 *
  42 * The default values are defined statically as minimal supported mode;
  43 * WC and WT fall back to UC-.  pat_init() updates these values to support
  44 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
  45 * for the details.  Note, __early_ioremap() used during early boot-time
  46 * takes pgprot_t (pte encoding) and does not use these tables.
  47 *
  48 *   Index into __cachemode2pte_tbl[] is the cachemode.
  49 *
  50 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  51 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  52 */
  53static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  54        [_PAGE_CACHE_MODE_WB      ]     = 0         | 0        ,
  55        [_PAGE_CACHE_MODE_WC      ]     = 0         | _PAGE_PCD,
  56        [_PAGE_CACHE_MODE_UC_MINUS]     = 0         | _PAGE_PCD,
  57        [_PAGE_CACHE_MODE_UC      ]     = _PAGE_PWT | _PAGE_PCD,
  58        [_PAGE_CACHE_MODE_WT      ]     = 0         | _PAGE_PCD,
  59        [_PAGE_CACHE_MODE_WP      ]     = 0         | _PAGE_PCD,
  60};
  61
  62unsigned long cachemode2protval(enum page_cache_mode pcm)
  63{
  64        if (likely(pcm == 0))
  65                return 0;
  66        return __cachemode2pte_tbl[pcm];
  67}
  68EXPORT_SYMBOL(cachemode2protval);
  69
  70static uint8_t __pte2cachemode_tbl[8] = {
  71        [__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
  72        [__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  73        [__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
  74        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
  75        [__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  76        [__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  77        [__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  78        [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  79};
  80
  81/* Check that the write-protect PAT entry is set for write-protect */
  82bool x86_has_pat_wp(void)
  83{
  84        return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
  85}
  86
  87enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
  88{
  89        unsigned long masked;
  90
  91        masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
  92        if (likely(masked == 0))
  93                return 0;
  94        return __pte2cachemode_tbl[__pte2cm_idx(masked)];
  95}
  96
  97static unsigned long __initdata pgt_buf_start;
  98static unsigned long __initdata pgt_buf_end;
  99static unsigned long __initdata pgt_buf_top;
 100
 101static unsigned long min_pfn_mapped;
 102
 103static bool __initdata can_use_brk_pgt = true;
 104
 105/*
 106 * Pages returned are already directly mapped.
 107 *
 108 * Changing that is likely to break Xen, see commit:
 109 *
 110 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 111 *
 112 * for detailed information.
 113 */
 114__ref void *alloc_low_pages(unsigned int num)
 115{
 116        unsigned long pfn;
 117        int i;
 118
 119        if (after_bootmem) {
 120                unsigned int order;
 121
 122                order = get_order((unsigned long)num << PAGE_SHIFT);
 123                return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 124        }
 125
 126        if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 127                unsigned long ret = 0;
 128
 129                if (min_pfn_mapped < max_pfn_mapped) {
 130                        ret = memblock_phys_alloc_range(
 131                                        PAGE_SIZE * num, PAGE_SIZE,
 132                                        min_pfn_mapped << PAGE_SHIFT,
 133                                        max_pfn_mapped << PAGE_SHIFT);
 134                }
 135                if (!ret && can_use_brk_pgt)
 136                        ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
 137
 138                if (!ret)
 139                        panic("alloc_low_pages: can not alloc memory");
 140
 141                pfn = ret >> PAGE_SHIFT;
 142        } else {
 143                pfn = pgt_buf_end;
 144                pgt_buf_end += num;
 145        }
 146
 147        for (i = 0; i < num; i++) {
 148                void *adr;
 149
 150                adr = __va((pfn + i) << PAGE_SHIFT);
 151                clear_page(adr);
 152        }
 153
 154        return __va(pfn << PAGE_SHIFT);
 155}
 156
 157/*
 158 * By default need to be able to allocate page tables below PGD firstly for
 159 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
 160 * With KASLR memory randomization, depending on the machine e820 memory and the
 161 * PUD alignment, twice that many pages may be needed when KASLR memory
 162 * randomization is enabled.
 163 */
 164
 165#ifndef CONFIG_X86_5LEVEL
 166#define INIT_PGD_PAGE_TABLES    3
 167#else
 168#define INIT_PGD_PAGE_TABLES    4
 169#endif
 170
 171#ifndef CONFIG_RANDOMIZE_MEMORY
 172#define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
 173#else
 174#define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
 175#endif
 176
 177#define INIT_PGT_BUF_SIZE       (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 178RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 179void  __init early_alloc_pgt_buf(void)
 180{
 181        unsigned long tables = INIT_PGT_BUF_SIZE;
 182        phys_addr_t base;
 183
 184        base = __pa(extend_brk(tables, PAGE_SIZE));
 185
 186        pgt_buf_start = base >> PAGE_SHIFT;
 187        pgt_buf_end = pgt_buf_start;
 188        pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 189}
 190
 191int after_bootmem;
 192
 193early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 194
 195struct map_range {
 196        unsigned long start;
 197        unsigned long end;
 198        unsigned page_size_mask;
 199};
 200
 201static int page_size_mask;
 202
 203/*
 204 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
 205 * enable and PPro Global page enable), so that any CPU's that boot
 206 * up after us can get the correct flags. Invoked on the boot CPU.
 207 */
 208static inline void cr4_set_bits_and_update_boot(unsigned long mask)
 209{
 210        mmu_cr4_features |= mask;
 211        if (trampoline_cr4_features)
 212                *trampoline_cr4_features = mmu_cr4_features;
 213        cr4_set_bits(mask);
 214}
 215
 216static void __init probe_page_size_mask(void)
 217{
 218        /*
 219         * For pagealloc debugging, identity mapping will use small pages.
 220         * This will simplify cpa(), which otherwise needs to support splitting
 221         * large pages into small in interrupt context, etc.
 222         */
 223        if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 224                page_size_mask |= 1 << PG_LEVEL_2M;
 225        else
 226                direct_gbpages = 0;
 227
 228        /* Enable PSE if available */
 229        if (boot_cpu_has(X86_FEATURE_PSE))
 230                cr4_set_bits_and_update_boot(X86_CR4_PSE);
 231
 232        /* Enable PGE if available */
 233        __supported_pte_mask &= ~_PAGE_GLOBAL;
 234        if (boot_cpu_has(X86_FEATURE_PGE)) {
 235                cr4_set_bits_and_update_boot(X86_CR4_PGE);
 236                __supported_pte_mask |= _PAGE_GLOBAL;
 237        }
 238
 239        /* By the default is everything supported: */
 240        __default_kernel_pte_mask = __supported_pte_mask;
 241        /* Except when with PTI where the kernel is mostly non-Global: */
 242        if (cpu_feature_enabled(X86_FEATURE_PTI))
 243                __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 244
 245        /* Enable 1 GB linear kernel mappings if available: */
 246        if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 247                printk(KERN_INFO "Using GB pages for direct mapping\n");
 248                page_size_mask |= 1 << PG_LEVEL_1G;
 249        } else {
 250                direct_gbpages = 0;
 251        }
 252}
 253
 254static void setup_pcid(void)
 255{
 256        if (!IS_ENABLED(CONFIG_X86_64))
 257                return;
 258
 259        if (!boot_cpu_has(X86_FEATURE_PCID))
 260                return;
 261
 262        if (boot_cpu_has(X86_FEATURE_PGE)) {
 263                /*
 264                 * This can't be cr4_set_bits_and_update_boot() -- the
 265                 * trampoline code can't handle CR4.PCIDE and it wouldn't
 266                 * do any good anyway.  Despite the name,
 267                 * cr4_set_bits_and_update_boot() doesn't actually cause
 268                 * the bits in question to remain set all the way through
 269                 * the secondary boot asm.
 270                 *
 271                 * Instead, we brute-force it and set CR4.PCIDE manually in
 272                 * start_secondary().
 273                 */
 274                cr4_set_bits(X86_CR4_PCIDE);
 275
 276                /*
 277                 * INVPCID's single-context modes (2/3) only work if we set
 278                 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 279                 * on systems that have X86_CR4_PCIDE clear, or that have
 280                 * no INVPCID support at all.
 281                 */
 282                if (boot_cpu_has(X86_FEATURE_INVPCID))
 283                        setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 284        } else {
 285                /*
 286                 * flush_tlb_all(), as currently implemented, won't work if
 287                 * PCID is on but PGE is not.  Since that combination
 288                 * doesn't exist on real hardware, there's no reason to try
 289                 * to fully support it, but it's polite to avoid corrupting
 290                 * data if we're on an improperly configured VM.
 291                 */
 292                setup_clear_cpu_cap(X86_FEATURE_PCID);
 293        }
 294}
 295
 296#ifdef CONFIG_X86_32
 297#define NR_RANGE_MR 3
 298#else /* CONFIG_X86_64 */
 299#define NR_RANGE_MR 5
 300#endif
 301
 302static int __meminit save_mr(struct map_range *mr, int nr_range,
 303                             unsigned long start_pfn, unsigned long end_pfn,
 304                             unsigned long page_size_mask)
 305{
 306        if (start_pfn < end_pfn) {
 307                if (nr_range >= NR_RANGE_MR)
 308                        panic("run out of range for init_memory_mapping\n");
 309                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 310                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 311                mr[nr_range].page_size_mask = page_size_mask;
 312                nr_range++;
 313        }
 314
 315        return nr_range;
 316}
 317
 318/*
 319 * adjust the page_size_mask for small range to go with
 320 *      big page size instead small one if nearby are ram too.
 321 */
 322static void __ref adjust_range_page_size_mask(struct map_range *mr,
 323                                                         int nr_range)
 324{
 325        int i;
 326
 327        for (i = 0; i < nr_range; i++) {
 328                if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 329                    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 330                        unsigned long start = round_down(mr[i].start, PMD_SIZE);
 331                        unsigned long end = round_up(mr[i].end, PMD_SIZE);
 332
 333#ifdef CONFIG_X86_32
 334                        if ((end >> PAGE_SHIFT) > max_low_pfn)
 335                                continue;
 336#endif
 337
 338                        if (memblock_is_region_memory(start, end - start))
 339                                mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 340                }
 341                if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 342                    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 343                        unsigned long start = round_down(mr[i].start, PUD_SIZE);
 344                        unsigned long end = round_up(mr[i].end, PUD_SIZE);
 345
 346                        if (memblock_is_region_memory(start, end - start))
 347                                mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 348                }
 349        }
 350}
 351
 352static const char *page_size_string(struct map_range *mr)
 353{
 354        static const char str_1g[] = "1G";
 355        static const char str_2m[] = "2M";
 356        static const char str_4m[] = "4M";
 357        static const char str_4k[] = "4k";
 358
 359        if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 360                return str_1g;
 361        /*
 362         * 32-bit without PAE has a 4M large page size.
 363         * PG_LEVEL_2M is misnamed, but we can at least
 364         * print out the right size in the string.
 365         */
 366        if (IS_ENABLED(CONFIG_X86_32) &&
 367            !IS_ENABLED(CONFIG_X86_PAE) &&
 368            mr->page_size_mask & (1<<PG_LEVEL_2M))
 369                return str_4m;
 370
 371        if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 372                return str_2m;
 373
 374        return str_4k;
 375}
 376
 377static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 378                                     unsigned long start,
 379                                     unsigned long end)
 380{
 381        unsigned long start_pfn, end_pfn, limit_pfn;
 382        unsigned long pfn;
 383        int i;
 384
 385        limit_pfn = PFN_DOWN(end);
 386
 387        /* head if not big page alignment ? */
 388        pfn = start_pfn = PFN_DOWN(start);
 389#ifdef CONFIG_X86_32
 390        /*
 391         * Don't use a large page for the first 2/4MB of memory
 392         * because there are often fixed size MTRRs in there
 393         * and overlapping MTRRs into large pages can cause
 394         * slowdowns.
 395         */
 396        if (pfn == 0)
 397                end_pfn = PFN_DOWN(PMD_SIZE);
 398        else
 399                end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 400#else /* CONFIG_X86_64 */
 401        end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 402#endif
 403        if (end_pfn > limit_pfn)
 404                end_pfn = limit_pfn;
 405        if (start_pfn < end_pfn) {
 406                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 407                pfn = end_pfn;
 408        }
 409
 410        /* big page (2M) range */
 411        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 412#ifdef CONFIG_X86_32
 413        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 414#else /* CONFIG_X86_64 */
 415        end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 416        if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 417                end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 418#endif
 419
 420        if (start_pfn < end_pfn) {
 421                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 422                                page_size_mask & (1<<PG_LEVEL_2M));
 423                pfn = end_pfn;
 424        }
 425
 426#ifdef CONFIG_X86_64
 427        /* big page (1G) range */
 428        start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 429        end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 430        if (start_pfn < end_pfn) {
 431                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 432                                page_size_mask &
 433                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 434                pfn = end_pfn;
 435        }
 436
 437        /* tail is not big page (1G) alignment */
 438        start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 439        end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 440        if (start_pfn < end_pfn) {
 441                nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 442                                page_size_mask & (1<<PG_LEVEL_2M));
 443                pfn = end_pfn;
 444        }
 445#endif
 446
 447        /* tail is not big page (2M) alignment */
 448        start_pfn = pfn;
 449        end_pfn = limit_pfn;
 450        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 451
 452        if (!after_bootmem)
 453                adjust_range_page_size_mask(mr, nr_range);
 454
 455        /* try to merge same page size and continuous */
 456        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 457                unsigned long old_start;
 458                if (mr[i].end != mr[i+1].start ||
 459                    mr[i].page_size_mask != mr[i+1].page_size_mask)
 460                        continue;
 461                /* move it */
 462                old_start = mr[i].start;
 463                memmove(&mr[i], &mr[i+1],
 464                        (nr_range - 1 - i) * sizeof(struct map_range));
 465                mr[i--].start = old_start;
 466                nr_range--;
 467        }
 468
 469        for (i = 0; i < nr_range; i++)
 470                pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 471                                mr[i].start, mr[i].end - 1,
 472                                page_size_string(&mr[i]));
 473
 474        return nr_range;
 475}
 476
 477struct range pfn_mapped[E820_MAX_ENTRIES];
 478int nr_pfn_mapped;
 479
 480static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 481{
 482        nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 483                                             nr_pfn_mapped, start_pfn, end_pfn);
 484        nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 485
 486        max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 487
 488        if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 489                max_low_pfn_mapped = max(max_low_pfn_mapped,
 490                                         min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 491}
 492
 493bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 494{
 495        int i;
 496
 497        for (i = 0; i < nr_pfn_mapped; i++)
 498                if ((start_pfn >= pfn_mapped[i].start) &&
 499                    (end_pfn <= pfn_mapped[i].end))
 500                        return true;
 501
 502        return false;
 503}
 504
 505/*
 506 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 507 * This runs before bootmem is initialized and gets pages directly from
 508 * the physical memory. To access them they are temporarily mapped.
 509 */
 510unsigned long __ref init_memory_mapping(unsigned long start,
 511                                        unsigned long end, pgprot_t prot)
 512{
 513        struct map_range mr[NR_RANGE_MR];
 514        unsigned long ret = 0;
 515        int nr_range, i;
 516
 517        pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 518               start, end - 1);
 519
 520        memset(mr, 0, sizeof(mr));
 521        nr_range = split_mem_range(mr, 0, start, end);
 522
 523        for (i = 0; i < nr_range; i++)
 524                ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 525                                                   mr[i].page_size_mask,
 526                                                   prot);
 527
 528        add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 529
 530        return ret >> PAGE_SHIFT;
 531}
 532
 533/*
 534 * We need to iterate through the E820 memory map and create direct mappings
 535 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 536 * create direct mappings for all pfns from [0 to max_low_pfn) and
 537 * [4GB to max_pfn) because of possible memory holes in high addresses
 538 * that cannot be marked as UC by fixed/variable range MTRRs.
 539 * Depending on the alignment of E820 ranges, this may possibly result
 540 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 541 *
 542 * init_mem_mapping() calls init_range_memory_mapping() with big range.
 543 * That range would have hole in the middle or ends, and only ram parts
 544 * will be mapped in init_range_memory_mapping().
 545 */
 546static unsigned long __init init_range_memory_mapping(
 547                                           unsigned long r_start,
 548                                           unsigned long r_end)
 549{
 550        unsigned long start_pfn, end_pfn;
 551        unsigned long mapped_ram_size = 0;
 552        int i;
 553
 554        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 555                u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 556                u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 557                if (start >= end)
 558                        continue;
 559
 560                /*
 561                 * if it is overlapping with brk pgt, we need to
 562                 * alloc pgt buf from memblock instead.
 563                 */
 564                can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 565                                    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 566                init_memory_mapping(start, end, PAGE_KERNEL);
 567                mapped_ram_size += end - start;
 568                can_use_brk_pgt = true;
 569        }
 570
 571        return mapped_ram_size;
 572}
 573
 574static unsigned long __init get_new_step_size(unsigned long step_size)
 575{
 576        /*
 577         * Initial mapped size is PMD_SIZE (2M).
 578         * We can not set step_size to be PUD_SIZE (1G) yet.
 579         * In worse case, when we cross the 1G boundary, and
 580         * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 581         * to map 1G range with PTE. Hence we use one less than the
 582         * difference of page table level shifts.
 583         *
 584         * Don't need to worry about overflow in the top-down case, on 32bit,
 585         * when step_size is 0, round_down() returns 0 for start, and that
 586         * turns it into 0x100000000ULL.
 587         * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 588         * needs to be taken into consideration by the code below.
 589         */
 590        return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 591}
 592
 593/**
 594 * memory_map_top_down - Map [map_start, map_end) top down
 595 * @map_start: start address of the target memory range
 596 * @map_end: end address of the target memory range
 597 *
 598 * This function will setup direct mapping for memory range
 599 * [map_start, map_end) in top-down. That said, the page tables
 600 * will be allocated at the end of the memory, and we map the
 601 * memory in top-down.
 602 */
 603static void __init memory_map_top_down(unsigned long map_start,
 604                                       unsigned long map_end)
 605{
 606        unsigned long real_end, last_start;
 607        unsigned long step_size;
 608        unsigned long addr;
 609        unsigned long mapped_ram_size = 0;
 610
 611        /*
 612         * Systems that have many reserved areas near top of the memory,
 613         * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
 614         * require lots of 4K mappings which may exhaust pgt_buf.
 615         * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
 616         * there is enough mapped memory that can be allocated from
 617         * memblock.
 618         */
 619        addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
 620                                         map_end);
 621        memblock_free(addr, PMD_SIZE);
 622        real_end = addr + PMD_SIZE;
 623
 624        /* step_size need to be small so pgt_buf from BRK could cover it */
 625        step_size = PMD_SIZE;
 626        max_pfn_mapped = 0; /* will get exact value next */
 627        min_pfn_mapped = real_end >> PAGE_SHIFT;
 628        last_start = real_end;
 629
 630        /*
 631         * We start from the top (end of memory) and go to the bottom.
 632         * The memblock_find_in_range() gets us a block of RAM from the
 633         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 634         * for page table.
 635         */
 636        while (last_start > map_start) {
 637                unsigned long start;
 638
 639                if (last_start > step_size) {
 640                        start = round_down(last_start - 1, step_size);
 641                        if (start < map_start)
 642                                start = map_start;
 643                } else
 644                        start = map_start;
 645                mapped_ram_size += init_range_memory_mapping(start,
 646                                                        last_start);
 647                last_start = start;
 648                min_pfn_mapped = last_start >> PAGE_SHIFT;
 649                if (mapped_ram_size >= step_size)
 650                        step_size = get_new_step_size(step_size);
 651        }
 652
 653        if (real_end < map_end)
 654                init_range_memory_mapping(real_end, map_end);
 655}
 656
 657/**
 658 * memory_map_bottom_up - Map [map_start, map_end) bottom up
 659 * @map_start: start address of the target memory range
 660 * @map_end: end address of the target memory range
 661 *
 662 * This function will setup direct mapping for memory range
 663 * [map_start, map_end) in bottom-up. Since we have limited the
 664 * bottom-up allocation above the kernel, the page tables will
 665 * be allocated just above the kernel and we map the memory
 666 * in [map_start, map_end) in bottom-up.
 667 */
 668static void __init memory_map_bottom_up(unsigned long map_start,
 669                                        unsigned long map_end)
 670{
 671        unsigned long next, start;
 672        unsigned long mapped_ram_size = 0;
 673        /* step_size need to be small so pgt_buf from BRK could cover it */
 674        unsigned long step_size = PMD_SIZE;
 675
 676        start = map_start;
 677        min_pfn_mapped = start >> PAGE_SHIFT;
 678
 679        /*
 680         * We start from the bottom (@map_start) and go to the top (@map_end).
 681         * The memblock_find_in_range() gets us a block of RAM from the
 682         * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 683         * for page table.
 684         */
 685        while (start < map_end) {
 686                if (step_size && map_end - start > step_size) {
 687                        next = round_up(start + 1, step_size);
 688                        if (next > map_end)
 689                                next = map_end;
 690                } else {
 691                        next = map_end;
 692                }
 693
 694                mapped_ram_size += init_range_memory_mapping(start, next);
 695                start = next;
 696
 697                if (mapped_ram_size >= step_size)
 698                        step_size = get_new_step_size(step_size);
 699        }
 700}
 701
 702/*
 703 * The real mode trampoline, which is required for bootstrapping CPUs
 704 * occupies only a small area under the low 1MB.  See reserve_real_mode()
 705 * for details.
 706 *
 707 * If KASLR is disabled the first PGD entry of the direct mapping is copied
 708 * to map the real mode trampoline.
 709 *
 710 * If KASLR is enabled, copy only the PUD which covers the low 1MB
 711 * area. This limits the randomization granularity to 1GB for both 4-level
 712 * and 5-level paging.
 713 */
 714static void __init init_trampoline(void)
 715{
 716#ifdef CONFIG_X86_64
 717        if (!kaslr_memory_enabled())
 718                trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
 719        else
 720                init_trampoline_kaslr();
 721#endif
 722}
 723
 724void __init init_mem_mapping(void)
 725{
 726        unsigned long end;
 727
 728        pti_check_boottime_disable();
 729        probe_page_size_mask();
 730        setup_pcid();
 731
 732#ifdef CONFIG_X86_64
 733        end = max_pfn << PAGE_SHIFT;
 734#else
 735        end = max_low_pfn << PAGE_SHIFT;
 736#endif
 737
 738        /* the ISA range is always mapped regardless of memory holes */
 739        init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
 740
 741        /* Init the trampoline, possibly with KASLR memory offset */
 742        init_trampoline();
 743
 744        /*
 745         * If the allocation is in bottom-up direction, we setup direct mapping
 746         * in bottom-up, otherwise we setup direct mapping in top-down.
 747         */
 748        if (memblock_bottom_up()) {
 749                unsigned long kernel_end = __pa_symbol(_end);
 750
 751                /*
 752                 * we need two separate calls here. This is because we want to
 753                 * allocate page tables above the kernel. So we first map
 754                 * [kernel_end, end) to make memory above the kernel be mapped
 755                 * as soon as possible. And then use page tables allocated above
 756                 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 757                 */
 758                memory_map_bottom_up(kernel_end, end);
 759                memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 760        } else {
 761                memory_map_top_down(ISA_END_ADDRESS, end);
 762        }
 763
 764#ifdef CONFIG_X86_64
 765        if (max_pfn > max_low_pfn) {
 766                /* can we preserve max_low_pfn ?*/
 767                max_low_pfn = max_pfn;
 768        }
 769#else
 770        early_ioremap_page_table_range_init();
 771#endif
 772
 773        load_cr3(swapper_pg_dir);
 774        __flush_tlb_all();
 775
 776        x86_init.hyper.init_mem_mapping();
 777
 778        early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 779}
 780
 781/*
 782 * Initialize an mm_struct to be used during poking and a pointer to be used
 783 * during patching.
 784 */
 785void __init poking_init(void)
 786{
 787        spinlock_t *ptl;
 788        pte_t *ptep;
 789
 790        poking_mm = copy_init_mm();
 791        BUG_ON(!poking_mm);
 792
 793        /*
 794         * Randomize the poking address, but make sure that the following page
 795         * will be mapped at the same PMD. We need 2 pages, so find space for 3,
 796         * and adjust the address if the PMD ends after the first one.
 797         */
 798        poking_addr = TASK_UNMAPPED_BASE;
 799        if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 800                poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
 801                        (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
 802
 803        if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
 804                poking_addr += PAGE_SIZE;
 805
 806        /*
 807         * We need to trigger the allocation of the page-tables that will be
 808         * needed for poking now. Later, poking may be performed in an atomic
 809         * section, which might cause allocation to fail.
 810         */
 811        ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 812        BUG_ON(!ptep);
 813        pte_unmap_unlock(ptep, ptl);
 814}
 815
 816/*
 817 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 818 * is valid. The argument is a physical page number.
 819 *
 820 * On x86, access has to be given to the first megabyte of RAM because that
 821 * area traditionally contains BIOS code and data regions used by X, dosemu,
 822 * and similar apps. Since they map the entire memory range, the whole range
 823 * must be allowed (for mapping), but any areas that would otherwise be
 824 * disallowed are flagged as being "zero filled" instead of rejected.
 825 * Access has to be given to non-kernel-ram areas as well, these contain the
 826 * PCI mmio resources as well as potential bios/acpi data regions.
 827 */
 828int devmem_is_allowed(unsigned long pagenr)
 829{
 830        if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 831                                IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 832                        != REGION_DISJOINT) {
 833                /*
 834                 * For disallowed memory regions in the low 1MB range,
 835                 * request that the page be shown as all zeros.
 836                 */
 837                if (pagenr < 256)
 838                        return 2;
 839
 840                return 0;
 841        }
 842
 843        /*
 844         * This must follow RAM test, since System RAM is considered a
 845         * restricted resource under CONFIG_STRICT_IOMEM.
 846         */
 847        if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 848                /* Low 1MB bypasses iomem restrictions. */
 849                if (pagenr < 256)
 850                        return 1;
 851
 852                return 0;
 853        }
 854
 855        return 1;
 856}
 857
 858void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 859{
 860        unsigned long begin_aligned, end_aligned;
 861
 862        /* Make sure boundaries are page aligned */
 863        begin_aligned = PAGE_ALIGN(begin);
 864        end_aligned   = end & PAGE_MASK;
 865
 866        if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 867                begin = begin_aligned;
 868                end   = end_aligned;
 869        }
 870
 871        if (begin >= end)
 872                return;
 873
 874        /*
 875         * If debugging page accesses then do not free this memory but
 876         * mark them not present - any buggy init-section access will
 877         * create a kernel page fault:
 878         */
 879        if (debug_pagealloc_enabled()) {
 880                pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 881                        begin, end - 1);
 882                /*
 883                 * Inform kmemleak about the hole in the memory since the
 884                 * corresponding pages will be unmapped.
 885                 */
 886                kmemleak_free_part((void *)begin, end - begin);
 887                set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 888        } else {
 889                /*
 890                 * We just marked the kernel text read only above, now that
 891                 * we are going to free part of that, we need to make that
 892                 * writeable and non-executable first.
 893                 */
 894                set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 895                set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 896
 897                free_reserved_area((void *)begin, (void *)end,
 898                                   POISON_FREE_INITMEM, what);
 899        }
 900}
 901
 902/*
 903 * begin/end can be in the direct map or the "high kernel mapping"
 904 * used for the kernel image only.  free_init_pages() will do the
 905 * right thing for either kind of address.
 906 */
 907void free_kernel_image_pages(const char *what, void *begin, void *end)
 908{
 909        unsigned long begin_ul = (unsigned long)begin;
 910        unsigned long end_ul = (unsigned long)end;
 911        unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 912
 913        free_init_pages(what, begin_ul, end_ul);
 914
 915        /*
 916         * PTI maps some of the kernel into userspace.  For performance,
 917         * this includes some kernel areas that do not contain secrets.
 918         * Those areas might be adjacent to the parts of the kernel image
 919         * being freed, which may contain secrets.  Remove the "high kernel
 920         * image mapping" for these freed areas, ensuring they are not even
 921         * potentially vulnerable to Meltdown regardless of the specific
 922         * optimizations PTI is currently using.
 923         *
 924         * The "noalias" prevents unmapping the direct map alias which is
 925         * needed to access the freed pages.
 926         *
 927         * This is only valid for 64bit kernels. 32bit has only one mapping
 928         * which can't be treated in this way for obvious reasons.
 929         */
 930        if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 931                set_memory_np_noalias(begin_ul, len_pages);
 932}
 933
 934void __ref free_initmem(void)
 935{
 936        e820__reallocate_tables();
 937
 938        mem_encrypt_free_decrypted_mem();
 939
 940        free_kernel_image_pages("unused kernel image (initmem)",
 941                                &__init_begin, &__init_end);
 942}
 943
 944#ifdef CONFIG_BLK_DEV_INITRD
 945void __init free_initrd_mem(unsigned long start, unsigned long end)
 946{
 947        /*
 948         * end could be not aligned, and We can not align that,
 949         * decompressor could be confused by aligned initrd_end
 950         * We already reserve the end partial page before in
 951         *   - i386_start_kernel()
 952         *   - x86_64_start_kernel()
 953         *   - relocate_initrd()
 954         * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 955         */
 956        free_init_pages("initrd", start, PAGE_ALIGN(end));
 957}
 958#endif
 959
 960/*
 961 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 962 * and pass it to the MM layer - to help it set zone watermarks more
 963 * accurately.
 964 *
 965 * Done on 64-bit systems only for the time being, although 32-bit systems
 966 * might benefit from this as well.
 967 */
 968void __init memblock_find_dma_reserve(void)
 969{
 970#ifdef CONFIG_X86_64
 971        u64 nr_pages = 0, nr_free_pages = 0;
 972        unsigned long start_pfn, end_pfn;
 973        phys_addr_t start_addr, end_addr;
 974        int i;
 975        u64 u;
 976
 977        /*
 978         * Iterate over all memory ranges (free and reserved ones alike),
 979         * to calculate the total number of pages in the first 16 MB of RAM:
 980         */
 981        nr_pages = 0;
 982        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 983                start_pfn = min(start_pfn, MAX_DMA_PFN);
 984                end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 985
 986                nr_pages += end_pfn - start_pfn;
 987        }
 988
 989        /*
 990         * Iterate over free memory ranges to calculate the number of free
 991         * pages in the DMA zone, while not counting potential partial
 992         * pages at the beginning or the end of the range:
 993         */
 994        nr_free_pages = 0;
 995        for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 996                start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 997                end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 998
 999                if (start_pfn < end_pfn)
1000                        nr_free_pages += end_pfn - start_pfn;
1001        }
1002
1003        set_dma_reserve(nr_pages - nr_free_pages);
1004#endif
1005}
1006
1007void __init zone_sizes_init(void)
1008{
1009        unsigned long max_zone_pfns[MAX_NR_ZONES];
1010
1011        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1012
1013#ifdef CONFIG_ZONE_DMA
1014        max_zone_pfns[ZONE_DMA]         = min(MAX_DMA_PFN, max_low_pfn);
1015#endif
1016#ifdef CONFIG_ZONE_DMA32
1017        max_zone_pfns[ZONE_DMA32]       = min(MAX_DMA32_PFN, max_low_pfn);
1018#endif
1019        max_zone_pfns[ZONE_NORMAL]      = max_low_pfn;
1020#ifdef CONFIG_HIGHMEM
1021        max_zone_pfns[ZONE_HIGHMEM]     = max_pfn;
1022#endif
1023
1024        free_area_init(max_zone_pfns);
1025}
1026
1027__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1028        .loaded_mm = &init_mm,
1029        .next_asid = 1,
1030        .cr4 = ~0UL,    /* fail hard if we screw up cr4 shadow initialization */
1031};
1032
1033void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1034{
1035        /* entry 0 MUST be WB (hardwired to speed up translations) */
1036        BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1037
1038        __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1039        __pte2cachemode_tbl[entry] = cache;
1040}
1041
1042#ifdef CONFIG_SWAP
1043unsigned long max_swapfile_size(void)
1044{
1045        unsigned long pages;
1046
1047        pages = generic_max_swapfile_size();
1048
1049        if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1050                /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1051                unsigned long long l1tf_limit = l1tf_pfn_limit();
1052                /*
1053                 * We encode swap offsets also with 3 bits below those for pfn
1054                 * which makes the usable limit higher.
1055                 */
1056#if CONFIG_PGTABLE_LEVELS > 2
1057                l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1058#endif
1059                pages = min_t(unsigned long long, l1tf_limit, pages);
1060        }
1061        return pages;
1062}
1063#endif
1064