linux/arch/x86/mm/kmmio.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Support for MMIO probes.
   3 * Benefit many code from kprobes
   4 * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
   5 *     2007 Alexander Eichner
   6 *     2008 Pekka Paalanen <pq@iki.fi>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/list.h>
  12#include <linux/rculist.h>
  13#include <linux/spinlock.h>
  14#include <linux/hash.h>
  15#include <linux/export.h>
  16#include <linux/kernel.h>
  17#include <linux/uaccess.h>
  18#include <linux/ptrace.h>
  19#include <linux/preempt.h>
  20#include <linux/percpu.h>
  21#include <linux/kdebug.h>
  22#include <linux/mutex.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <asm/cacheflush.h>
  26#include <asm/tlbflush.h>
  27#include <linux/errno.h>
  28#include <asm/debugreg.h>
  29#include <linux/mmiotrace.h>
  30
  31#define KMMIO_PAGE_HASH_BITS 4
  32#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
  33
  34struct kmmio_fault_page {
  35        struct list_head list;
  36        struct kmmio_fault_page *release_next;
  37        unsigned long addr; /* the requested address */
  38        pteval_t old_presence; /* page presence prior to arming */
  39        bool armed;
  40
  41        /*
  42         * Number of times this page has been registered as a part
  43         * of a probe. If zero, page is disarmed and this may be freed.
  44         * Used only by writers (RCU) and post_kmmio_handler().
  45         * Protected by kmmio_lock, when linked into kmmio_page_table.
  46         */
  47        int count;
  48
  49        bool scheduled_for_release;
  50};
  51
  52struct kmmio_delayed_release {
  53        struct rcu_head rcu;
  54        struct kmmio_fault_page *release_list;
  55};
  56
  57struct kmmio_context {
  58        struct kmmio_fault_page *fpage;
  59        struct kmmio_probe *probe;
  60        unsigned long saved_flags;
  61        unsigned long addr;
  62        int active;
  63};
  64
  65static DEFINE_SPINLOCK(kmmio_lock);
  66
  67/* Protected by kmmio_lock */
  68unsigned int kmmio_count;
  69
  70/* Read-protected by RCU, write-protected by kmmio_lock. */
  71static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
  72static LIST_HEAD(kmmio_probes);
  73
  74static struct list_head *kmmio_page_list(unsigned long addr)
  75{
  76        unsigned int l;
  77        pte_t *pte = lookup_address(addr, &l);
  78
  79        if (!pte)
  80                return NULL;
  81        addr &= page_level_mask(l);
  82
  83        return &kmmio_page_table[hash_long(addr, KMMIO_PAGE_HASH_BITS)];
  84}
  85
  86/* Accessed per-cpu */
  87static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
  88
  89/*
  90 * this is basically a dynamic stabbing problem:
  91 * Could use the existing prio tree code or
  92 * Possible better implementations:
  93 * The Interval Skip List: A Data Structure for Finding All Intervals That
  94 * Overlap a Point (might be simple)
  95 * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
  96 */
  97/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
  98static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
  99{
 100        struct kmmio_probe *p;
 101        list_for_each_entry_rcu(p, &kmmio_probes, list) {
 102                if (addr >= p->addr && addr < (p->addr + p->len))
 103                        return p;
 104        }
 105        return NULL;
 106}
 107
 108/* You must be holding RCU read lock. */
 109static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long addr)
 110{
 111        struct list_head *head;
 112        struct kmmio_fault_page *f;
 113        unsigned int l;
 114        pte_t *pte = lookup_address(addr, &l);
 115
 116        if (!pte)
 117                return NULL;
 118        addr &= page_level_mask(l);
 119        head = kmmio_page_list(addr);
 120        list_for_each_entry_rcu(f, head, list) {
 121                if (f->addr == addr)
 122                        return f;
 123        }
 124        return NULL;
 125}
 126
 127static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
 128{
 129        pmd_t new_pmd;
 130        pmdval_t v = pmd_val(*pmd);
 131        if (clear) {
 132                *old = v;
 133                new_pmd = pmd_mkinvalid(*pmd);
 134        } else {
 135                /* Presume this has been called with clear==true previously */
 136                new_pmd = __pmd(*old);
 137        }
 138        set_pmd(pmd, new_pmd);
 139}
 140
 141static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
 142{
 143        pteval_t v = pte_val(*pte);
 144        if (clear) {
 145                *old = v;
 146                /* Nothing should care about address */
 147                pte_clear(&init_mm, 0, pte);
 148        } else {
 149                /* Presume this has been called with clear==true previously */
 150                set_pte_atomic(pte, __pte(*old));
 151        }
 152}
 153
 154static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
 155{
 156        unsigned int level;
 157        pte_t *pte = lookup_address(f->addr, &level);
 158
 159        if (!pte) {
 160                pr_err("no pte for addr 0x%08lx\n", f->addr);
 161                return -1;
 162        }
 163
 164        switch (level) {
 165        case PG_LEVEL_2M:
 166                clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
 167                break;
 168        case PG_LEVEL_4K:
 169                clear_pte_presence(pte, clear, &f->old_presence);
 170                break;
 171        default:
 172                pr_err("unexpected page level 0x%x.\n", level);
 173                return -1;
 174        }
 175
 176        flush_tlb_one_kernel(f->addr);
 177        return 0;
 178}
 179
 180/*
 181 * Mark the given page as not present. Access to it will trigger a fault.
 182 *
 183 * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
 184 * protection is ignored here. RCU read lock is assumed held, so the struct
 185 * will not disappear unexpectedly. Furthermore, the caller must guarantee,
 186 * that double arming the same virtual address (page) cannot occur.
 187 *
 188 * Double disarming on the other hand is allowed, and may occur when a fault
 189 * and mmiotrace shutdown happen simultaneously.
 190 */
 191static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
 192{
 193        int ret;
 194        WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
 195        if (f->armed) {
 196                pr_warn("double-arm: addr 0x%08lx, ref %d, old %d\n",
 197                        f->addr, f->count, !!f->old_presence);
 198        }
 199        ret = clear_page_presence(f, true);
 200        WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming at 0x%08lx failed.\n"),
 201                  f->addr);
 202        f->armed = true;
 203        return ret;
 204}
 205
 206/** Restore the given page to saved presence state. */
 207static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
 208{
 209        int ret = clear_page_presence(f, false);
 210        WARN_ONCE(ret < 0,
 211                        KERN_ERR "kmmio disarming at 0x%08lx failed.\n", f->addr);
 212        f->armed = false;
 213}
 214
 215/*
 216 * This is being called from do_page_fault().
 217 *
 218 * We may be in an interrupt or a critical section. Also prefecthing may
 219 * trigger a page fault. We may be in the middle of process switch.
 220 * We cannot take any locks, because we could be executing especially
 221 * within a kmmio critical section.
 222 *
 223 * Local interrupts are disabled, so preemption cannot happen.
 224 * Do not enable interrupts, do not sleep, and watch out for other CPUs.
 225 */
 226/*
 227 * Interrupts are disabled on entry as trap3 is an interrupt gate
 228 * and they remain disabled throughout this function.
 229 */
 230int kmmio_handler(struct pt_regs *regs, unsigned long addr)
 231{
 232        struct kmmio_context *ctx;
 233        struct kmmio_fault_page *faultpage;
 234        int ret = 0; /* default to fault not handled */
 235        unsigned long page_base = addr;
 236        unsigned int l;
 237        pte_t *pte = lookup_address(addr, &l);
 238        if (!pte)
 239                return -EINVAL;
 240        page_base &= page_level_mask(l);
 241
 242        /*
 243         * Preemption is now disabled to prevent process switch during
 244         * single stepping. We can only handle one active kmmio trace
 245         * per cpu, so ensure that we finish it before something else
 246         * gets to run. We also hold the RCU read lock over single
 247         * stepping to avoid looking up the probe and kmmio_fault_page
 248         * again.
 249         */
 250        preempt_disable();
 251        rcu_read_lock();
 252
 253        faultpage = get_kmmio_fault_page(page_base);
 254        if (!faultpage) {
 255                /*
 256                 * Either this page fault is not caused by kmmio, or
 257                 * another CPU just pulled the kmmio probe from under
 258                 * our feet. The latter case should not be possible.
 259                 */
 260                goto no_kmmio;
 261        }
 262
 263        ctx = this_cpu_ptr(&kmmio_ctx);
 264        if (ctx->active) {
 265                if (page_base == ctx->addr) {
 266                        /*
 267                         * A second fault on the same page means some other
 268                         * condition needs handling by do_page_fault(), the
 269                         * page really not being present is the most common.
 270                         */
 271                        pr_debug("secondary hit for 0x%08lx CPU %d.\n",
 272                                 addr, smp_processor_id());
 273
 274                        if (!faultpage->old_presence)
 275                                pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
 276                                        addr, smp_processor_id());
 277                } else {
 278                        /*
 279                         * Prevent overwriting already in-flight context.
 280                         * This should not happen, let's hope disarming at
 281                         * least prevents a panic.
 282                         */
 283                        pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
 284                                 smp_processor_id(), addr);
 285                        pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
 286                        disarm_kmmio_fault_page(faultpage);
 287                }
 288                goto no_kmmio;
 289        }
 290        ctx->active++;
 291
 292        ctx->fpage = faultpage;
 293        ctx->probe = get_kmmio_probe(page_base);
 294        ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 295        ctx->addr = page_base;
 296
 297        if (ctx->probe && ctx->probe->pre_handler)
 298                ctx->probe->pre_handler(ctx->probe, regs, addr);
 299
 300        /*
 301         * Enable single-stepping and disable interrupts for the faulting
 302         * context. Local interrupts must not get enabled during stepping.
 303         */
 304        regs->flags |= X86_EFLAGS_TF;
 305        regs->flags &= ~X86_EFLAGS_IF;
 306
 307        /* Now we set present bit in PTE and single step. */
 308        disarm_kmmio_fault_page(ctx->fpage);
 309
 310        /*
 311         * If another cpu accesses the same page while we are stepping,
 312         * the access will not be caught. It will simply succeed and the
 313         * only downside is we lose the event. If this becomes a problem,
 314         * the user should drop to single cpu before tracing.
 315         */
 316
 317        return 1; /* fault handled */
 318
 319no_kmmio:
 320        rcu_read_unlock();
 321        preempt_enable_no_resched();
 322        return ret;
 323}
 324
 325/*
 326 * Interrupts are disabled on entry as trap1 is an interrupt gate
 327 * and they remain disabled throughout this function.
 328 * This must always get called as the pair to kmmio_handler().
 329 */
 330static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
 331{
 332        int ret = 0;
 333        struct kmmio_context *ctx = this_cpu_ptr(&kmmio_ctx);
 334
 335        if (!ctx->active) {
 336                /*
 337                 * debug traps without an active context are due to either
 338                 * something external causing them (f.e. using a debugger while
 339                 * mmio tracing enabled), or erroneous behaviour
 340                 */
 341                pr_warn("unexpected debug trap on CPU %d.\n", smp_processor_id());
 342                goto out;
 343        }
 344
 345        if (ctx->probe && ctx->probe->post_handler)
 346                ctx->probe->post_handler(ctx->probe, condition, regs);
 347
 348        /* Prevent racing against release_kmmio_fault_page(). */
 349        spin_lock(&kmmio_lock);
 350        if (ctx->fpage->count)
 351                arm_kmmio_fault_page(ctx->fpage);
 352        spin_unlock(&kmmio_lock);
 353
 354        regs->flags &= ~X86_EFLAGS_TF;
 355        regs->flags |= ctx->saved_flags;
 356
 357        /* These were acquired in kmmio_handler(). */
 358        ctx->active--;
 359        BUG_ON(ctx->active);
 360        rcu_read_unlock();
 361        preempt_enable_no_resched();
 362
 363        /*
 364         * if somebody else is singlestepping across a probe point, flags
 365         * will have TF set, in which case, continue the remaining processing
 366         * of do_debug, as if this is not a probe hit.
 367         */
 368        if (!(regs->flags & X86_EFLAGS_TF))
 369                ret = 1;
 370out:
 371        return ret;
 372}
 373
 374/* You must be holding kmmio_lock. */
 375static int add_kmmio_fault_page(unsigned long addr)
 376{
 377        struct kmmio_fault_page *f;
 378
 379        f = get_kmmio_fault_page(addr);
 380        if (f) {
 381                if (!f->count)
 382                        arm_kmmio_fault_page(f);
 383                f->count++;
 384                return 0;
 385        }
 386
 387        f = kzalloc(sizeof(*f), GFP_ATOMIC);
 388        if (!f)
 389                return -1;
 390
 391        f->count = 1;
 392        f->addr = addr;
 393
 394        if (arm_kmmio_fault_page(f)) {
 395                kfree(f);
 396                return -1;
 397        }
 398
 399        list_add_rcu(&f->list, kmmio_page_list(f->addr));
 400
 401        return 0;
 402}
 403
 404/* You must be holding kmmio_lock. */
 405static void release_kmmio_fault_page(unsigned long addr,
 406                                struct kmmio_fault_page **release_list)
 407{
 408        struct kmmio_fault_page *f;
 409
 410        f = get_kmmio_fault_page(addr);
 411        if (!f)
 412                return;
 413
 414        f->count--;
 415        BUG_ON(f->count < 0);
 416        if (!f->count) {
 417                disarm_kmmio_fault_page(f);
 418                if (!f->scheduled_for_release) {
 419                        f->release_next = *release_list;
 420                        *release_list = f;
 421                        f->scheduled_for_release = true;
 422                }
 423        }
 424}
 425
 426/*
 427 * With page-unaligned ioremaps, one or two armed pages may contain
 428 * addresses from outside the intended mapping. Events for these addresses
 429 * are currently silently dropped. The events may result only from programming
 430 * mistakes by accessing addresses before the beginning or past the end of a
 431 * mapping.
 432 */
 433int register_kmmio_probe(struct kmmio_probe *p)
 434{
 435        unsigned long flags;
 436        int ret = 0;
 437        unsigned long size = 0;
 438        unsigned long addr = p->addr & PAGE_MASK;
 439        const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 440        unsigned int l;
 441        pte_t *pte;
 442
 443        spin_lock_irqsave(&kmmio_lock, flags);
 444        if (get_kmmio_probe(addr)) {
 445                ret = -EEXIST;
 446                goto out;
 447        }
 448
 449        pte = lookup_address(addr, &l);
 450        if (!pte) {
 451                ret = -EINVAL;
 452                goto out;
 453        }
 454
 455        kmmio_count++;
 456        list_add_rcu(&p->list, &kmmio_probes);
 457        while (size < size_lim) {
 458                if (add_kmmio_fault_page(addr + size))
 459                        pr_err("Unable to set page fault.\n");
 460                size += page_level_size(l);
 461        }
 462out:
 463        spin_unlock_irqrestore(&kmmio_lock, flags);
 464        /*
 465         * XXX: What should I do here?
 466         * Here was a call to global_flush_tlb(), but it does not exist
 467         * anymore. It seems it's not needed after all.
 468         */
 469        return ret;
 470}
 471EXPORT_SYMBOL(register_kmmio_probe);
 472
 473static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
 474{
 475        struct kmmio_delayed_release *dr = container_of(
 476                                                head,
 477                                                struct kmmio_delayed_release,
 478                                                rcu);
 479        struct kmmio_fault_page *f = dr->release_list;
 480        while (f) {
 481                struct kmmio_fault_page *next = f->release_next;
 482                BUG_ON(f->count);
 483                kfree(f);
 484                f = next;
 485        }
 486        kfree(dr);
 487}
 488
 489static void remove_kmmio_fault_pages(struct rcu_head *head)
 490{
 491        struct kmmio_delayed_release *dr =
 492                container_of(head, struct kmmio_delayed_release, rcu);
 493        struct kmmio_fault_page *f = dr->release_list;
 494        struct kmmio_fault_page **prevp = &dr->release_list;
 495        unsigned long flags;
 496
 497        spin_lock_irqsave(&kmmio_lock, flags);
 498        while (f) {
 499                if (!f->count) {
 500                        list_del_rcu(&f->list);
 501                        prevp = &f->release_next;
 502                } else {
 503                        *prevp = f->release_next;
 504                        f->release_next = NULL;
 505                        f->scheduled_for_release = false;
 506                }
 507                f = *prevp;
 508        }
 509        spin_unlock_irqrestore(&kmmio_lock, flags);
 510
 511        /* This is the real RCU destroy call. */
 512        call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
 513}
 514
 515/*
 516 * Remove a kmmio probe. You have to synchronize_rcu() before you can be
 517 * sure that the callbacks will not be called anymore. Only after that
 518 * you may actually release your struct kmmio_probe.
 519 *
 520 * Unregistering a kmmio fault page has three steps:
 521 * 1. release_kmmio_fault_page()
 522 *    Disarm the page, wait a grace period to let all faults finish.
 523 * 2. remove_kmmio_fault_pages()
 524 *    Remove the pages from kmmio_page_table.
 525 * 3. rcu_free_kmmio_fault_pages()
 526 *    Actually free the kmmio_fault_page structs as with RCU.
 527 */
 528void unregister_kmmio_probe(struct kmmio_probe *p)
 529{
 530        unsigned long flags;
 531        unsigned long size = 0;
 532        unsigned long addr = p->addr & PAGE_MASK;
 533        const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 534        struct kmmio_fault_page *release_list = NULL;
 535        struct kmmio_delayed_release *drelease;
 536        unsigned int l;
 537        pte_t *pte;
 538
 539        pte = lookup_address(addr, &l);
 540        if (!pte)
 541                return;
 542
 543        spin_lock_irqsave(&kmmio_lock, flags);
 544        while (size < size_lim) {
 545                release_kmmio_fault_page(addr + size, &release_list);
 546                size += page_level_size(l);
 547        }
 548        list_del_rcu(&p->list);
 549        kmmio_count--;
 550        spin_unlock_irqrestore(&kmmio_lock, flags);
 551
 552        if (!release_list)
 553                return;
 554
 555        drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
 556        if (!drelease) {
 557                pr_crit("leaking kmmio_fault_page objects.\n");
 558                return;
 559        }
 560        drelease->release_list = release_list;
 561
 562        /*
 563         * This is not really RCU here. We have just disarmed a set of
 564         * pages so that they cannot trigger page faults anymore. However,
 565         * we cannot remove the pages from kmmio_page_table,
 566         * because a probe hit might be in flight on another CPU. The
 567         * pages are collected into a list, and they will be removed from
 568         * kmmio_page_table when it is certain that no probe hit related to
 569         * these pages can be in flight. RCU grace period sounds like a
 570         * good choice.
 571         *
 572         * If we removed the pages too early, kmmio page fault handler might
 573         * not find the respective kmmio_fault_page and determine it's not
 574         * a kmmio fault, when it actually is. This would lead to madness.
 575         */
 576        call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
 577}
 578EXPORT_SYMBOL(unregister_kmmio_probe);
 579
 580static int
 581kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
 582{
 583        struct die_args *arg = args;
 584        unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
 585
 586        if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
 587                if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
 588                        /*
 589                         * Reset the BS bit in dr6 (pointed by args->err) to
 590                         * denote completion of processing
 591                         */
 592                        *dr6_p &= ~DR_STEP;
 593                        return NOTIFY_STOP;
 594                }
 595
 596        return NOTIFY_DONE;
 597}
 598
 599static struct notifier_block nb_die = {
 600        .notifier_call = kmmio_die_notifier
 601};
 602
 603int kmmio_init(void)
 604{
 605        int i;
 606
 607        for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
 608                INIT_LIST_HEAD(&kmmio_page_table[i]);
 609
 610        return register_die_notifier(&nb_die);
 611}
 612
 613void kmmio_cleanup(void)
 614{
 615        int i;
 616
 617        unregister_die_notifier(&nb_die);
 618        for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
 619                WARN_ONCE(!list_empty(&kmmio_page_table[i]),
 620                        KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
 621        }
 622}
 623