linux/arch/x86/mm/mem_encrypt_identity.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * AMD Memory Encryption Support
   4 *
   5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
   6 *
   7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
   8 */
   9
  10#define DISABLE_BRANCH_PROFILING
  11
  12/*
  13 * Since we're dealing with identity mappings, physical and virtual
  14 * addresses are the same, so override these defines which are ultimately
  15 * used by the headers in misc.h.
  16 */
  17#define __pa(x)  ((unsigned long)(x))
  18#define __va(x)  ((void *)((unsigned long)(x)))
  19
  20/*
  21 * Special hack: we have to be careful, because no indirections are
  22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
  23 * baremetal anyway, we just keep it from happening. (This list needs to
  24 * be extended when new paravirt and debugging variants are added.)
  25 */
  26#undef CONFIG_PARAVIRT
  27#undef CONFIG_PARAVIRT_XXL
  28#undef CONFIG_PARAVIRT_SPINLOCKS
  29
  30#include <linux/kernel.h>
  31#include <linux/mm.h>
  32#include <linux/mem_encrypt.h>
  33
  34#include <asm/setup.h>
  35#include <asm/sections.h>
  36#include <asm/cmdline.h>
  37
  38#include "mm_internal.h"
  39
  40#define PGD_FLAGS               _KERNPG_TABLE_NOENC
  41#define P4D_FLAGS               _KERNPG_TABLE_NOENC
  42#define PUD_FLAGS               _KERNPG_TABLE_NOENC
  43#define PMD_FLAGS               _KERNPG_TABLE_NOENC
  44
  45#define PMD_FLAGS_LARGE         (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
  46
  47#define PMD_FLAGS_DEC           PMD_FLAGS_LARGE
  48#define PMD_FLAGS_DEC_WP        ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
  49                                 (_PAGE_PAT_LARGE | _PAGE_PWT))
  50
  51#define PMD_FLAGS_ENC           (PMD_FLAGS_LARGE | _PAGE_ENC)
  52
  53#define PTE_FLAGS               (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
  54
  55#define PTE_FLAGS_DEC           PTE_FLAGS
  56#define PTE_FLAGS_DEC_WP        ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
  57                                 (_PAGE_PAT | _PAGE_PWT))
  58
  59#define PTE_FLAGS_ENC           (PTE_FLAGS | _PAGE_ENC)
  60
  61struct sme_populate_pgd_data {
  62        void    *pgtable_area;
  63        pgd_t   *pgd;
  64
  65        pmdval_t pmd_flags;
  66        pteval_t pte_flags;
  67        unsigned long paddr;
  68
  69        unsigned long vaddr;
  70        unsigned long vaddr_end;
  71};
  72
  73/*
  74 * This work area lives in the .init.scratch section, which lives outside of
  75 * the kernel proper. It is sized to hold the intermediate copy buffer and
  76 * more than enough pagetable pages.
  77 *
  78 * By using this section, the kernel can be encrypted in place and it
  79 * avoids any possibility of boot parameters or initramfs images being
  80 * placed such that the in-place encryption logic overwrites them.  This
  81 * section is 2MB aligned to allow for simple pagetable setup using only
  82 * PMD entries (see vmlinux.lds.S).
  83 */
  84static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");
  85
  86static char sme_cmdline_arg[] __initdata = "mem_encrypt";
  87static char sme_cmdline_on[]  __initdata = "on";
  88static char sme_cmdline_off[] __initdata = "off";
  89
  90static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
  91{
  92        unsigned long pgd_start, pgd_end, pgd_size;
  93        pgd_t *pgd_p;
  94
  95        pgd_start = ppd->vaddr & PGDIR_MASK;
  96        pgd_end = ppd->vaddr_end & PGDIR_MASK;
  97
  98        pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
  99
 100        pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
 101
 102        memset(pgd_p, 0, pgd_size);
 103}
 104
 105static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
 106{
 107        pgd_t *pgd;
 108        p4d_t *p4d;
 109        pud_t *pud;
 110        pmd_t *pmd;
 111
 112        pgd = ppd->pgd + pgd_index(ppd->vaddr);
 113        if (pgd_none(*pgd)) {
 114                p4d = ppd->pgtable_area;
 115                memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
 116                ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
 117                set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
 118        }
 119
 120        p4d = p4d_offset(pgd, ppd->vaddr);
 121        if (p4d_none(*p4d)) {
 122                pud = ppd->pgtable_area;
 123                memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
 124                ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
 125                set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
 126        }
 127
 128        pud = pud_offset(p4d, ppd->vaddr);
 129        if (pud_none(*pud)) {
 130                pmd = ppd->pgtable_area;
 131                memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
 132                ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
 133                set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
 134        }
 135
 136        if (pud_large(*pud))
 137                return NULL;
 138
 139        return pud;
 140}
 141
 142static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
 143{
 144        pud_t *pud;
 145        pmd_t *pmd;
 146
 147        pud = sme_prepare_pgd(ppd);
 148        if (!pud)
 149                return;
 150
 151        pmd = pmd_offset(pud, ppd->vaddr);
 152        if (pmd_large(*pmd))
 153                return;
 154
 155        set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
 156}
 157
 158static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
 159{
 160        pud_t *pud;
 161        pmd_t *pmd;
 162        pte_t *pte;
 163
 164        pud = sme_prepare_pgd(ppd);
 165        if (!pud)
 166                return;
 167
 168        pmd = pmd_offset(pud, ppd->vaddr);
 169        if (pmd_none(*pmd)) {
 170                pte = ppd->pgtable_area;
 171                memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
 172                ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
 173                set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
 174        }
 175
 176        if (pmd_large(*pmd))
 177                return;
 178
 179        pte = pte_offset_map(pmd, ppd->vaddr);
 180        if (pte_none(*pte))
 181                set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
 182}
 183
 184static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
 185{
 186        while (ppd->vaddr < ppd->vaddr_end) {
 187                sme_populate_pgd_large(ppd);
 188
 189                ppd->vaddr += PMD_PAGE_SIZE;
 190                ppd->paddr += PMD_PAGE_SIZE;
 191        }
 192}
 193
 194static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
 195{
 196        while (ppd->vaddr < ppd->vaddr_end) {
 197                sme_populate_pgd(ppd);
 198
 199                ppd->vaddr += PAGE_SIZE;
 200                ppd->paddr += PAGE_SIZE;
 201        }
 202}
 203
 204static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
 205                                   pmdval_t pmd_flags, pteval_t pte_flags)
 206{
 207        unsigned long vaddr_end;
 208
 209        ppd->pmd_flags = pmd_flags;
 210        ppd->pte_flags = pte_flags;
 211
 212        /* Save original end value since we modify the struct value */
 213        vaddr_end = ppd->vaddr_end;
 214
 215        /* If start is not 2MB aligned, create PTE entries */
 216        ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
 217        __sme_map_range_pte(ppd);
 218
 219        /* Create PMD entries */
 220        ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
 221        __sme_map_range_pmd(ppd);
 222
 223        /* If end is not 2MB aligned, create PTE entries */
 224        ppd->vaddr_end = vaddr_end;
 225        __sme_map_range_pte(ppd);
 226}
 227
 228static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
 229{
 230        __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
 231}
 232
 233static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
 234{
 235        __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
 236}
 237
 238static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
 239{
 240        __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
 241}
 242
 243static unsigned long __init sme_pgtable_calc(unsigned long len)
 244{
 245        unsigned long entries = 0, tables = 0;
 246
 247        /*
 248         * Perform a relatively simplistic calculation of the pagetable
 249         * entries that are needed. Those mappings will be covered mostly
 250         * by 2MB PMD entries so we can conservatively calculate the required
 251         * number of P4D, PUD and PMD structures needed to perform the
 252         * mappings.  For mappings that are not 2MB aligned, PTE mappings
 253         * would be needed for the start and end portion of the address range
 254         * that fall outside of the 2MB alignment.  This results in, at most,
 255         * two extra pages to hold PTE entries for each range that is mapped.
 256         * Incrementing the count for each covers the case where the addresses
 257         * cross entries.
 258         */
 259
 260        /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
 261        if (PTRS_PER_P4D > 1)
 262                entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
 263        entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
 264        entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
 265        entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
 266
 267        /*
 268         * Now calculate the added pagetable structures needed to populate
 269         * the new pagetables.
 270         */
 271
 272        if (PTRS_PER_P4D > 1)
 273                tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
 274        tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
 275        tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
 276
 277        return entries + tables;
 278}
 279
 280void __init sme_encrypt_kernel(struct boot_params *bp)
 281{
 282        unsigned long workarea_start, workarea_end, workarea_len;
 283        unsigned long execute_start, execute_end, execute_len;
 284        unsigned long kernel_start, kernel_end, kernel_len;
 285        unsigned long initrd_start, initrd_end, initrd_len;
 286        struct sme_populate_pgd_data ppd;
 287        unsigned long pgtable_area_len;
 288        unsigned long decrypted_base;
 289
 290        if (!sme_active())
 291                return;
 292
 293        /*
 294         * Prepare for encrypting the kernel and initrd by building new
 295         * pagetables with the necessary attributes needed to encrypt the
 296         * kernel in place.
 297         *
 298         *   One range of virtual addresses will map the memory occupied
 299         *   by the kernel and initrd as encrypted.
 300         *
 301         *   Another range of virtual addresses will map the memory occupied
 302         *   by the kernel and initrd as decrypted and write-protected.
 303         *
 304         *     The use of write-protect attribute will prevent any of the
 305         *     memory from being cached.
 306         */
 307
 308        /* Physical addresses gives us the identity mapped virtual addresses */
 309        kernel_start = __pa_symbol(_text);
 310        kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
 311        kernel_len = kernel_end - kernel_start;
 312
 313        initrd_start = 0;
 314        initrd_end = 0;
 315        initrd_len = 0;
 316#ifdef CONFIG_BLK_DEV_INITRD
 317        initrd_len = (unsigned long)bp->hdr.ramdisk_size |
 318                     ((unsigned long)bp->ext_ramdisk_size << 32);
 319        if (initrd_len) {
 320                initrd_start = (unsigned long)bp->hdr.ramdisk_image |
 321                               ((unsigned long)bp->ext_ramdisk_image << 32);
 322                initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
 323                initrd_len = initrd_end - initrd_start;
 324        }
 325#endif
 326
 327        /*
 328         * We're running identity mapped, so we must obtain the address to the
 329         * SME encryption workarea using rip-relative addressing.
 330         */
 331        asm ("lea sme_workarea(%%rip), %0"
 332             : "=r" (workarea_start)
 333             : "p" (sme_workarea));
 334
 335        /*
 336         * Calculate required number of workarea bytes needed:
 337         *   executable encryption area size:
 338         *     stack page (PAGE_SIZE)
 339         *     encryption routine page (PAGE_SIZE)
 340         *     intermediate copy buffer (PMD_PAGE_SIZE)
 341         *   pagetable structures for the encryption of the kernel
 342         *   pagetable structures for workarea (in case not currently mapped)
 343         */
 344        execute_start = workarea_start;
 345        execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
 346        execute_len = execute_end - execute_start;
 347
 348        /*
 349         * One PGD for both encrypted and decrypted mappings and a set of
 350         * PUDs and PMDs for each of the encrypted and decrypted mappings.
 351         */
 352        pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
 353        pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
 354        if (initrd_len)
 355                pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
 356
 357        /* PUDs and PMDs needed in the current pagetables for the workarea */
 358        pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
 359
 360        /*
 361         * The total workarea includes the executable encryption area and
 362         * the pagetable area. The start of the workarea is already 2MB
 363         * aligned, align the end of the workarea on a 2MB boundary so that
 364         * we don't try to create/allocate PTE entries from the workarea
 365         * before it is mapped.
 366         */
 367        workarea_len = execute_len + pgtable_area_len;
 368        workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
 369
 370        /*
 371         * Set the address to the start of where newly created pagetable
 372         * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
 373         * structures are created when the workarea is added to the current
 374         * pagetables and when the new encrypted and decrypted kernel
 375         * mappings are populated.
 376         */
 377        ppd.pgtable_area = (void *)execute_end;
 378
 379        /*
 380         * Make sure the current pagetable structure has entries for
 381         * addressing the workarea.
 382         */
 383        ppd.pgd = (pgd_t *)native_read_cr3_pa();
 384        ppd.paddr = workarea_start;
 385        ppd.vaddr = workarea_start;
 386        ppd.vaddr_end = workarea_end;
 387        sme_map_range_decrypted(&ppd);
 388
 389        /* Flush the TLB - no globals so cr3 is enough */
 390        native_write_cr3(__native_read_cr3());
 391
 392        /*
 393         * A new pagetable structure is being built to allow for the kernel
 394         * and initrd to be encrypted. It starts with an empty PGD that will
 395         * then be populated with new PUDs and PMDs as the encrypted and
 396         * decrypted kernel mappings are created.
 397         */
 398        ppd.pgd = ppd.pgtable_area;
 399        memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
 400        ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
 401
 402        /*
 403         * A different PGD index/entry must be used to get different
 404         * pagetable entries for the decrypted mapping. Choose the next
 405         * PGD index and convert it to a virtual address to be used as
 406         * the base of the mapping.
 407         */
 408        decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
 409        if (initrd_len) {
 410                unsigned long check_base;
 411
 412                check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
 413                decrypted_base = max(decrypted_base, check_base);
 414        }
 415        decrypted_base <<= PGDIR_SHIFT;
 416
 417        /* Add encrypted kernel (identity) mappings */
 418        ppd.paddr = kernel_start;
 419        ppd.vaddr = kernel_start;
 420        ppd.vaddr_end = kernel_end;
 421        sme_map_range_encrypted(&ppd);
 422
 423        /* Add decrypted, write-protected kernel (non-identity) mappings */
 424        ppd.paddr = kernel_start;
 425        ppd.vaddr = kernel_start + decrypted_base;
 426        ppd.vaddr_end = kernel_end + decrypted_base;
 427        sme_map_range_decrypted_wp(&ppd);
 428
 429        if (initrd_len) {
 430                /* Add encrypted initrd (identity) mappings */
 431                ppd.paddr = initrd_start;
 432                ppd.vaddr = initrd_start;
 433                ppd.vaddr_end = initrd_end;
 434                sme_map_range_encrypted(&ppd);
 435                /*
 436                 * Add decrypted, write-protected initrd (non-identity) mappings
 437                 */
 438                ppd.paddr = initrd_start;
 439                ppd.vaddr = initrd_start + decrypted_base;
 440                ppd.vaddr_end = initrd_end + decrypted_base;
 441                sme_map_range_decrypted_wp(&ppd);
 442        }
 443
 444        /* Add decrypted workarea mappings to both kernel mappings */
 445        ppd.paddr = workarea_start;
 446        ppd.vaddr = workarea_start;
 447        ppd.vaddr_end = workarea_end;
 448        sme_map_range_decrypted(&ppd);
 449
 450        ppd.paddr = workarea_start;
 451        ppd.vaddr = workarea_start + decrypted_base;
 452        ppd.vaddr_end = workarea_end + decrypted_base;
 453        sme_map_range_decrypted(&ppd);
 454
 455        /* Perform the encryption */
 456        sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
 457                            kernel_len, workarea_start, (unsigned long)ppd.pgd);
 458
 459        if (initrd_len)
 460                sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
 461                                    initrd_len, workarea_start,
 462                                    (unsigned long)ppd.pgd);
 463
 464        /*
 465         * At this point we are running encrypted.  Remove the mappings for
 466         * the decrypted areas - all that is needed for this is to remove
 467         * the PGD entry/entries.
 468         */
 469        ppd.vaddr = kernel_start + decrypted_base;
 470        ppd.vaddr_end = kernel_end + decrypted_base;
 471        sme_clear_pgd(&ppd);
 472
 473        if (initrd_len) {
 474                ppd.vaddr = initrd_start + decrypted_base;
 475                ppd.vaddr_end = initrd_end + decrypted_base;
 476                sme_clear_pgd(&ppd);
 477        }
 478
 479        ppd.vaddr = workarea_start + decrypted_base;
 480        ppd.vaddr_end = workarea_end + decrypted_base;
 481        sme_clear_pgd(&ppd);
 482
 483        /* Flush the TLB - no globals so cr3 is enough */
 484        native_write_cr3(__native_read_cr3());
 485}
 486
 487void __init sme_enable(struct boot_params *bp)
 488{
 489        const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
 490        unsigned int eax, ebx, ecx, edx;
 491        unsigned long feature_mask;
 492        bool active_by_default;
 493        unsigned long me_mask;
 494        char buffer[16];
 495        u64 msr;
 496
 497        /* Check for the SME/SEV support leaf */
 498        eax = 0x80000000;
 499        ecx = 0;
 500        native_cpuid(&eax, &ebx, &ecx, &edx);
 501        if (eax < 0x8000001f)
 502                return;
 503
 504#define AMD_SME_BIT     BIT(0)
 505#define AMD_SEV_BIT     BIT(1)
 506
 507        /*
 508         * Check for the SME/SEV feature:
 509         *   CPUID Fn8000_001F[EAX]
 510         *   - Bit 0 - Secure Memory Encryption support
 511         *   - Bit 1 - Secure Encrypted Virtualization support
 512         *   CPUID Fn8000_001F[EBX]
 513         *   - Bits 5:0 - Pagetable bit position used to indicate encryption
 514         */
 515        eax = 0x8000001f;
 516        ecx = 0;
 517        native_cpuid(&eax, &ebx, &ecx, &edx);
 518        /* Check whether SEV or SME is supported */
 519        if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
 520                return;
 521
 522        me_mask = 1UL << (ebx & 0x3f);
 523
 524        /* Check the SEV MSR whether SEV or SME is enabled */
 525        sev_status   = __rdmsr(MSR_AMD64_SEV);
 526        feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
 527
 528        /* Check if memory encryption is enabled */
 529        if (feature_mask == AMD_SME_BIT) {
 530                /*
 531                 * No SME if Hypervisor bit is set. This check is here to
 532                 * prevent a guest from trying to enable SME. For running as a
 533                 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
 534                 * might be other hypervisors which emulate that MSR as non-zero
 535                 * or even pass it through to the guest.
 536                 * A malicious hypervisor can still trick a guest into this
 537                 * path, but there is no way to protect against that.
 538                 */
 539                eax = 1;
 540                ecx = 0;
 541                native_cpuid(&eax, &ebx, &ecx, &edx);
 542                if (ecx & BIT(31))
 543                        return;
 544
 545                /* For SME, check the SYSCFG MSR */
 546                msr = __rdmsr(MSR_AMD64_SYSCFG);
 547                if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
 548                        return;
 549        } else {
 550                /* SEV state cannot be controlled by a command line option */
 551                sme_me_mask = me_mask;
 552                physical_mask &= ~sme_me_mask;
 553                return;
 554        }
 555
 556        /*
 557         * Fixups have not been applied to phys_base yet and we're running
 558         * identity mapped, so we must obtain the address to the SME command
 559         * line argument data using rip-relative addressing.
 560         */
 561        asm ("lea sme_cmdline_arg(%%rip), %0"
 562             : "=r" (cmdline_arg)
 563             : "p" (sme_cmdline_arg));
 564        asm ("lea sme_cmdline_on(%%rip), %0"
 565             : "=r" (cmdline_on)
 566             : "p" (sme_cmdline_on));
 567        asm ("lea sme_cmdline_off(%%rip), %0"
 568             : "=r" (cmdline_off)
 569             : "p" (sme_cmdline_off));
 570
 571        if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
 572                active_by_default = true;
 573        else
 574                active_by_default = false;
 575
 576        cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
 577                                     ((u64)bp->ext_cmd_line_ptr << 32));
 578
 579        cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
 580
 581        if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
 582                sme_me_mask = me_mask;
 583        else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
 584                sme_me_mask = 0;
 585        else
 586                sme_me_mask = active_by_default ? me_mask : 0;
 587
 588        physical_mask &= ~sme_me_mask;
 589}
 590