linux/arch/x86/platform/efi/quirks.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "efi: " fmt
   3
   4#include <linux/init.h>
   5#include <linux/kernel.h>
   6#include <linux/string.h>
   7#include <linux/time.h>
   8#include <linux/types.h>
   9#include <linux/efi.h>
  10#include <linux/slab.h>
  11#include <linux/memblock.h>
  12#include <linux/acpi.h>
  13#include <linux/dmi.h>
  14
  15#include <asm/e820/api.h>
  16#include <asm/efi.h>
  17#include <asm/uv/uv.h>
  18#include <asm/cpu_device_id.h>
  19#include <asm/realmode.h>
  20#include <asm/reboot.h>
  21
  22#define EFI_MIN_RESERVE 5120
  23
  24#define EFI_DUMMY_GUID \
  25        EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
  26
  27#define QUARK_CSH_SIGNATURE             0x5f435348      /* _CSH */
  28#define QUARK_SECURITY_HEADER_SIZE      0x400
  29
  30/*
  31 * Header prepended to the standard EFI capsule on Quark systems the are based
  32 * on Intel firmware BSP.
  33 * @csh_signature:      Unique identifier to sanity check signed module
  34 *                      presence ("_CSH").
  35 * @version:            Current version of CSH used. Should be one for Quark A0.
  36 * @modulesize:         Size of the entire module including the module header
  37 *                      and payload.
  38 * @security_version_number_index: Index of SVN to use for validation of signed
  39 *                      module.
  40 * @security_version_number: Used to prevent against roll back of modules.
  41 * @rsvd_module_id:     Currently unused for Clanton (Quark).
  42 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is
  43 *                      0x00008086.
  44 * @rsvd_date:          BCD representation of build date as yyyymmdd, where
  45 *                      yyyy=4 digit year, mm=1-12, dd=1-31.
  46 * @headersize:         Total length of the header including including any
  47 *                      padding optionally added by the signing tool.
  48 * @hash_algo:          What Hash is used in the module signing.
  49 * @cryp_algo:          What Crypto is used in the module signing.
  50 * @keysize:            Total length of the key data including including any
  51 *                      padding optionally added by the signing tool.
  52 * @signaturesize:      Total length of the signature including including any
  53 *                      padding optionally added by the signing tool.
  54 * @rsvd_next_header:   32-bit pointer to the next Secure Boot Module in the
  55 *                      chain, if there is a next header.
  56 * @rsvd:               Reserved, padding structure to required size.
  57 *
  58 * See also QuartSecurityHeader_t in
  59 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
  60 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
  61 */
  62struct quark_security_header {
  63        u32 csh_signature;
  64        u32 version;
  65        u32 modulesize;
  66        u32 security_version_number_index;
  67        u32 security_version_number;
  68        u32 rsvd_module_id;
  69        u32 rsvd_module_vendor;
  70        u32 rsvd_date;
  71        u32 headersize;
  72        u32 hash_algo;
  73        u32 cryp_algo;
  74        u32 keysize;
  75        u32 signaturesize;
  76        u32 rsvd_next_header;
  77        u32 rsvd[2];
  78};
  79
  80static const efi_char16_t efi_dummy_name[] = L"DUMMY";
  81
  82static bool efi_no_storage_paranoia;
  83
  84/*
  85 * Some firmware implementations refuse to boot if there's insufficient
  86 * space in the variable store. The implementation of garbage collection
  87 * in some FW versions causes stale (deleted) variables to take up space
  88 * longer than intended and space is only freed once the store becomes
  89 * almost completely full.
  90 *
  91 * Enabling this option disables the space checks in
  92 * efi_query_variable_store() and forces garbage collection.
  93 *
  94 * Only enable this option if deleting EFI variables does not free up
  95 * space in your variable store, e.g. if despite deleting variables
  96 * you're unable to create new ones.
  97 */
  98static int __init setup_storage_paranoia(char *arg)
  99{
 100        efi_no_storage_paranoia = true;
 101        return 0;
 102}
 103early_param("efi_no_storage_paranoia", setup_storage_paranoia);
 104
 105/*
 106 * Deleting the dummy variable which kicks off garbage collection
 107*/
 108void efi_delete_dummy_variable(void)
 109{
 110        efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
 111                                     &EFI_DUMMY_GUID,
 112                                     EFI_VARIABLE_NON_VOLATILE |
 113                                     EFI_VARIABLE_BOOTSERVICE_ACCESS |
 114                                     EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
 115}
 116
 117/*
 118 * In the nonblocking case we do not attempt to perform garbage
 119 * collection if we do not have enough free space. Rather, we do the
 120 * bare minimum check and give up immediately if the available space
 121 * is below EFI_MIN_RESERVE.
 122 *
 123 * This function is intended to be small and simple because it is
 124 * invoked from crash handler paths.
 125 */
 126static efi_status_t
 127query_variable_store_nonblocking(u32 attributes, unsigned long size)
 128{
 129        efi_status_t status;
 130        u64 storage_size, remaining_size, max_size;
 131
 132        status = efi.query_variable_info_nonblocking(attributes, &storage_size,
 133                                                     &remaining_size,
 134                                                     &max_size);
 135        if (status != EFI_SUCCESS)
 136                return status;
 137
 138        if (remaining_size - size < EFI_MIN_RESERVE)
 139                return EFI_OUT_OF_RESOURCES;
 140
 141        return EFI_SUCCESS;
 142}
 143
 144/*
 145 * Some firmware implementations refuse to boot if there's insufficient space
 146 * in the variable store. Ensure that we never use more than a safe limit.
 147 *
 148 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
 149 * store.
 150 */
 151efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
 152                                      bool nonblocking)
 153{
 154        efi_status_t status;
 155        u64 storage_size, remaining_size, max_size;
 156
 157        if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
 158                return 0;
 159
 160        if (nonblocking)
 161                return query_variable_store_nonblocking(attributes, size);
 162
 163        status = efi.query_variable_info(attributes, &storage_size,
 164                                         &remaining_size, &max_size);
 165        if (status != EFI_SUCCESS)
 166                return status;
 167
 168        /*
 169         * We account for that by refusing the write if permitting it would
 170         * reduce the available space to under 5KB. This figure was provided by
 171         * Samsung, so should be safe.
 172         */
 173        if ((remaining_size - size < EFI_MIN_RESERVE) &&
 174                !efi_no_storage_paranoia) {
 175
 176                /*
 177                 * Triggering garbage collection may require that the firmware
 178                 * generate a real EFI_OUT_OF_RESOURCES error. We can force
 179                 * that by attempting to use more space than is available.
 180                 */
 181                unsigned long dummy_size = remaining_size + 1024;
 182                void *dummy = kzalloc(dummy_size, GFP_KERNEL);
 183
 184                if (!dummy)
 185                        return EFI_OUT_OF_RESOURCES;
 186
 187                status = efi.set_variable((efi_char16_t *)efi_dummy_name,
 188                                          &EFI_DUMMY_GUID,
 189                                          EFI_VARIABLE_NON_VOLATILE |
 190                                          EFI_VARIABLE_BOOTSERVICE_ACCESS |
 191                                          EFI_VARIABLE_RUNTIME_ACCESS,
 192                                          dummy_size, dummy);
 193
 194                if (status == EFI_SUCCESS) {
 195                        /*
 196                         * This should have failed, so if it didn't make sure
 197                         * that we delete it...
 198                         */
 199                        efi_delete_dummy_variable();
 200                }
 201
 202                kfree(dummy);
 203
 204                /*
 205                 * The runtime code may now have triggered a garbage collection
 206                 * run, so check the variable info again
 207                 */
 208                status = efi.query_variable_info(attributes, &storage_size,
 209                                                 &remaining_size, &max_size);
 210
 211                if (status != EFI_SUCCESS)
 212                        return status;
 213
 214                /*
 215                 * There still isn't enough room, so return an error
 216                 */
 217                if (remaining_size - size < EFI_MIN_RESERVE)
 218                        return EFI_OUT_OF_RESOURCES;
 219        }
 220
 221        return EFI_SUCCESS;
 222}
 223EXPORT_SYMBOL_GPL(efi_query_variable_store);
 224
 225/*
 226 * The UEFI specification makes it clear that the operating system is
 227 * free to do whatever it wants with boot services code after
 228 * ExitBootServices() has been called. Ignoring this recommendation a
 229 * significant bunch of EFI implementations continue calling into boot
 230 * services code (SetVirtualAddressMap). In order to work around such
 231 * buggy implementations we reserve boot services region during EFI
 232 * init and make sure it stays executable. Then, after
 233 * SetVirtualAddressMap(), it is discarded.
 234 *
 235 * However, some boot services regions contain data that is required
 236 * by drivers, so we need to track which memory ranges can never be
 237 * freed. This is done by tagging those regions with the
 238 * EFI_MEMORY_RUNTIME attribute.
 239 *
 240 * Any driver that wants to mark a region as reserved must use
 241 * efi_mem_reserve() which will insert a new EFI memory descriptor
 242 * into efi.memmap (splitting existing regions if necessary) and tag
 243 * it with EFI_MEMORY_RUNTIME.
 244 */
 245void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
 246{
 247        struct efi_memory_map_data data = { 0 };
 248        struct efi_mem_range mr;
 249        efi_memory_desc_t md;
 250        int num_entries;
 251        void *new;
 252
 253        if (efi_mem_desc_lookup(addr, &md) ||
 254            md.type != EFI_BOOT_SERVICES_DATA) {
 255                pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
 256                return;
 257        }
 258
 259        if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
 260                pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
 261                return;
 262        }
 263
 264        size += addr % EFI_PAGE_SIZE;
 265        size = round_up(size, EFI_PAGE_SIZE);
 266        addr = round_down(addr, EFI_PAGE_SIZE);
 267
 268        mr.range.start = addr;
 269        mr.range.end = addr + size - 1;
 270        mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
 271
 272        num_entries = efi_memmap_split_count(&md, &mr.range);
 273        num_entries += efi.memmap.nr_map;
 274
 275        if (efi_memmap_alloc(num_entries, &data) != 0) {
 276                pr_err("Could not allocate boot services memmap\n");
 277                return;
 278        }
 279
 280        new = early_memremap(data.phys_map, data.size);
 281        if (!new) {
 282                pr_err("Failed to map new boot services memmap\n");
 283                return;
 284        }
 285
 286        efi_memmap_insert(&efi.memmap, new, &mr);
 287        early_memunmap(new, data.size);
 288
 289        efi_memmap_install(&data);
 290        e820__range_update(addr, size, E820_TYPE_RAM, E820_TYPE_RESERVED);
 291        e820__update_table(e820_table);
 292}
 293
 294/*
 295 * Helper function for efi_reserve_boot_services() to figure out if we
 296 * can free regions in efi_free_boot_services().
 297 *
 298 * Use this function to ensure we do not free regions owned by somebody
 299 * else. We must only reserve (and then free) regions:
 300 *
 301 * - Not within any part of the kernel
 302 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
 303 */
 304static __init bool can_free_region(u64 start, u64 size)
 305{
 306        if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
 307                return false;
 308
 309        if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
 310                return false;
 311
 312        return true;
 313}
 314
 315void __init efi_reserve_boot_services(void)
 316{
 317        efi_memory_desc_t *md;
 318
 319        if (!efi_enabled(EFI_MEMMAP))
 320                return;
 321
 322        for_each_efi_memory_desc(md) {
 323                u64 start = md->phys_addr;
 324                u64 size = md->num_pages << EFI_PAGE_SHIFT;
 325                bool already_reserved;
 326
 327                if (md->type != EFI_BOOT_SERVICES_CODE &&
 328                    md->type != EFI_BOOT_SERVICES_DATA)
 329                        continue;
 330
 331                already_reserved = memblock_is_region_reserved(start, size);
 332
 333                /*
 334                 * Because the following memblock_reserve() is paired
 335                 * with memblock_free_late() for this region in
 336                 * efi_free_boot_services(), we must be extremely
 337                 * careful not to reserve, and subsequently free,
 338                 * critical regions of memory (like the kernel image) or
 339                 * those regions that somebody else has already
 340                 * reserved.
 341                 *
 342                 * A good example of a critical region that must not be
 343                 * freed is page zero (first 4Kb of memory), which may
 344                 * contain boot services code/data but is marked
 345                 * E820_TYPE_RESERVED by trim_bios_range().
 346                 */
 347                if (!already_reserved) {
 348                        memblock_reserve(start, size);
 349
 350                        /*
 351                         * If we are the first to reserve the region, no
 352                         * one else cares about it. We own it and can
 353                         * free it later.
 354                         */
 355                        if (can_free_region(start, size))
 356                                continue;
 357                }
 358
 359                /*
 360                 * We don't own the region. We must not free it.
 361                 *
 362                 * Setting this bit for a boot services region really
 363                 * doesn't make sense as far as the firmware is
 364                 * concerned, but it does provide us with a way to tag
 365                 * those regions that must not be paired with
 366                 * memblock_free_late().
 367                 */
 368                md->attribute |= EFI_MEMORY_RUNTIME;
 369        }
 370}
 371
 372/*
 373 * Apart from having VA mappings for EFI boot services code/data regions,
 374 * (duplicate) 1:1 mappings were also created as a quirk for buggy firmware. So,
 375 * unmap both 1:1 and VA mappings.
 376 */
 377static void __init efi_unmap_pages(efi_memory_desc_t *md)
 378{
 379        pgd_t *pgd = efi_mm.pgd;
 380        u64 pa = md->phys_addr;
 381        u64 va = md->virt_addr;
 382
 383        /*
 384         * EFI mixed mode has all RAM mapped to access arguments while making
 385         * EFI runtime calls, hence don't unmap EFI boot services code/data
 386         * regions.
 387         */
 388        if (efi_is_mixed())
 389                return;
 390
 391        if (kernel_unmap_pages_in_pgd(pgd, pa, md->num_pages))
 392                pr_err("Failed to unmap 1:1 mapping for 0x%llx\n", pa);
 393
 394        if (kernel_unmap_pages_in_pgd(pgd, va, md->num_pages))
 395                pr_err("Failed to unmap VA mapping for 0x%llx\n", va);
 396}
 397
 398void __init efi_free_boot_services(void)
 399{
 400        struct efi_memory_map_data data = { 0 };
 401        efi_memory_desc_t *md;
 402        int num_entries = 0;
 403        void *new, *new_md;
 404
 405        /* Keep all regions for /sys/kernel/debug/efi */
 406        if (efi_enabled(EFI_DBG))
 407                return;
 408
 409        for_each_efi_memory_desc(md) {
 410                unsigned long long start = md->phys_addr;
 411                unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 412                size_t rm_size;
 413
 414                if (md->type != EFI_BOOT_SERVICES_CODE &&
 415                    md->type != EFI_BOOT_SERVICES_DATA) {
 416                        num_entries++;
 417                        continue;
 418                }
 419
 420                /* Do not free, someone else owns it: */
 421                if (md->attribute & EFI_MEMORY_RUNTIME) {
 422                        num_entries++;
 423                        continue;
 424                }
 425
 426                /*
 427                 * Before calling set_virtual_address_map(), EFI boot services
 428                 * code/data regions were mapped as a quirk for buggy firmware.
 429                 * Unmap them from efi_pgd before freeing them up.
 430                 */
 431                efi_unmap_pages(md);
 432
 433                /*
 434                 * Nasty quirk: if all sub-1MB memory is used for boot
 435                 * services, we can get here without having allocated the
 436                 * real mode trampoline.  It's too late to hand boot services
 437                 * memory back to the memblock allocator, so instead
 438                 * try to manually allocate the trampoline if needed.
 439                 *
 440                 * I've seen this on a Dell XPS 13 9350 with firmware
 441                 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
 442                 * grub2-efi on a hard disk.  (And no, I don't know why
 443                 * this happened, but Linux should still try to boot rather
 444                 * panicking early.)
 445                 */
 446                rm_size = real_mode_size_needed();
 447                if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
 448                        set_real_mode_mem(start);
 449                        start += rm_size;
 450                        size -= rm_size;
 451                }
 452
 453                /*
 454                 * Don't free memory under 1M for two reasons:
 455                 * - BIOS might clobber it
 456                 * - Crash kernel needs it to be reserved
 457                 */
 458                if (start + size < SZ_1M)
 459                        continue;
 460                if (start < SZ_1M) {
 461                        size -= (SZ_1M - start);
 462                        start = SZ_1M;
 463                }
 464
 465                memblock_free_late(start, size);
 466        }
 467
 468        if (!num_entries)
 469                return;
 470
 471        if (efi_memmap_alloc(num_entries, &data) != 0) {
 472                pr_err("Failed to allocate new EFI memmap\n");
 473                return;
 474        }
 475
 476        new = memremap(data.phys_map, data.size, MEMREMAP_WB);
 477        if (!new) {
 478                pr_err("Failed to map new EFI memmap\n");
 479                return;
 480        }
 481
 482        /*
 483         * Build a new EFI memmap that excludes any boot services
 484         * regions that are not tagged EFI_MEMORY_RUNTIME, since those
 485         * regions have now been freed.
 486         */
 487        new_md = new;
 488        for_each_efi_memory_desc(md) {
 489                if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
 490                    (md->type == EFI_BOOT_SERVICES_CODE ||
 491                     md->type == EFI_BOOT_SERVICES_DATA))
 492                        continue;
 493
 494                memcpy(new_md, md, efi.memmap.desc_size);
 495                new_md += efi.memmap.desc_size;
 496        }
 497
 498        memunmap(new);
 499
 500        if (efi_memmap_install(&data) != 0) {
 501                pr_err("Could not install new EFI memmap\n");
 502                return;
 503        }
 504}
 505
 506/*
 507 * A number of config table entries get remapped to virtual addresses
 508 * after entering EFI virtual mode. However, the kexec kernel requires
 509 * their physical addresses therefore we pass them via setup_data and
 510 * correct those entries to their respective physical addresses here.
 511 *
 512 * Currently only handles smbios which is necessary for some firmware
 513 * implementation.
 514 */
 515int __init efi_reuse_config(u64 tables, int nr_tables)
 516{
 517        int i, sz, ret = 0;
 518        void *p, *tablep;
 519        struct efi_setup_data *data;
 520
 521        if (nr_tables == 0)
 522                return 0;
 523
 524        if (!efi_setup)
 525                return 0;
 526
 527        if (!efi_enabled(EFI_64BIT))
 528                return 0;
 529
 530        data = early_memremap(efi_setup, sizeof(*data));
 531        if (!data) {
 532                ret = -ENOMEM;
 533                goto out;
 534        }
 535
 536        if (!data->smbios)
 537                goto out_memremap;
 538
 539        sz = sizeof(efi_config_table_64_t);
 540
 541        p = tablep = early_memremap(tables, nr_tables * sz);
 542        if (!p) {
 543                pr_err("Could not map Configuration table!\n");
 544                ret = -ENOMEM;
 545                goto out_memremap;
 546        }
 547
 548        for (i = 0; i < nr_tables; i++) {
 549                efi_guid_t guid;
 550
 551                guid = ((efi_config_table_64_t *)p)->guid;
 552
 553                if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
 554                        ((efi_config_table_64_t *)p)->table = data->smbios;
 555                p += sz;
 556        }
 557        early_memunmap(tablep, nr_tables * sz);
 558
 559out_memremap:
 560        early_memunmap(data, sizeof(*data));
 561out:
 562        return ret;
 563}
 564
 565void __init efi_apply_memmap_quirks(void)
 566{
 567        /*
 568         * Once setup is done earlier, unmap the EFI memory map on mismatched
 569         * firmware/kernel architectures since there is no support for runtime
 570         * services.
 571         */
 572        if (!efi_runtime_supported()) {
 573                pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
 574                efi_memmap_unmap();
 575        }
 576}
 577
 578/*
 579 * For most modern platforms the preferred method of powering off is via
 580 * ACPI. However, there are some that are known to require the use of
 581 * EFI runtime services and for which ACPI does not work at all.
 582 *
 583 * Using EFI is a last resort, to be used only if no other option
 584 * exists.
 585 */
 586bool efi_reboot_required(void)
 587{
 588        if (!acpi_gbl_reduced_hardware)
 589                return false;
 590
 591        efi_reboot_quirk_mode = EFI_RESET_WARM;
 592        return true;
 593}
 594
 595bool efi_poweroff_required(void)
 596{
 597        return acpi_gbl_reduced_hardware || acpi_no_s5;
 598}
 599
 600#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
 601
 602static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
 603                                  size_t hdr_bytes)
 604{
 605        struct quark_security_header *csh = *pkbuff;
 606
 607        /* Only process data block that is larger than the security header */
 608        if (hdr_bytes < sizeof(struct quark_security_header))
 609                return 0;
 610
 611        if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
 612            csh->headersize != QUARK_SECURITY_HEADER_SIZE)
 613                return 1;
 614
 615        /* Only process data block if EFI header is included */
 616        if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
 617                        sizeof(efi_capsule_header_t))
 618                return 0;
 619
 620        pr_debug("Quark security header detected\n");
 621
 622        if (csh->rsvd_next_header != 0) {
 623                pr_err("multiple Quark security headers not supported\n");
 624                return -EINVAL;
 625        }
 626
 627        *pkbuff += csh->headersize;
 628        cap_info->total_size = csh->headersize;
 629
 630        /*
 631         * Update the first page pointer to skip over the CSH header.
 632         */
 633        cap_info->phys[0] += csh->headersize;
 634
 635        /*
 636         * cap_info->capsule should point at a virtual mapping of the entire
 637         * capsule, starting at the capsule header. Our image has the Quark
 638         * security header prepended, so we cannot rely on the default vmap()
 639         * mapping created by the generic capsule code.
 640         * Given that the Quark firmware does not appear to care about the
 641         * virtual mapping, let's just point cap_info->capsule at our copy
 642         * of the capsule header.
 643         */
 644        cap_info->capsule = &cap_info->header;
 645
 646        return 1;
 647}
 648
 649static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
 650        X86_MATCH_VENDOR_FAM_MODEL(INTEL, 5, INTEL_FAM5_QUARK_X1000,
 651                                   &qrk_capsule_setup_info),
 652        { }
 653};
 654
 655int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
 656                           size_t hdr_bytes)
 657{
 658        int (*quirk_handler)(struct capsule_info *, void **, size_t);
 659        const struct x86_cpu_id *id;
 660        int ret;
 661
 662        if (hdr_bytes < sizeof(efi_capsule_header_t))
 663                return 0;
 664
 665        cap_info->total_size = 0;
 666
 667        id = x86_match_cpu(efi_capsule_quirk_ids);
 668        if (id) {
 669                /*
 670                 * The quirk handler is supposed to return
 671                 *  - a value > 0 if the setup should continue, after advancing
 672                 *    kbuff as needed
 673                 *  - 0 if not enough hdr_bytes are available yet
 674                 *  - a negative error code otherwise
 675                 */
 676                quirk_handler = (typeof(quirk_handler))id->driver_data;
 677                ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
 678                if (ret <= 0)
 679                        return ret;
 680        }
 681
 682        memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
 683
 684        cap_info->total_size += cap_info->header.imagesize;
 685
 686        return __efi_capsule_setup_info(cap_info);
 687}
 688
 689#endif
 690
 691/*
 692 * If any access by any efi runtime service causes a page fault, then,
 693 * 1. If it's efi_reset_system(), reboot through BIOS.
 694 * 2. If any other efi runtime service, then
 695 *    a. Return error status to the efi caller process.
 696 *    b. Disable EFI Runtime Services forever and
 697 *    c. Freeze efi_rts_wq and schedule new process.
 698 *
 699 * @return: Returns, if the page fault is not handled. This function
 700 * will never return if the page fault is handled successfully.
 701 */
 702void efi_crash_gracefully_on_page_fault(unsigned long phys_addr)
 703{
 704        if (!IS_ENABLED(CONFIG_X86_64))
 705                return;
 706
 707        /*
 708         * If we get an interrupt/NMI while processing an EFI runtime service
 709         * then this is a regular OOPS, not an EFI failure.
 710         */
 711        if (in_interrupt())
 712                return;
 713
 714        /*
 715         * Make sure that an efi runtime service caused the page fault.
 716         * READ_ONCE() because we might be OOPSing in a different thread,
 717         * and we don't want to trip KTSAN while trying to OOPS.
 718         */
 719        if (READ_ONCE(efi_rts_work.efi_rts_id) == EFI_NONE ||
 720            current_work() != &efi_rts_work.work)
 721                return;
 722
 723        /*
 724         * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
 725         * page faulting on these addresses isn't expected.
 726         */
 727        if (phys_addr <= 0x0fff)
 728                return;
 729
 730        /*
 731         * Print stack trace as it might be useful to know which EFI Runtime
 732         * Service is buggy.
 733         */
 734        WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
 735             phys_addr);
 736
 737        /*
 738         * Buggy efi_reset_system() is handled differently from other EFI
 739         * Runtime Services as it doesn't use efi_rts_wq. Although,
 740         * native_machine_emergency_restart() says that machine_real_restart()
 741         * could fail, it's better not to complicate this fault handler
 742         * because this case occurs *very* rarely and hence could be improved
 743         * on a need by basis.
 744         */
 745        if (efi_rts_work.efi_rts_id == EFI_RESET_SYSTEM) {
 746                pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
 747                machine_real_restart(MRR_BIOS);
 748                return;
 749        }
 750
 751        /*
 752         * Before calling EFI Runtime Service, the kernel has switched the
 753         * calling process to efi_mm. Hence, switch back to task_mm.
 754         */
 755        arch_efi_call_virt_teardown();
 756
 757        /* Signal error status to the efi caller process */
 758        efi_rts_work.status = EFI_ABORTED;
 759        complete(&efi_rts_work.efi_rts_comp);
 760
 761        clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 762        pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
 763
 764        /*
 765         * Call schedule() in an infinite loop, so that any spurious wake ups
 766         * will never run efi_rts_wq again.
 767         */
 768        for (;;) {
 769                set_current_state(TASK_IDLE);
 770                schedule();
 771        }
 772}
 773