linux/arch/x86/power/cpu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Suspend support specific for i386/x86-64.
   4 *
   5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
   6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
   8 */
   9
  10#include <linux/suspend.h>
  11#include <linux/export.h>
  12#include <linux/smp.h>
  13#include <linux/perf_event.h>
  14#include <linux/tboot.h>
  15#include <linux/dmi.h>
  16#include <linux/pgtable.h>
  17
  18#include <asm/proto.h>
  19#include <asm/mtrr.h>
  20#include <asm/page.h>
  21#include <asm/mce.h>
  22#include <asm/suspend.h>
  23#include <asm/fpu/internal.h>
  24#include <asm/debugreg.h>
  25#include <asm/cpu.h>
  26#include <asm/mmu_context.h>
  27#include <asm/cpu_device_id.h>
  28
  29#ifdef CONFIG_X86_32
  30__visible unsigned long saved_context_ebx;
  31__visible unsigned long saved_context_esp, saved_context_ebp;
  32__visible unsigned long saved_context_esi, saved_context_edi;
  33__visible unsigned long saved_context_eflags;
  34#endif
  35struct saved_context saved_context;
  36
  37static void msr_save_context(struct saved_context *ctxt)
  38{
  39        struct saved_msr *msr = ctxt->saved_msrs.array;
  40        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  41
  42        while (msr < end) {
  43                msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
  44                msr++;
  45        }
  46}
  47
  48static void msr_restore_context(struct saved_context *ctxt)
  49{
  50        struct saved_msr *msr = ctxt->saved_msrs.array;
  51        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  52
  53        while (msr < end) {
  54                if (msr->valid)
  55                        wrmsrl(msr->info.msr_no, msr->info.reg.q);
  56                msr++;
  57        }
  58}
  59
  60/**
  61 * __save_processor_state() - Save CPU registers before creating a
  62 *                             hibernation image and before restoring
  63 *                             the memory state from it
  64 * @ctxt: Structure to store the registers contents in.
  65 *
  66 * NOTE: If there is a CPU register the modification of which by the
  67 * boot kernel (ie. the kernel used for loading the hibernation image)
  68 * might affect the operations of the restored target kernel (ie. the one
  69 * saved in the hibernation image), then its contents must be saved by this
  70 * function.  In other words, if kernel A is hibernated and different
  71 * kernel B is used for loading the hibernation image into memory, the
  72 * kernel A's __save_processor_state() function must save all registers
  73 * needed by kernel A, so that it can operate correctly after the resume
  74 * regardless of what kernel B does in the meantime.
  75 */
  76static void __save_processor_state(struct saved_context *ctxt)
  77{
  78#ifdef CONFIG_X86_32
  79        mtrr_save_fixed_ranges(NULL);
  80#endif
  81        kernel_fpu_begin();
  82
  83        /*
  84         * descriptor tables
  85         */
  86        store_idt(&ctxt->idt);
  87
  88        /*
  89         * We save it here, but restore it only in the hibernate case.
  90         * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
  91         * mode in "secondary_startup_64". In 32-bit mode it is done via
  92         * 'pmode_gdt' in wakeup_start.
  93         */
  94        ctxt->gdt_desc.size = GDT_SIZE - 1;
  95        ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
  96
  97        store_tr(ctxt->tr);
  98
  99        /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
 100        /*
 101         * segment registers
 102         */
 103        savesegment(gs, ctxt->gs);
 104#ifdef CONFIG_X86_64
 105        savesegment(fs, ctxt->fs);
 106        savesegment(ds, ctxt->ds);
 107        savesegment(es, ctxt->es);
 108
 109        rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 110        rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 111        rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 112        mtrr_save_fixed_ranges(NULL);
 113
 114        rdmsrl(MSR_EFER, ctxt->efer);
 115#endif
 116
 117        /*
 118         * control registers
 119         */
 120        ctxt->cr0 = read_cr0();
 121        ctxt->cr2 = read_cr2();
 122        ctxt->cr3 = __read_cr3();
 123        ctxt->cr4 = __read_cr4();
 124        ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
 125                                               &ctxt->misc_enable);
 126        msr_save_context(ctxt);
 127}
 128
 129/* Needed by apm.c */
 130void save_processor_state(void)
 131{
 132        __save_processor_state(&saved_context);
 133        x86_platform.save_sched_clock_state();
 134}
 135#ifdef CONFIG_X86_32
 136EXPORT_SYMBOL(save_processor_state);
 137#endif
 138
 139static void do_fpu_end(void)
 140{
 141        /*
 142         * Restore FPU regs if necessary.
 143         */
 144        kernel_fpu_end();
 145}
 146
 147static void fix_processor_context(void)
 148{
 149        int cpu = smp_processor_id();
 150#ifdef CONFIG_X86_64
 151        struct desc_struct *desc = get_cpu_gdt_rw(cpu);
 152        tss_desc tss;
 153#endif
 154
 155        /*
 156         * We need to reload TR, which requires that we change the
 157         * GDT entry to indicate "available" first.
 158         *
 159         * XXX: This could probably all be replaced by a call to
 160         * force_reload_TR().
 161         */
 162        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
 163
 164#ifdef CONFIG_X86_64
 165        memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
 166        tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
 167        write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
 168
 169        syscall_init();                         /* This sets MSR_*STAR and related */
 170#else
 171        if (boot_cpu_has(X86_FEATURE_SEP))
 172                enable_sep_cpu();
 173#endif
 174        load_TR_desc();                         /* This does ltr */
 175        load_mm_ldt(current->active_mm);        /* This does lldt */
 176        initialize_tlbstate_and_flush();
 177
 178        fpu__resume_cpu();
 179
 180        /* The processor is back on the direct GDT, load back the fixmap */
 181        load_fixmap_gdt(cpu);
 182}
 183
 184/**
 185 * __restore_processor_state() - Restore the contents of CPU registers saved
 186 *                               by __save_processor_state()
 187 * @ctxt: Structure to load the registers contents from.
 188 *
 189 * The asm code that gets us here will have restored a usable GDT, although
 190 * it will be pointing to the wrong alias.
 191 */
 192static void notrace __restore_processor_state(struct saved_context *ctxt)
 193{
 194        struct cpuinfo_x86 *c;
 195
 196        if (ctxt->misc_enable_saved)
 197                wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
 198        /*
 199         * control registers
 200         */
 201        /* cr4 was introduced in the Pentium CPU */
 202#ifdef CONFIG_X86_32
 203        if (ctxt->cr4)
 204                __write_cr4(ctxt->cr4);
 205#else
 206/* CONFIG X86_64 */
 207        wrmsrl(MSR_EFER, ctxt->efer);
 208        __write_cr4(ctxt->cr4);
 209#endif
 210        write_cr3(ctxt->cr3);
 211        write_cr2(ctxt->cr2);
 212        write_cr0(ctxt->cr0);
 213
 214        /* Restore the IDT. */
 215        load_idt(&ctxt->idt);
 216
 217        /*
 218         * Just in case the asm code got us here with the SS, DS, or ES
 219         * out of sync with the GDT, update them.
 220         */
 221        loadsegment(ss, __KERNEL_DS);
 222        loadsegment(ds, __USER_DS);
 223        loadsegment(es, __USER_DS);
 224
 225        /*
 226         * Restore percpu access.  Percpu access can happen in exception
 227         * handlers or in complicated helpers like load_gs_index().
 228         */
 229#ifdef CONFIG_X86_64
 230        wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 231#else
 232        loadsegment(fs, __KERNEL_PERCPU);
 233#endif
 234
 235        /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
 236        fix_processor_context();
 237
 238        /*
 239         * Now that we have descriptor tables fully restored and working
 240         * exception handling, restore the usermode segments.
 241         */
 242#ifdef CONFIG_X86_64
 243        loadsegment(ds, ctxt->es);
 244        loadsegment(es, ctxt->es);
 245        loadsegment(fs, ctxt->fs);
 246        load_gs_index(ctxt->gs);
 247
 248        /*
 249         * Restore FSBASE and GSBASE after restoring the selectors, since
 250         * restoring the selectors clobbers the bases.  Keep in mind
 251         * that MSR_KERNEL_GS_BASE is horribly misnamed.
 252         */
 253        wrmsrl(MSR_FS_BASE, ctxt->fs_base);
 254        wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 255#else
 256        loadsegment(gs, ctxt->gs);
 257#endif
 258
 259        do_fpu_end();
 260        tsc_verify_tsc_adjust(true);
 261        x86_platform.restore_sched_clock_state();
 262        mtrr_bp_restore();
 263        perf_restore_debug_store();
 264        msr_restore_context(ctxt);
 265
 266        c = &cpu_data(smp_processor_id());
 267        if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
 268                init_ia32_feat_ctl(c);
 269}
 270
 271/* Needed by apm.c */
 272void notrace restore_processor_state(void)
 273{
 274        __restore_processor_state(&saved_context);
 275}
 276#ifdef CONFIG_X86_32
 277EXPORT_SYMBOL(restore_processor_state);
 278#endif
 279
 280#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
 281static void resume_play_dead(void)
 282{
 283        play_dead_common();
 284        tboot_shutdown(TB_SHUTDOWN_WFS);
 285        hlt_play_dead();
 286}
 287
 288int hibernate_resume_nonboot_cpu_disable(void)
 289{
 290        void (*play_dead)(void) = smp_ops.play_dead;
 291        int ret;
 292
 293        /*
 294         * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
 295         * during hibernate image restoration, because it is likely that the
 296         * monitored address will be actually written to at that time and then
 297         * the "dead" CPU will attempt to execute instructions again, but the
 298         * address in its instruction pointer may not be possible to resolve
 299         * any more at that point (the page tables used by it previously may
 300         * have been overwritten by hibernate image data).
 301         *
 302         * First, make sure that we wake up all the potentially disabled SMT
 303         * threads which have been initially brought up and then put into
 304         * mwait/cpuidle sleep.
 305         * Those will be put to proper (not interfering with hibernation
 306         * resume) sleep afterwards, and the resumed kernel will decide itself
 307         * what to do with them.
 308         */
 309        ret = cpuhp_smt_enable();
 310        if (ret)
 311                return ret;
 312        smp_ops.play_dead = resume_play_dead;
 313        ret = freeze_secondary_cpus(0);
 314        smp_ops.play_dead = play_dead;
 315        return ret;
 316}
 317#endif
 318
 319/*
 320 * When bsp_check() is called in hibernate and suspend, cpu hotplug
 321 * is disabled already. So it's unnecessary to handle race condition between
 322 * cpumask query and cpu hotplug.
 323 */
 324static int bsp_check(void)
 325{
 326        if (cpumask_first(cpu_online_mask) != 0) {
 327                pr_warn("CPU0 is offline.\n");
 328                return -ENODEV;
 329        }
 330
 331        return 0;
 332}
 333
 334static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
 335                           void *ptr)
 336{
 337        int ret = 0;
 338
 339        switch (action) {
 340        case PM_SUSPEND_PREPARE:
 341        case PM_HIBERNATION_PREPARE:
 342                ret = bsp_check();
 343                break;
 344#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
 345        case PM_RESTORE_PREPARE:
 346                /*
 347                 * When system resumes from hibernation, online CPU0 because
 348                 * 1. it's required for resume and
 349                 * 2. the CPU was online before hibernation
 350                 */
 351                if (!cpu_online(0))
 352                        _debug_hotplug_cpu(0, 1);
 353                break;
 354        case PM_POST_RESTORE:
 355                /*
 356                 * When a resume really happens, this code won't be called.
 357                 *
 358                 * This code is called only when user space hibernation software
 359                 * prepares for snapshot device during boot time. So we just
 360                 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
 361                 * preparing the snapshot device.
 362                 *
 363                 * This works for normal boot case in our CPU0 hotplug debug
 364                 * mode, i.e. CPU0 is offline and user mode hibernation
 365                 * software initializes during boot time.
 366                 *
 367                 * If CPU0 is online and user application accesses snapshot
 368                 * device after boot time, this will offline CPU0 and user may
 369                 * see different CPU0 state before and after accessing
 370                 * the snapshot device. But hopefully this is not a case when
 371                 * user debugging CPU0 hotplug. Even if users hit this case,
 372                 * they can easily online CPU0 back.
 373                 *
 374                 * To simplify this debug code, we only consider normal boot
 375                 * case. Otherwise we need to remember CPU0's state and restore
 376                 * to that state and resolve racy conditions etc.
 377                 */
 378                _debug_hotplug_cpu(0, 0);
 379                break;
 380#endif
 381        default:
 382                break;
 383        }
 384        return notifier_from_errno(ret);
 385}
 386
 387static int __init bsp_pm_check_init(void)
 388{
 389        /*
 390         * Set this bsp_pm_callback as lower priority than
 391         * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
 392         * earlier to disable cpu hotplug before bsp online check.
 393         */
 394        pm_notifier(bsp_pm_callback, -INT_MAX);
 395        return 0;
 396}
 397
 398core_initcall(bsp_pm_check_init);
 399
 400static int msr_build_context(const u32 *msr_id, const int num)
 401{
 402        struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
 403        struct saved_msr *msr_array;
 404        int total_num;
 405        int i, j;
 406
 407        total_num = saved_msrs->num + num;
 408
 409        msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
 410        if (!msr_array) {
 411                pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
 412                return -ENOMEM;
 413        }
 414
 415        if (saved_msrs->array) {
 416                /*
 417                 * Multiple callbacks can invoke this function, so copy any
 418                 * MSR save requests from previous invocations.
 419                 */
 420                memcpy(msr_array, saved_msrs->array,
 421                       sizeof(struct saved_msr) * saved_msrs->num);
 422
 423                kfree(saved_msrs->array);
 424        }
 425
 426        for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
 427                msr_array[i].info.msr_no        = msr_id[j];
 428                msr_array[i].valid              = false;
 429                msr_array[i].info.reg.q         = 0;
 430        }
 431        saved_msrs->num   = total_num;
 432        saved_msrs->array = msr_array;
 433
 434        return 0;
 435}
 436
 437/*
 438 * The following sections are a quirk framework for problematic BIOSen:
 439 * Sometimes MSRs are modified by the BIOSen after suspended to
 440 * RAM, this might cause unexpected behavior after wakeup.
 441 * Thus we save/restore these specified MSRs across suspend/resume
 442 * in order to work around it.
 443 *
 444 * For any further problematic BIOSen/platforms,
 445 * please add your own function similar to msr_initialize_bdw.
 446 */
 447static int msr_initialize_bdw(const struct dmi_system_id *d)
 448{
 449        /* Add any extra MSR ids into this array. */
 450        u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
 451
 452        pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
 453        return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
 454}
 455
 456static const struct dmi_system_id msr_save_dmi_table[] = {
 457        {
 458         .callback = msr_initialize_bdw,
 459         .ident = "BROADWELL BDX_EP",
 460         .matches = {
 461                DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
 462                DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
 463                },
 464        },
 465        {}
 466};
 467
 468static int msr_save_cpuid_features(const struct x86_cpu_id *c)
 469{
 470        u32 cpuid_msr_id[] = {
 471                MSR_AMD64_CPUID_FN_1,
 472        };
 473
 474        pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
 475                c->family);
 476
 477        return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
 478}
 479
 480static const struct x86_cpu_id msr_save_cpu_table[] = {
 481        X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
 482        X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
 483        {}
 484};
 485
 486typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
 487static int pm_cpu_check(const struct x86_cpu_id *c)
 488{
 489        const struct x86_cpu_id *m;
 490        int ret = 0;
 491
 492        m = x86_match_cpu(msr_save_cpu_table);
 493        if (m) {
 494                pm_cpu_match_t fn;
 495
 496                fn = (pm_cpu_match_t)m->driver_data;
 497                ret = fn(m);
 498        }
 499
 500        return ret;
 501}
 502
 503static int pm_check_save_msr(void)
 504{
 505        dmi_check_system(msr_save_dmi_table);
 506        pm_cpu_check(msr_save_cpu_table);
 507
 508        return 0;
 509}
 510
 511device_initcall(pm_check_save_msr);
 512