linux/arch/xtensa/kernel/process.c
<<
>>
Prefs
   1/*
   2 * arch/xtensa/kernel/process.c
   3 *
   4 * Xtensa Processor version.
   5 *
   6 * This file is subject to the terms and conditions of the GNU General Public
   7 * License.  See the file "COPYING" in the main directory of this archive
   8 * for more details.
   9 *
  10 * Copyright (C) 2001 - 2005 Tensilica Inc.
  11 *
  12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
  13 * Chris Zankel <chris@zankel.net>
  14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
  15 * Kevin Chea
  16 */
  17
  18#include <linux/errno.h>
  19#include <linux/sched.h>
  20#include <linux/sched/debug.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/kernel.h>
  24#include <linux/mm.h>
  25#include <linux/smp.h>
  26#include <linux/stddef.h>
  27#include <linux/unistd.h>
  28#include <linux/ptrace.h>
  29#include <linux/elf.h>
  30#include <linux/hw_breakpoint.h>
  31#include <linux/init.h>
  32#include <linux/prctl.h>
  33#include <linux/init_task.h>
  34#include <linux/module.h>
  35#include <linux/mqueue.h>
  36#include <linux/fs.h>
  37#include <linux/slab.h>
  38#include <linux/rcupdate.h>
  39
  40#include <linux/uaccess.h>
  41#include <asm/io.h>
  42#include <asm/processor.h>
  43#include <asm/platform.h>
  44#include <asm/mmu.h>
  45#include <asm/irq.h>
  46#include <linux/atomic.h>
  47#include <asm/asm-offsets.h>
  48#include <asm/regs.h>
  49#include <asm/hw_breakpoint.h>
  50
  51extern void ret_from_fork(void);
  52extern void ret_from_kernel_thread(void);
  53
  54void (*pm_power_off)(void) = NULL;
  55EXPORT_SYMBOL(pm_power_off);
  56
  57
  58#ifdef CONFIG_STACKPROTECTOR
  59#include <linux/stackprotector.h>
  60unsigned long __stack_chk_guard __read_mostly;
  61EXPORT_SYMBOL(__stack_chk_guard);
  62#endif
  63
  64#if XTENSA_HAVE_COPROCESSORS
  65
  66void coprocessor_release_all(struct thread_info *ti)
  67{
  68        unsigned long cpenable;
  69        int i;
  70
  71        /* Make sure we don't switch tasks during this operation. */
  72
  73        preempt_disable();
  74
  75        /* Walk through all cp owners and release it for the requested one. */
  76
  77        cpenable = ti->cpenable;
  78
  79        for (i = 0; i < XCHAL_CP_MAX; i++) {
  80                if (coprocessor_owner[i] == ti) {
  81                        coprocessor_owner[i] = 0;
  82                        cpenable &= ~(1 << i);
  83                }
  84        }
  85
  86        ti->cpenable = cpenable;
  87        if (ti == current_thread_info())
  88                xtensa_set_sr(0, cpenable);
  89
  90        preempt_enable();
  91}
  92
  93void coprocessor_flush_all(struct thread_info *ti)
  94{
  95        unsigned long cpenable, old_cpenable;
  96        int i;
  97
  98        preempt_disable();
  99
 100        old_cpenable = xtensa_get_sr(cpenable);
 101        cpenable = ti->cpenable;
 102        xtensa_set_sr(cpenable, cpenable);
 103
 104        for (i = 0; i < XCHAL_CP_MAX; i++) {
 105                if ((cpenable & 1) != 0 && coprocessor_owner[i] == ti)
 106                        coprocessor_flush(ti, i);
 107                cpenable >>= 1;
 108        }
 109        xtensa_set_sr(old_cpenable, cpenable);
 110
 111        preempt_enable();
 112}
 113
 114#endif
 115
 116
 117/*
 118 * Powermanagement idle function, if any is provided by the platform.
 119 */
 120void arch_cpu_idle(void)
 121{
 122        platform_idle();
 123}
 124
 125/*
 126 * This is called when the thread calls exit().
 127 */
 128void exit_thread(struct task_struct *tsk)
 129{
 130#if XTENSA_HAVE_COPROCESSORS
 131        coprocessor_release_all(task_thread_info(tsk));
 132#endif
 133}
 134
 135/*
 136 * Flush thread state. This is called when a thread does an execve()
 137 * Note that we flush coprocessor registers for the case execve fails.
 138 */
 139void flush_thread(void)
 140{
 141#if XTENSA_HAVE_COPROCESSORS
 142        struct thread_info *ti = current_thread_info();
 143        coprocessor_flush_all(ti);
 144        coprocessor_release_all(ti);
 145#endif
 146        flush_ptrace_hw_breakpoint(current);
 147}
 148
 149/*
 150 * this gets called so that we can store coprocessor state into memory and
 151 * copy the current task into the new thread.
 152 */
 153int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
 154{
 155#if XTENSA_HAVE_COPROCESSORS
 156        coprocessor_flush_all(task_thread_info(src));
 157#endif
 158        *dst = *src;
 159        return 0;
 160}
 161
 162/*
 163 * Copy thread.
 164 *
 165 * There are two modes in which this function is called:
 166 * 1) Userspace thread creation,
 167 *    regs != NULL, usp_thread_fn is userspace stack pointer.
 168 *    It is expected to copy parent regs (in case CLONE_VM is not set
 169 *    in the clone_flags) and set up passed usp in the childregs.
 170 * 2) Kernel thread creation,
 171 *    regs == NULL, usp_thread_fn is the function to run in the new thread
 172 *    and thread_fn_arg is its parameter.
 173 *    childregs are not used for the kernel threads.
 174 *
 175 * The stack layout for the new thread looks like this:
 176 *
 177 *      +------------------------+
 178 *      |       childregs        |
 179 *      +------------------------+ <- thread.sp = sp in dummy-frame
 180 *      |      dummy-frame       |    (saved in dummy-frame spill-area)
 181 *      +------------------------+
 182 *
 183 * We create a dummy frame to return to either ret_from_fork or
 184 *   ret_from_kernel_thread:
 185 *   a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
 186 *   sp points to itself (thread.sp)
 187 *   a2, a3 are unused for userspace threads,
 188 *   a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
 189 *
 190 * Note: This is a pristine frame, so we don't need any spill region on top of
 191 *       childregs.
 192 *
 193 * The fun part:  if we're keeping the same VM (i.e. cloning a thread,
 194 * not an entire process), we're normally given a new usp, and we CANNOT share
 195 * any live address register windows.  If we just copy those live frames over,
 196 * the two threads (parent and child) will overflow the same frames onto the
 197 * parent stack at different times, likely corrupting the parent stack (esp.
 198 * if the parent returns from functions that called clone() and calls new
 199 * ones, before the child overflows its now old copies of its parent windows).
 200 * One solution is to spill windows to the parent stack, but that's fairly
 201 * involved.  Much simpler to just not copy those live frames across.
 202 */
 203
 204int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
 205                unsigned long thread_fn_arg, struct task_struct *p,
 206                unsigned long tls)
 207{
 208        struct pt_regs *childregs = task_pt_regs(p);
 209
 210#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 211        struct thread_info *ti;
 212#endif
 213
 214        /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
 215        SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
 216        SPILL_SLOT(childregs, 0) = 0;
 217
 218        p->thread.sp = (unsigned long)childregs;
 219
 220        if (!(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
 221                struct pt_regs *regs = current_pt_regs();
 222                unsigned long usp = usp_thread_fn ?
 223                        usp_thread_fn : regs->areg[1];
 224
 225                p->thread.ra = MAKE_RA_FOR_CALL(
 226                                (unsigned long)ret_from_fork, 0x1);
 227
 228                /* This does not copy all the regs.
 229                 * In a bout of brilliance or madness,
 230                 * ARs beyond a0-a15 exist past the end of the struct.
 231                 */
 232                *childregs = *regs;
 233                childregs->areg[1] = usp;
 234                childregs->areg[2] = 0;
 235
 236                /* When sharing memory with the parent thread, the child
 237                   usually starts on a pristine stack, so we have to reset
 238                   windowbase, windowstart and wmask.
 239                   (Note that such a new thread is required to always create
 240                   an initial call4 frame)
 241                   The exception is vfork, where the new thread continues to
 242                   run on the parent's stack until it calls execve. This could
 243                   be a call8 or call12, which requires a legal stack frame
 244                   of the previous caller for the overflow handlers to work.
 245                   (Note that it's always legal to overflow live registers).
 246                   In this case, ensure to spill at least the stack pointer
 247                   of that frame. */
 248
 249                if (clone_flags & CLONE_VM) {
 250                        /* check that caller window is live and same stack */
 251                        int len = childregs->wmask & ~0xf;
 252                        if (regs->areg[1] == usp && len != 0) {
 253                                int callinc = (regs->areg[0] >> 30) & 3;
 254                                int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
 255                                put_user(regs->areg[caller_ars+1],
 256                                         (unsigned __user*)(usp - 12));
 257                        }
 258                        childregs->wmask = 1;
 259                        childregs->windowstart = 1;
 260                        childregs->windowbase = 0;
 261                } else {
 262                        int len = childregs->wmask & ~0xf;
 263                        memcpy(&childregs->areg[XCHAL_NUM_AREGS - len/4],
 264                               &regs->areg[XCHAL_NUM_AREGS - len/4], len);
 265                }
 266
 267                childregs->syscall = regs->syscall;
 268
 269                if (clone_flags & CLONE_SETTLS)
 270                        childregs->threadptr = tls;
 271        } else {
 272                p->thread.ra = MAKE_RA_FOR_CALL(
 273                                (unsigned long)ret_from_kernel_thread, 1);
 274
 275                /* pass parameters to ret_from_kernel_thread:
 276                 * a2 = thread_fn, a3 = thread_fn arg
 277                 */
 278                SPILL_SLOT(childregs, 3) = thread_fn_arg;
 279                SPILL_SLOT(childregs, 2) = usp_thread_fn;
 280
 281                /* Childregs are only used when we're going to userspace
 282                 * in which case start_thread will set them up.
 283                 */
 284        }
 285
 286#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
 287        ti = task_thread_info(p);
 288        ti->cpenable = 0;
 289#endif
 290
 291        clear_ptrace_hw_breakpoint(p);
 292
 293        return 0;
 294}
 295
 296
 297/*
 298 * These bracket the sleeping functions..
 299 */
 300
 301unsigned long get_wchan(struct task_struct *p)
 302{
 303        unsigned long sp, pc;
 304        unsigned long stack_page = (unsigned long) task_stack_page(p);
 305        int count = 0;
 306
 307        if (!p || p == current || task_is_running(p))
 308                return 0;
 309
 310        sp = p->thread.sp;
 311        pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
 312
 313        do {
 314                if (sp < stack_page + sizeof(struct task_struct) ||
 315                    sp >= (stack_page + THREAD_SIZE) ||
 316                    pc == 0)
 317                        return 0;
 318                if (!in_sched_functions(pc))
 319                        return pc;
 320
 321                /* Stack layout: sp-4: ra, sp-3: sp' */
 322
 323                pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
 324                sp = SPILL_SLOT(sp, 1);
 325        } while (count++ < 16);
 326        return 0;
 327}
 328