linux/crypto/asymmetric_keys/x509_public_key.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Instantiate a public key crypto key from an X.509 Certificate
   3 *
   4 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#define pr_fmt(fmt) "X.509: "fmt
   9#include <linux/module.h>
  10#include <linux/kernel.h>
  11#include <linux/slab.h>
  12#include <keys/asymmetric-subtype.h>
  13#include <keys/asymmetric-parser.h>
  14#include <keys/system_keyring.h>
  15#include <crypto/hash.h>
  16#include "asymmetric_keys.h"
  17#include "x509_parser.h"
  18
  19/*
  20 * Set up the signature parameters in an X.509 certificate.  This involves
  21 * digesting the signed data and extracting the signature.
  22 */
  23int x509_get_sig_params(struct x509_certificate *cert)
  24{
  25        struct public_key_signature *sig = cert->sig;
  26        struct crypto_shash *tfm;
  27        struct shash_desc *desc;
  28        size_t desc_size;
  29        int ret;
  30
  31        pr_devel("==>%s()\n", __func__);
  32
  33        sig->data = cert->tbs;
  34        sig->data_size = cert->tbs_size;
  35
  36        if (!cert->pub->pkey_algo)
  37                cert->unsupported_key = true;
  38
  39        if (!sig->pkey_algo)
  40                cert->unsupported_sig = true;
  41
  42        /* We check the hash if we can - even if we can't then verify it */
  43        if (!sig->hash_algo) {
  44                cert->unsupported_sig = true;
  45                return 0;
  46        }
  47
  48        sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
  49        if (!sig->s)
  50                return -ENOMEM;
  51
  52        sig->s_size = cert->raw_sig_size;
  53
  54        /* Allocate the hashing algorithm we're going to need and find out how
  55         * big the hash operational data will be.
  56         */
  57        tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
  58        if (IS_ERR(tfm)) {
  59                if (PTR_ERR(tfm) == -ENOENT) {
  60                        cert->unsupported_sig = true;
  61                        return 0;
  62                }
  63                return PTR_ERR(tfm);
  64        }
  65
  66        desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
  67        sig->digest_size = crypto_shash_digestsize(tfm);
  68
  69        ret = -ENOMEM;
  70        sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
  71        if (!sig->digest)
  72                goto error;
  73
  74        desc = kzalloc(desc_size, GFP_KERNEL);
  75        if (!desc)
  76                goto error;
  77
  78        desc->tfm = tfm;
  79
  80        ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
  81        if (ret < 0)
  82                goto error_2;
  83
  84        ret = is_hash_blacklisted(sig->digest, sig->digest_size, "tbs");
  85        if (ret == -EKEYREJECTED) {
  86                pr_err("Cert %*phN is blacklisted\n",
  87                       sig->digest_size, sig->digest);
  88                cert->blacklisted = true;
  89                ret = 0;
  90        }
  91
  92error_2:
  93        kfree(desc);
  94error:
  95        crypto_free_shash(tfm);
  96        pr_devel("<==%s() = %d\n", __func__, ret);
  97        return ret;
  98}
  99
 100/*
 101 * Check for self-signedness in an X.509 cert and if found, check the signature
 102 * immediately if we can.
 103 */
 104int x509_check_for_self_signed(struct x509_certificate *cert)
 105{
 106        int ret = 0;
 107
 108        pr_devel("==>%s()\n", __func__);
 109
 110        if (cert->raw_subject_size != cert->raw_issuer_size ||
 111            memcmp(cert->raw_subject, cert->raw_issuer,
 112                   cert->raw_issuer_size) != 0)
 113                goto not_self_signed;
 114
 115        if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
 116                /* If the AKID is present it may have one or two parts.  If
 117                 * both are supplied, both must match.
 118                 */
 119                bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
 120                bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
 121
 122                if (!a && !b)
 123                        goto not_self_signed;
 124
 125                ret = -EKEYREJECTED;
 126                if (((a && !b) || (b && !a)) &&
 127                    cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
 128                        goto out;
 129        }
 130
 131        ret = -EKEYREJECTED;
 132        if (strcmp(cert->pub->pkey_algo, cert->sig->pkey_algo) != 0 &&
 133            (strncmp(cert->pub->pkey_algo, "ecdsa-", 6) != 0 ||
 134             strcmp(cert->sig->pkey_algo, "ecdsa") != 0))
 135                goto out;
 136
 137        ret = public_key_verify_signature(cert->pub, cert->sig);
 138        if (ret < 0) {
 139                if (ret == -ENOPKG) {
 140                        cert->unsupported_sig = true;
 141                        ret = 0;
 142                }
 143                goto out;
 144        }
 145
 146        pr_devel("Cert Self-signature verified");
 147        cert->self_signed = true;
 148
 149out:
 150        pr_devel("<==%s() = %d\n", __func__, ret);
 151        return ret;
 152
 153not_self_signed:
 154        pr_devel("<==%s() = 0 [not]\n", __func__);
 155        return 0;
 156}
 157
 158/*
 159 * Attempt to parse a data blob for a key as an X509 certificate.
 160 */
 161static int x509_key_preparse(struct key_preparsed_payload *prep)
 162{
 163        struct asymmetric_key_ids *kids;
 164        struct x509_certificate *cert;
 165        const char *q;
 166        size_t srlen, sulen;
 167        char *desc = NULL, *p;
 168        int ret;
 169
 170        cert = x509_cert_parse(prep->data, prep->datalen);
 171        if (IS_ERR(cert))
 172                return PTR_ERR(cert);
 173
 174        pr_devel("Cert Issuer: %s\n", cert->issuer);
 175        pr_devel("Cert Subject: %s\n", cert->subject);
 176
 177        if (cert->unsupported_key) {
 178                ret = -ENOPKG;
 179                goto error_free_cert;
 180        }
 181
 182        pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
 183        pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
 184
 185        cert->pub->id_type = "X509";
 186
 187        if (cert->unsupported_sig) {
 188                public_key_signature_free(cert->sig);
 189                cert->sig = NULL;
 190        } else {
 191                pr_devel("Cert Signature: %s + %s\n",
 192                         cert->sig->pkey_algo, cert->sig->hash_algo);
 193        }
 194
 195        /* Don't permit addition of blacklisted keys */
 196        ret = -EKEYREJECTED;
 197        if (cert->blacklisted)
 198                goto error_free_cert;
 199
 200        /* Propose a description */
 201        sulen = strlen(cert->subject);
 202        if (cert->raw_skid) {
 203                srlen = cert->raw_skid_size;
 204                q = cert->raw_skid;
 205        } else {
 206                srlen = cert->raw_serial_size;
 207                q = cert->raw_serial;
 208        }
 209
 210        ret = -ENOMEM;
 211        desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
 212        if (!desc)
 213                goto error_free_cert;
 214        p = memcpy(desc, cert->subject, sulen);
 215        p += sulen;
 216        *p++ = ':';
 217        *p++ = ' ';
 218        p = bin2hex(p, q, srlen);
 219        *p = 0;
 220
 221        kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
 222        if (!kids)
 223                goto error_free_desc;
 224        kids->id[0] = cert->id;
 225        kids->id[1] = cert->skid;
 226
 227        /* We're pinning the module by being linked against it */
 228        __module_get(public_key_subtype.owner);
 229        prep->payload.data[asym_subtype] = &public_key_subtype;
 230        prep->payload.data[asym_key_ids] = kids;
 231        prep->payload.data[asym_crypto] = cert->pub;
 232        prep->payload.data[asym_auth] = cert->sig;
 233        prep->description = desc;
 234        prep->quotalen = 100;
 235
 236        /* We've finished with the certificate */
 237        cert->pub = NULL;
 238        cert->id = NULL;
 239        cert->skid = NULL;
 240        cert->sig = NULL;
 241        desc = NULL;
 242        ret = 0;
 243
 244error_free_desc:
 245        kfree(desc);
 246error_free_cert:
 247        x509_free_certificate(cert);
 248        return ret;
 249}
 250
 251static struct asymmetric_key_parser x509_key_parser = {
 252        .owner  = THIS_MODULE,
 253        .name   = "x509",
 254        .parse  = x509_key_preparse,
 255};
 256
 257/*
 258 * Module stuff
 259 */
 260static int __init x509_key_init(void)
 261{
 262        return register_asymmetric_key_parser(&x509_key_parser);
 263}
 264
 265static void __exit x509_key_exit(void)
 266{
 267        unregister_asymmetric_key_parser(&x509_key_parser);
 268}
 269
 270module_init(x509_key_init);
 271module_exit(x509_key_exit);
 272
 273MODULE_DESCRIPTION("X.509 certificate parser");
 274MODULE_AUTHOR("Red Hat, Inc.");
 275MODULE_LICENSE("GPL");
 276