linux/crypto/ecc.h
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2013, Kenneth MacKay
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are
   7 * met:
   8 *  * Redistributions of source code must retain the above copyright
   9 *   notice, this list of conditions and the following disclaimer.
  10 *  * Redistributions in binary form must reproduce the above copyright
  11 *    notice, this list of conditions and the following disclaimer in the
  12 *    documentation and/or other materials provided with the distribution.
  13 *
  14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25 */
  26#ifndef _CRYPTO_ECC_H
  27#define _CRYPTO_ECC_H
  28
  29#include <crypto/ecc_curve.h>
  30#include <asm/unaligned.h>
  31
  32/* One digit is u64 qword. */
  33#define ECC_CURVE_NIST_P192_DIGITS  3
  34#define ECC_CURVE_NIST_P256_DIGITS  4
  35#define ECC_CURVE_NIST_P384_DIGITS  6
  36#define ECC_MAX_DIGITS              (512 / 64) /* due to ecrdsa */
  37
  38#define ECC_DIGITS_TO_BYTES_SHIFT 3
  39
  40#define ECC_MAX_BYTES (ECC_MAX_DIGITS << ECC_DIGITS_TO_BYTES_SHIFT)
  41
  42#define ECC_POINT_INIT(x, y, ndigits)   (struct ecc_point) { x, y, ndigits }
  43
  44/**
  45 * ecc_swap_digits() - Copy ndigits from big endian array to native array
  46 * @in:       Input array
  47 * @out:      Output array
  48 * @ndigits:  Number of digits to copy
  49 */
  50static inline void ecc_swap_digits(const void *in, u64 *out, unsigned int ndigits)
  51{
  52        const __be64 *src = (__force __be64 *)in;
  53        int i;
  54
  55        for (i = 0; i < ndigits; i++)
  56                out[i] = get_unaligned_be64(&src[ndigits - 1 - i]);
  57}
  58
  59/**
  60 * ecc_is_key_valid() - Validate a given ECDH private key
  61 *
  62 * @curve_id:           id representing the curve to use
  63 * @ndigits:            curve's number of digits
  64 * @private_key:        private key to be used for the given curve
  65 * @private_key_len:    private key length
  66 *
  67 * Returns 0 if the key is acceptable, a negative value otherwise
  68 */
  69int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
  70                     const u64 *private_key, unsigned int private_key_len);
  71
  72/**
  73 * ecc_gen_privkey() -  Generates an ECC private key.
  74 * The private key is a random integer in the range 0 < random < n, where n is a
  75 * prime that is the order of the cyclic subgroup generated by the distinguished
  76 * point G.
  77 * @curve_id:           id representing the curve to use
  78 * @ndigits:            curve number of digits
  79 * @private_key:        buffer for storing the generated private key
  80 *
  81 * Returns 0 if the private key was generated successfully, a negative value
  82 * if an error occurred.
  83 */
  84int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey);
  85
  86/**
  87 * ecc_make_pub_key() - Compute an ECC public key
  88 *
  89 * @curve_id:           id representing the curve to use
  90 * @ndigits:            curve's number of digits
  91 * @private_key:        pregenerated private key for the given curve
  92 * @public_key:         buffer for storing the generated public key
  93 *
  94 * Returns 0 if the public key was generated successfully, a negative value
  95 * if an error occurred.
  96 */
  97int ecc_make_pub_key(const unsigned int curve_id, unsigned int ndigits,
  98                     const u64 *private_key, u64 *public_key);
  99
 100/**
 101 * crypto_ecdh_shared_secret() - Compute a shared secret
 102 *
 103 * @curve_id:           id representing the curve to use
 104 * @ndigits:            curve's number of digits
 105 * @private_key:        private key of part A
 106 * @public_key:         public key of counterpart B
 107 * @secret:             buffer for storing the calculated shared secret
 108 *
 109 * Note: It is recommended that you hash the result of crypto_ecdh_shared_secret
 110 * before using it for symmetric encryption or HMAC.
 111 *
 112 * Returns 0 if the shared secret was generated successfully, a negative value
 113 * if an error occurred.
 114 */
 115int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
 116                              const u64 *private_key, const u64 *public_key,
 117                              u64 *secret);
 118
 119/**
 120 * ecc_is_pubkey_valid_partial() - Partial public key validation
 121 *
 122 * @curve:              elliptic curve domain parameters
 123 * @pk:                 public key as a point
 124 *
 125 * Valdiate public key according to SP800-56A section 5.6.2.3.4 ECC Partial
 126 * Public-Key Validation Routine.
 127 *
 128 * Note: There is no check that the public key is in the correct elliptic curve
 129 * subgroup.
 130 *
 131 * Return: 0 if validation is successful, -EINVAL if validation is failed.
 132 */
 133int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
 134                                struct ecc_point *pk);
 135
 136/**
 137 * ecc_is_pubkey_valid_full() - Full public key validation
 138 *
 139 * @curve:              elliptic curve domain parameters
 140 * @pk:                 public key as a point
 141 *
 142 * Valdiate public key according to SP800-56A section 5.6.2.3.3 ECC Full
 143 * Public-Key Validation Routine.
 144 *
 145 * Return: 0 if validation is successful, -EINVAL if validation is failed.
 146 */
 147int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
 148                             struct ecc_point *pk);
 149
 150/**
 151 * vli_is_zero() - Determine is vli is zero
 152 *
 153 * @vli:                vli to check.
 154 * @ndigits:            length of the @vli
 155 */
 156bool vli_is_zero(const u64 *vli, unsigned int ndigits);
 157
 158/**
 159 * vli_cmp() - compare left and right vlis
 160 *
 161 * @left:               vli
 162 * @right:              vli
 163 * @ndigits:            length of both vlis
 164 *
 165 * Returns sign of @left - @right, i.e. -1 if @left < @right,
 166 * 0 if @left == @right, 1 if @left > @right.
 167 */
 168int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits);
 169
 170/**
 171 * vli_sub() - Subtracts right from left
 172 *
 173 * @result:             where to write result
 174 * @left:               vli
 175 * @right               vli
 176 * @ndigits:            length of all vlis
 177 *
 178 * Note: can modify in-place.
 179 *
 180 * Return: carry bit.
 181 */
 182u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
 183            unsigned int ndigits);
 184
 185/**
 186 * vli_from_be64() - Load vli from big-endian u64 array
 187 *
 188 * @dest:               destination vli
 189 * @src:                source array of u64 BE values
 190 * @ndigits:            length of both vli and array
 191 */
 192void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits);
 193
 194/**
 195 * vli_from_le64() - Load vli from little-endian u64 array
 196 *
 197 * @dest:               destination vli
 198 * @src:                source array of u64 LE values
 199 * @ndigits:            length of both vli and array
 200 */
 201void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits);
 202
 203/**
 204 * vli_mod_inv() - Modular inversion
 205 *
 206 * @result:             where to write vli number
 207 * @input:              vli value to operate on
 208 * @mod:                modulus
 209 * @ndigits:            length of all vlis
 210 */
 211void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
 212                 unsigned int ndigits);
 213
 214/**
 215 * vli_mod_mult_slow() - Modular multiplication
 216 *
 217 * @result:             where to write result value
 218 * @left:               vli number to multiply with @right
 219 * @right:              vli number to multiply with @left
 220 * @mod:                modulus
 221 * @ndigits:            length of all vlis
 222 *
 223 * Note: Assumes that mod is big enough curve order.
 224 */
 225void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
 226                       const u64 *mod, unsigned int ndigits);
 227
 228/**
 229 * ecc_point_mult_shamir() - Add two points multiplied by scalars
 230 *
 231 * @result:             resulting point
 232 * @x:                  scalar to multiply with @p
 233 * @p:                  point to multiply with @x
 234 * @y:                  scalar to multiply with @q
 235 * @q:                  point to multiply with @y
 236 * @curve:              curve
 237 *
 238 * Returns result = x * p + x * q over the curve.
 239 * This works faster than two multiplications and addition.
 240 */
 241void ecc_point_mult_shamir(const struct ecc_point *result,
 242                           const u64 *x, const struct ecc_point *p,
 243                           const u64 *y, const struct ecc_point *q,
 244                           const struct ecc_curve *curve);
 245#endif
 246