linux/drivers/acpi/pptt.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
   4 *
   5 * Copyright (C) 2018, ARM
   6 *
   7 * This file implements parsing of the Processor Properties Topology Table
   8 * which is optionally used to describe the processor and cache topology.
   9 * Due to the relative pointers used throughout the table, this doesn't
  10 * leverage the existing subtable parsing in the kernel.
  11 *
  12 * The PPTT structure is an inverted tree, with each node potentially
  13 * holding one or two inverted tree data structures describing
  14 * the caches available at that level. Each cache structure optionally
  15 * contains properties describing the cache at a given level which can be
  16 * used to override hardware probed values.
  17 */
  18#define pr_fmt(fmt) "ACPI PPTT: " fmt
  19
  20#include <linux/acpi.h>
  21#include <linux/cacheinfo.h>
  22#include <acpi/processor.h>
  23
  24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
  25                                                        u32 pptt_ref)
  26{
  27        struct acpi_subtable_header *entry;
  28
  29        /* there isn't a subtable at reference 0 */
  30        if (pptt_ref < sizeof(struct acpi_subtable_header))
  31                return NULL;
  32
  33        if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
  34                return NULL;
  35
  36        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
  37
  38        if (entry->length == 0)
  39                return NULL;
  40
  41        if (pptt_ref + entry->length > table_hdr->length)
  42                return NULL;
  43
  44        return entry;
  45}
  46
  47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
  48                                                   u32 pptt_ref)
  49{
  50        return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
  51}
  52
  53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
  54                                                u32 pptt_ref)
  55{
  56        return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
  57}
  58
  59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
  60                                                           struct acpi_pptt_processor *node,
  61                                                           int resource)
  62{
  63        u32 *ref;
  64
  65        if (resource >= node->number_of_priv_resources)
  66                return NULL;
  67
  68        ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
  69        ref += resource;
  70
  71        return fetch_pptt_subtable(table_hdr, *ref);
  72}
  73
  74static inline bool acpi_pptt_match_type(int table_type, int type)
  75{
  76        return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
  77                table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
  78}
  79
  80/**
  81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
  82 * @table_hdr: Pointer to the head of the PPTT table
  83 * @local_level: passed res reflects this cache level
  84 * @res: cache resource in the PPTT we want to walk
  85 * @found: returns a pointer to the requested level if found
  86 * @level: the requested cache level
  87 * @type: the requested cache type
  88 *
  89 * Attempt to find a given cache level, while counting the max number
  90 * of cache levels for the cache node.
  91 *
  92 * Given a pptt resource, verify that it is a cache node, then walk
  93 * down each level of caches, counting how many levels are found
  94 * as well as checking the cache type (icache, dcache, unified). If a
  95 * level & type match, then we set found, and continue the search.
  96 * Once the entire cache branch has been walked return its max
  97 * depth.
  98 *
  99 * Return: The cache structure and the level we terminated with.
 100 */
 101static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
 102                                         unsigned int local_level,
 103                                         struct acpi_subtable_header *res,
 104                                         struct acpi_pptt_cache **found,
 105                                         unsigned int level, int type)
 106{
 107        struct acpi_pptt_cache *cache;
 108
 109        if (res->type != ACPI_PPTT_TYPE_CACHE)
 110                return 0;
 111
 112        cache = (struct acpi_pptt_cache *) res;
 113        while (cache) {
 114                local_level++;
 115
 116                if (local_level == level &&
 117                    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
 118                    acpi_pptt_match_type(cache->attributes, type)) {
 119                        if (*found != NULL && cache != *found)
 120                                pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
 121
 122                        pr_debug("Found cache @ level %u\n", level);
 123                        *found = cache;
 124                        /*
 125                         * continue looking at this node's resource list
 126                         * to verify that we don't find a duplicate
 127                         * cache node.
 128                         */
 129                }
 130                cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
 131        }
 132        return local_level;
 133}
 134
 135static struct acpi_pptt_cache *
 136acpi_find_cache_level(struct acpi_table_header *table_hdr,
 137                      struct acpi_pptt_processor *cpu_node,
 138                      unsigned int *starting_level, unsigned int level,
 139                      int type)
 140{
 141        struct acpi_subtable_header *res;
 142        unsigned int number_of_levels = *starting_level;
 143        int resource = 0;
 144        struct acpi_pptt_cache *ret = NULL;
 145        unsigned int local_level;
 146
 147        /* walk down from processor node */
 148        while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
 149                resource++;
 150
 151                local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
 152                                                   res, &ret, level, type);
 153                /*
 154                 * we are looking for the max depth. Since its potentially
 155                 * possible for a given node to have resources with differing
 156                 * depths verify that the depth we have found is the largest.
 157                 */
 158                if (number_of_levels < local_level)
 159                        number_of_levels = local_level;
 160        }
 161        if (number_of_levels > *starting_level)
 162                *starting_level = number_of_levels;
 163
 164        return ret;
 165}
 166
 167/**
 168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
 169 * @table_hdr: Pointer to the head of the PPTT table
 170 * @cpu_node: processor node we wish to count caches for
 171 *
 172 * Given a processor node containing a processing unit, walk into it and count
 173 * how many levels exist solely for it, and then walk up each level until we hit
 174 * the root node (ignore the package level because it may be possible to have
 175 * caches that exist across packages). Count the number of cache levels that
 176 * exist at each level on the way up.
 177 *
 178 * Return: Total number of levels found.
 179 */
 180static int acpi_count_levels(struct acpi_table_header *table_hdr,
 181                             struct acpi_pptt_processor *cpu_node)
 182{
 183        int total_levels = 0;
 184
 185        do {
 186                acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
 187                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 188        } while (cpu_node);
 189
 190        return total_levels;
 191}
 192
 193/**
 194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
 195 * @table_hdr: Pointer to the head of the PPTT table
 196 * @node: passed node is checked to see if its a leaf
 197 *
 198 * Determine if the *node parameter is a leaf node by iterating the
 199 * PPTT table, looking for nodes which reference it.
 200 *
 201 * Return: 0 if we find a node referencing the passed node (or table error),
 202 * or 1 if we don't.
 203 */
 204static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
 205                               struct acpi_pptt_processor *node)
 206{
 207        struct acpi_subtable_header *entry;
 208        unsigned long table_end;
 209        u32 node_entry;
 210        struct acpi_pptt_processor *cpu_node;
 211        u32 proc_sz;
 212
 213        if (table_hdr->revision > 1)
 214                return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
 215
 216        table_end = (unsigned long)table_hdr + table_hdr->length;
 217        node_entry = ACPI_PTR_DIFF(node, table_hdr);
 218        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 219                             sizeof(struct acpi_table_pptt));
 220        proc_sz = sizeof(struct acpi_pptt_processor *);
 221
 222        while ((unsigned long)entry + proc_sz < table_end) {
 223                cpu_node = (struct acpi_pptt_processor *)entry;
 224                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 225                    cpu_node->parent == node_entry)
 226                        return 0;
 227                if (entry->length == 0)
 228                        return 0;
 229                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 230                                     entry->length);
 231
 232        }
 233        return 1;
 234}
 235
 236/**
 237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
 238 * @table_hdr:  Pointer to the head of the PPTT table
 239 * @acpi_cpu_id: CPU we are searching for
 240 *
 241 * Find the subtable entry describing the provided processor.
 242 * This is done by iterating the PPTT table looking for processor nodes
 243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
 244 * passed into the function. If we find a node that matches this criteria
 245 * we verify that its a leaf node in the topology rather than depending
 246 * on the valid flag, which doesn't need to be set for leaf nodes.
 247 *
 248 * Return: NULL, or the processors acpi_pptt_processor*
 249 */
 250static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
 251                                                            u32 acpi_cpu_id)
 252{
 253        struct acpi_subtable_header *entry;
 254        unsigned long table_end;
 255        struct acpi_pptt_processor *cpu_node;
 256        u32 proc_sz;
 257
 258        table_end = (unsigned long)table_hdr + table_hdr->length;
 259        entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
 260                             sizeof(struct acpi_table_pptt));
 261        proc_sz = sizeof(struct acpi_pptt_processor *);
 262
 263        /* find the processor structure associated with this cpuid */
 264        while ((unsigned long)entry + proc_sz < table_end) {
 265                cpu_node = (struct acpi_pptt_processor *)entry;
 266
 267                if (entry->length == 0) {
 268                        pr_warn("Invalid zero length subtable\n");
 269                        break;
 270                }
 271                if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
 272                    acpi_cpu_id == cpu_node->acpi_processor_id &&
 273                     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
 274                        return (struct acpi_pptt_processor *)entry;
 275                }
 276
 277                entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
 278                                     entry->length);
 279        }
 280
 281        return NULL;
 282}
 283
 284static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
 285                                  u32 acpi_cpu_id)
 286{
 287        int number_of_levels = 0;
 288        struct acpi_pptt_processor *cpu;
 289
 290        cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 291        if (cpu)
 292                number_of_levels = acpi_count_levels(table_hdr, cpu);
 293
 294        return number_of_levels;
 295}
 296
 297static u8 acpi_cache_type(enum cache_type type)
 298{
 299        switch (type) {
 300        case CACHE_TYPE_DATA:
 301                pr_debug("Looking for data cache\n");
 302                return ACPI_PPTT_CACHE_TYPE_DATA;
 303        case CACHE_TYPE_INST:
 304                pr_debug("Looking for instruction cache\n");
 305                return ACPI_PPTT_CACHE_TYPE_INSTR;
 306        default:
 307        case CACHE_TYPE_UNIFIED:
 308                pr_debug("Looking for unified cache\n");
 309                /*
 310                 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
 311                 * contains the bit pattern that will match both
 312                 * ACPI unified bit patterns because we use it later
 313                 * to match both cases.
 314                 */
 315                return ACPI_PPTT_CACHE_TYPE_UNIFIED;
 316        }
 317}
 318
 319static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
 320                                                    u32 acpi_cpu_id,
 321                                                    enum cache_type type,
 322                                                    unsigned int level,
 323                                                    struct acpi_pptt_processor **node)
 324{
 325        unsigned int total_levels = 0;
 326        struct acpi_pptt_cache *found = NULL;
 327        struct acpi_pptt_processor *cpu_node;
 328        u8 acpi_type = acpi_cache_type(type);
 329
 330        pr_debug("Looking for CPU %d's level %u cache type %d\n",
 331                 acpi_cpu_id, level, acpi_type);
 332
 333        cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
 334
 335        while (cpu_node && !found) {
 336                found = acpi_find_cache_level(table_hdr, cpu_node,
 337                                              &total_levels, level, acpi_type);
 338                *node = cpu_node;
 339                cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
 340        }
 341
 342        return found;
 343}
 344
 345/**
 346 * update_cache_properties() - Update cacheinfo for the given processor
 347 * @this_leaf: Kernel cache info structure being updated
 348 * @found_cache: The PPTT node describing this cache instance
 349 * @cpu_node: A unique reference to describe this cache instance
 350 * @revision: The revision of the PPTT table
 351 *
 352 * The ACPI spec implies that the fields in the cache structures are used to
 353 * extend and correct the information probed from the hardware. Lets only
 354 * set fields that we determine are VALID.
 355 *
 356 * Return: nothing. Side effect of updating the global cacheinfo
 357 */
 358static void update_cache_properties(struct cacheinfo *this_leaf,
 359                                    struct acpi_pptt_cache *found_cache,
 360                                    struct acpi_pptt_processor *cpu_node,
 361                                    u8 revision)
 362{
 363        struct acpi_pptt_cache_v1* found_cache_v1;
 364
 365        this_leaf->fw_token = cpu_node;
 366        if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
 367                this_leaf->size = found_cache->size;
 368        if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
 369                this_leaf->coherency_line_size = found_cache->line_size;
 370        if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
 371                this_leaf->number_of_sets = found_cache->number_of_sets;
 372        if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
 373                this_leaf->ways_of_associativity = found_cache->associativity;
 374        if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
 375                switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
 376                case ACPI_PPTT_CACHE_POLICY_WT:
 377                        this_leaf->attributes = CACHE_WRITE_THROUGH;
 378                        break;
 379                case ACPI_PPTT_CACHE_POLICY_WB:
 380                        this_leaf->attributes = CACHE_WRITE_BACK;
 381                        break;
 382                }
 383        }
 384        if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
 385                switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
 386                case ACPI_PPTT_CACHE_READ_ALLOCATE:
 387                        this_leaf->attributes |= CACHE_READ_ALLOCATE;
 388                        break;
 389                case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
 390                        this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
 391                        break;
 392                case ACPI_PPTT_CACHE_RW_ALLOCATE:
 393                case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
 394                        this_leaf->attributes |=
 395                                CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
 396                        break;
 397                }
 398        }
 399        /*
 400         * If cache type is NOCACHE, then the cache hasn't been specified
 401         * via other mechanisms.  Update the type if a cache type has been
 402         * provided.
 403         *
 404         * Note, we assume such caches are unified based on conventional system
 405         * design and known examples.  Significant work is required elsewhere to
 406         * fully support data/instruction only type caches which are only
 407         * specified in PPTT.
 408         */
 409        if (this_leaf->type == CACHE_TYPE_NOCACHE &&
 410            found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
 411                this_leaf->type = CACHE_TYPE_UNIFIED;
 412
 413        if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
 414                found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
 415                                              found_cache, sizeof(struct acpi_pptt_cache));
 416                this_leaf->id = found_cache_v1->cache_id;
 417                this_leaf->attributes |= CACHE_ID;
 418        }
 419}
 420
 421static void cache_setup_acpi_cpu(struct acpi_table_header *table,
 422                                 unsigned int cpu)
 423{
 424        struct acpi_pptt_cache *found_cache;
 425        struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 426        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 427        struct cacheinfo *this_leaf;
 428        unsigned int index = 0;
 429        struct acpi_pptt_processor *cpu_node = NULL;
 430
 431        while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
 432                this_leaf = this_cpu_ci->info_list + index;
 433                found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 434                                                   this_leaf->type,
 435                                                   this_leaf->level,
 436                                                   &cpu_node);
 437                pr_debug("found = %p %p\n", found_cache, cpu_node);
 438                if (found_cache)
 439                        update_cache_properties(this_leaf, found_cache,
 440                                                cpu_node, table->revision);
 441
 442                index++;
 443        }
 444}
 445
 446static bool flag_identical(struct acpi_table_header *table_hdr,
 447                           struct acpi_pptt_processor *cpu)
 448{
 449        struct acpi_pptt_processor *next;
 450
 451        /* heterogeneous machines must use PPTT revision > 1 */
 452        if (table_hdr->revision < 2)
 453                return false;
 454
 455        /* Locate the last node in the tree with IDENTICAL set */
 456        if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
 457                next = fetch_pptt_node(table_hdr, cpu->parent);
 458                if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
 459                        return true;
 460        }
 461
 462        return false;
 463}
 464
 465/* Passing level values greater than this will result in search termination */
 466#define PPTT_ABORT_PACKAGE 0xFF
 467
 468static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
 469                                                           struct acpi_pptt_processor *cpu,
 470                                                           int level, int flag)
 471{
 472        struct acpi_pptt_processor *prev_node;
 473
 474        while (cpu && level) {
 475                /* special case the identical flag to find last identical */
 476                if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
 477                        if (flag_identical(table_hdr, cpu))
 478                                break;
 479                } else if (cpu->flags & flag)
 480                        break;
 481                pr_debug("level %d\n", level);
 482                prev_node = fetch_pptt_node(table_hdr, cpu->parent);
 483                if (prev_node == NULL)
 484                        break;
 485                cpu = prev_node;
 486                level--;
 487        }
 488        return cpu;
 489}
 490
 491static void acpi_pptt_warn_missing(void)
 492{
 493        pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
 494}
 495
 496/**
 497 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
 498 * @table: Pointer to the head of the PPTT table
 499 * @cpu: Kernel logical CPU number
 500 * @level: A level that terminates the search
 501 * @flag: A flag which terminates the search
 502 *
 503 * Get a unique value given a CPU, and a topology level, that can be
 504 * matched to determine which cpus share common topological features
 505 * at that level.
 506 *
 507 * Return: Unique value, or -ENOENT if unable to locate CPU
 508 */
 509static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
 510                                     unsigned int cpu, int level, int flag)
 511{
 512        struct acpi_pptt_processor *cpu_node;
 513        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 514
 515        cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
 516        if (cpu_node) {
 517                cpu_node = acpi_find_processor_tag(table, cpu_node,
 518                                                   level, flag);
 519                /*
 520                 * As per specification if the processor structure represents
 521                 * an actual processor, then ACPI processor ID must be valid.
 522                 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
 523                 * should be set if the UID is valid
 524                 */
 525                if (level == 0 ||
 526                    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
 527                        return cpu_node->acpi_processor_id;
 528                return ACPI_PTR_DIFF(cpu_node, table);
 529        }
 530        pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
 531                    cpu, acpi_cpu_id);
 532        return -ENOENT;
 533}
 534
 535static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
 536{
 537        struct acpi_table_header *table;
 538        acpi_status status;
 539        int retval;
 540
 541        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 542        if (ACPI_FAILURE(status)) {
 543                acpi_pptt_warn_missing();
 544                return -ENOENT;
 545        }
 546        retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
 547        pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
 548                 cpu, level, retval);
 549        acpi_put_table(table);
 550
 551        return retval;
 552}
 553
 554/**
 555 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
 556 * @cpu: Kernel logical CPU number
 557 * @rev: The minimum PPTT revision defining the flag
 558 * @flag: The flag itself
 559 *
 560 * Check the node representing a CPU for a given flag.
 561 *
 562 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
 563 *         the table revision isn't new enough.
 564 *         1, any passed flag set
 565 *         0, flag unset
 566 */
 567static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
 568{
 569        struct acpi_table_header *table;
 570        acpi_status status;
 571        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 572        struct acpi_pptt_processor *cpu_node = NULL;
 573        int ret = -ENOENT;
 574
 575        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 576        if (ACPI_FAILURE(status)) {
 577                acpi_pptt_warn_missing();
 578                return ret;
 579        }
 580
 581        if (table->revision >= rev)
 582                cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
 583
 584        if (cpu_node)
 585                ret = (cpu_node->flags & flag) != 0;
 586
 587        acpi_put_table(table);
 588
 589        return ret;
 590}
 591
 592/**
 593 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
 594 * @cpu: Kernel logical CPU number
 595 *
 596 * Given a logical CPU number, returns the number of levels of cache represented
 597 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
 598 * indicating we didn't find any cache levels.
 599 *
 600 * Return: Cache levels visible to this core.
 601 */
 602int acpi_find_last_cache_level(unsigned int cpu)
 603{
 604        u32 acpi_cpu_id;
 605        struct acpi_table_header *table;
 606        int number_of_levels = 0;
 607        acpi_status status;
 608
 609        pr_debug("Cache Setup find last level CPU=%d\n", cpu);
 610
 611        acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 612        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 613        if (ACPI_FAILURE(status)) {
 614                acpi_pptt_warn_missing();
 615        } else {
 616                number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
 617                acpi_put_table(table);
 618        }
 619        pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
 620
 621        return number_of_levels;
 622}
 623
 624/**
 625 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
 626 * @cpu: Kernel logical CPU number
 627 *
 628 * Updates the global cache info provided by cpu_get_cacheinfo()
 629 * when there are valid properties in the acpi_pptt_cache nodes. A
 630 * successful parse may not result in any updates if none of the
 631 * cache levels have any valid flags set.  Further, a unique value is
 632 * associated with each known CPU cache entry. This unique value
 633 * can be used to determine whether caches are shared between CPUs.
 634 *
 635 * Return: -ENOENT on failure to find table, or 0 on success
 636 */
 637int cache_setup_acpi(unsigned int cpu)
 638{
 639        struct acpi_table_header *table;
 640        acpi_status status;
 641
 642        pr_debug("Cache Setup ACPI CPU %d\n", cpu);
 643
 644        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 645        if (ACPI_FAILURE(status)) {
 646                acpi_pptt_warn_missing();
 647                return -ENOENT;
 648        }
 649
 650        cache_setup_acpi_cpu(table, cpu);
 651        acpi_put_table(table);
 652
 653        return status;
 654}
 655
 656/**
 657 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
 658 * @cpu: Kernel logical CPU number
 659 *
 660 * Return: 1, a thread
 661 *         0, not a thread
 662 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
 663 *         the table revision isn't new enough.
 664 */
 665int acpi_pptt_cpu_is_thread(unsigned int cpu)
 666{
 667        return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
 668}
 669
 670/**
 671 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
 672 * @cpu: Kernel logical CPU number
 673 * @level: The topological level for which we would like a unique ID
 674 *
 675 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
 676 * /socket/etc. This ID can then be used to group peers, which will have
 677 * matching ids.
 678 *
 679 * The search terminates when either the requested level is found or
 680 * we reach a root node. Levels beyond the termination point will return the
 681 * same unique ID. The unique id for level 0 is the acpi processor id. All
 682 * other levels beyond this use a generated value to uniquely identify
 683 * a topological feature.
 684 *
 685 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 686 * Otherwise returns a value which represents a unique topological feature.
 687 */
 688int find_acpi_cpu_topology(unsigned int cpu, int level)
 689{
 690        return find_acpi_cpu_topology_tag(cpu, level, 0);
 691}
 692
 693/**
 694 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
 695 * @cpu: Kernel logical CPU number
 696 * @level: The cache level for which we would like a unique ID
 697 *
 698 * Determine a unique ID for each unified cache in the system
 699 *
 700 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 701 * Otherwise returns a value which represents a unique topological feature.
 702 */
 703int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
 704{
 705        struct acpi_table_header *table;
 706        struct acpi_pptt_cache *found_cache;
 707        acpi_status status;
 708        u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
 709        struct acpi_pptt_processor *cpu_node = NULL;
 710        int ret = -1;
 711
 712        status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
 713        if (ACPI_FAILURE(status)) {
 714                acpi_pptt_warn_missing();
 715                return -ENOENT;
 716        }
 717
 718        found_cache = acpi_find_cache_node(table, acpi_cpu_id,
 719                                           CACHE_TYPE_UNIFIED,
 720                                           level,
 721                                           &cpu_node);
 722        if (found_cache)
 723                ret = ACPI_PTR_DIFF(cpu_node, table);
 724
 725        acpi_put_table(table);
 726
 727        return ret;
 728}
 729
 730/**
 731 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
 732 * @cpu: Kernel logical CPU number
 733 *
 734 * Determine a topology unique package ID for the given CPU.
 735 * This ID can then be used to group peers, which will have matching ids.
 736 *
 737 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
 738 * flag set or we reach a root node.
 739 *
 740 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 741 * Otherwise returns a value which represents the package for this CPU.
 742 */
 743int find_acpi_cpu_topology_package(unsigned int cpu)
 744{
 745        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 746                                          ACPI_PPTT_PHYSICAL_PACKAGE);
 747}
 748
 749/**
 750 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
 751 * @cpu: Kernel logical CPU number
 752 *
 753 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
 754 * implementation should have matching tags.
 755 *
 756 * The returned tag can be used to group peers with identical implementation.
 757 *
 758 * The search terminates when a level is found with the identical implementation
 759 * flag set or we reach a root node.
 760 *
 761 * Due to limitations in the PPTT data structure, there may be rare situations
 762 * where two cores in a heterogeneous machine may be identical, but won't have
 763 * the same tag.
 764 *
 765 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 766 * Otherwise returns a value which represents a group of identical cores
 767 * similar to this CPU.
 768 */
 769int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
 770{
 771        return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
 772                                          ACPI_PPTT_ACPI_IDENTICAL);
 773}
 774