linux/drivers/acpi/processor_idle.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * processor_idle - idle state submodule to the ACPI processor driver
   4 *
   5 *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
   6 *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
   7 *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
   8 *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   9 *                      - Added processor hotplug support
  10 *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  11 *                      - Added support for C3 on SMP
  12 */
  13#define pr_fmt(fmt) "ACPI: " fmt
  14
  15#include <linux/module.h>
  16#include <linux/acpi.h>
  17#include <linux/dmi.h>
  18#include <linux/sched.h>       /* need_resched() */
  19#include <linux/sort.h>
  20#include <linux/tick.h>
  21#include <linux/cpuidle.h>
  22#include <linux/cpu.h>
  23#include <acpi/processor.h>
  24
  25/*
  26 * Include the apic definitions for x86 to have the APIC timer related defines
  27 * available also for UP (on SMP it gets magically included via linux/smp.h).
  28 * asm/acpi.h is not an option, as it would require more include magic. Also
  29 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
  30 */
  31#ifdef CONFIG_X86
  32#include <asm/apic.h>
  33#include <asm/cpu.h>
  34#endif
  35
  36#define ACPI_IDLE_STATE_START   (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
  37
  38static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
  39module_param(max_cstate, uint, 0000);
  40static unsigned int nocst __read_mostly;
  41module_param(nocst, uint, 0000);
  42static int bm_check_disable __read_mostly;
  43module_param(bm_check_disable, uint, 0000);
  44
  45static unsigned int latency_factor __read_mostly = 2;
  46module_param(latency_factor, uint, 0644);
  47
  48static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
  49
  50struct cpuidle_driver acpi_idle_driver = {
  51        .name =         "acpi_idle",
  52        .owner =        THIS_MODULE,
  53};
  54
  55#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
  56static
  57DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
  58
  59static int disabled_by_idle_boot_param(void)
  60{
  61        return boot_option_idle_override == IDLE_POLL ||
  62                boot_option_idle_override == IDLE_HALT;
  63}
  64
  65/*
  66 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
  67 * For now disable this. Probably a bug somewhere else.
  68 *
  69 * To skip this limit, boot/load with a large max_cstate limit.
  70 */
  71static int set_max_cstate(const struct dmi_system_id *id)
  72{
  73        if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
  74                return 0;
  75
  76        pr_notice("%s detected - limiting to C%ld max_cstate."
  77                  " Override with \"processor.max_cstate=%d\"\n", id->ident,
  78                  (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
  79
  80        max_cstate = (long)id->driver_data;
  81
  82        return 0;
  83}
  84
  85static const struct dmi_system_id processor_power_dmi_table[] = {
  86        { set_max_cstate, "Clevo 5600D", {
  87          DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
  88          DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
  89         (void *)2},
  90        { set_max_cstate, "Pavilion zv5000", {
  91          DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
  92          DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
  93         (void *)1},
  94        { set_max_cstate, "Asus L8400B", {
  95          DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
  96          DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
  97         (void *)1},
  98        {},
  99};
 100
 101
 102/*
 103 * Callers should disable interrupts before the call and enable
 104 * interrupts after return.
 105 */
 106static void __cpuidle acpi_safe_halt(void)
 107{
 108        if (!tif_need_resched()) {
 109                safe_halt();
 110                local_irq_disable();
 111        }
 112}
 113
 114#ifdef ARCH_APICTIMER_STOPS_ON_C3
 115
 116/*
 117 * Some BIOS implementations switch to C3 in the published C2 state.
 118 * This seems to be a common problem on AMD boxen, but other vendors
 119 * are affected too. We pick the most conservative approach: we assume
 120 * that the local APIC stops in both C2 and C3.
 121 */
 122static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 123                                   struct acpi_processor_cx *cx)
 124{
 125        struct acpi_processor_power *pwr = &pr->power;
 126        u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
 127
 128        if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
 129                return;
 130
 131        if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
 132                type = ACPI_STATE_C1;
 133
 134        /*
 135         * Check, if one of the previous states already marked the lapic
 136         * unstable
 137         */
 138        if (pwr->timer_broadcast_on_state < state)
 139                return;
 140
 141        if (cx->type >= type)
 142                pr->power.timer_broadcast_on_state = state;
 143}
 144
 145static void __lapic_timer_propagate_broadcast(void *arg)
 146{
 147        struct acpi_processor *pr = (struct acpi_processor *) arg;
 148
 149        if (pr->power.timer_broadcast_on_state < INT_MAX)
 150                tick_broadcast_enable();
 151        else
 152                tick_broadcast_disable();
 153}
 154
 155static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
 156{
 157        smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
 158                                 (void *)pr, 1);
 159}
 160
 161/* Power(C) State timer broadcast control */
 162static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 163                                        struct acpi_processor_cx *cx)
 164{
 165        return cx - pr->power.states >= pr->power.timer_broadcast_on_state;
 166}
 167
 168#else
 169
 170static void lapic_timer_check_state(int state, struct acpi_processor *pr,
 171                                   struct acpi_processor_cx *cstate) { }
 172static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
 173
 174static bool lapic_timer_needs_broadcast(struct acpi_processor *pr,
 175                                        struct acpi_processor_cx *cx)
 176{
 177        return false;
 178}
 179
 180#endif
 181
 182#if defined(CONFIG_X86)
 183static void tsc_check_state(int state)
 184{
 185        switch (boot_cpu_data.x86_vendor) {
 186        case X86_VENDOR_HYGON:
 187        case X86_VENDOR_AMD:
 188        case X86_VENDOR_INTEL:
 189        case X86_VENDOR_CENTAUR:
 190        case X86_VENDOR_ZHAOXIN:
 191                /*
 192                 * AMD Fam10h TSC will tick in all
 193                 * C/P/S0/S1 states when this bit is set.
 194                 */
 195                if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 196                        return;
 197                fallthrough;
 198        default:
 199                /* TSC could halt in idle, so notify users */
 200                if (state > ACPI_STATE_C1)
 201                        mark_tsc_unstable("TSC halts in idle");
 202        }
 203}
 204#else
 205static void tsc_check_state(int state) { return; }
 206#endif
 207
 208static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
 209{
 210
 211        if (!pr->pblk)
 212                return -ENODEV;
 213
 214        /* if info is obtained from pblk/fadt, type equals state */
 215        pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
 216        pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
 217
 218#ifndef CONFIG_HOTPLUG_CPU
 219        /*
 220         * Check for P_LVL2_UP flag before entering C2 and above on
 221         * an SMP system.
 222         */
 223        if ((num_online_cpus() > 1) &&
 224            !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
 225                return -ENODEV;
 226#endif
 227
 228        /* determine C2 and C3 address from pblk */
 229        pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
 230        pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
 231
 232        /* determine latencies from FADT */
 233        pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
 234        pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
 235
 236        /*
 237         * FADT specified C2 latency must be less than or equal to
 238         * 100 microseconds.
 239         */
 240        if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
 241                acpi_handle_debug(pr->handle, "C2 latency too large [%d]\n",
 242                                  acpi_gbl_FADT.c2_latency);
 243                /* invalidate C2 */
 244                pr->power.states[ACPI_STATE_C2].address = 0;
 245        }
 246
 247        /*
 248         * FADT supplied C3 latency must be less than or equal to
 249         * 1000 microseconds.
 250         */
 251        if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
 252                acpi_handle_debug(pr->handle, "C3 latency too large [%d]\n",
 253                                  acpi_gbl_FADT.c3_latency);
 254                /* invalidate C3 */
 255                pr->power.states[ACPI_STATE_C3].address = 0;
 256        }
 257
 258        acpi_handle_debug(pr->handle, "lvl2[0x%08x] lvl3[0x%08x]\n",
 259                          pr->power.states[ACPI_STATE_C2].address,
 260                          pr->power.states[ACPI_STATE_C3].address);
 261
 262        snprintf(pr->power.states[ACPI_STATE_C2].desc,
 263                         ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
 264                         pr->power.states[ACPI_STATE_C2].address);
 265        snprintf(pr->power.states[ACPI_STATE_C3].desc,
 266                         ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
 267                         pr->power.states[ACPI_STATE_C3].address);
 268
 269        return 0;
 270}
 271
 272static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
 273{
 274        if (!pr->power.states[ACPI_STATE_C1].valid) {
 275                /* set the first C-State to C1 */
 276                /* all processors need to support C1 */
 277                pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
 278                pr->power.states[ACPI_STATE_C1].valid = 1;
 279                pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
 280
 281                snprintf(pr->power.states[ACPI_STATE_C1].desc,
 282                         ACPI_CX_DESC_LEN, "ACPI HLT");
 283        }
 284        /* the C0 state only exists as a filler in our array */
 285        pr->power.states[ACPI_STATE_C0].valid = 1;
 286        return 0;
 287}
 288
 289static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
 290{
 291        int ret;
 292
 293        if (nocst)
 294                return -ENODEV;
 295
 296        ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
 297        if (ret)
 298                return ret;
 299
 300        if (!pr->power.count)
 301                return -EFAULT;
 302
 303        pr->flags.has_cst = 1;
 304        return 0;
 305}
 306
 307static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
 308                                           struct acpi_processor_cx *cx)
 309{
 310        static int bm_check_flag = -1;
 311        static int bm_control_flag = -1;
 312
 313
 314        if (!cx->address)
 315                return;
 316
 317        /*
 318         * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
 319         * DMA transfers are used by any ISA device to avoid livelock.
 320         * Note that we could disable Type-F DMA (as recommended by
 321         * the erratum), but this is known to disrupt certain ISA
 322         * devices thus we take the conservative approach.
 323         */
 324        else if (errata.piix4.fdma) {
 325                acpi_handle_debug(pr->handle,
 326                                  "C3 not supported on PIIX4 with Type-F DMA\n");
 327                return;
 328        }
 329
 330        /* All the logic here assumes flags.bm_check is same across all CPUs */
 331        if (bm_check_flag == -1) {
 332                /* Determine whether bm_check is needed based on CPU  */
 333                acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
 334                bm_check_flag = pr->flags.bm_check;
 335                bm_control_flag = pr->flags.bm_control;
 336        } else {
 337                pr->flags.bm_check = bm_check_flag;
 338                pr->flags.bm_control = bm_control_flag;
 339        }
 340
 341        if (pr->flags.bm_check) {
 342                if (!pr->flags.bm_control) {
 343                        if (pr->flags.has_cst != 1) {
 344                                /* bus mastering control is necessary */
 345                                acpi_handle_debug(pr->handle,
 346                                                  "C3 support requires BM control\n");
 347                                return;
 348                        } else {
 349                                /* Here we enter C3 without bus mastering */
 350                                acpi_handle_debug(pr->handle,
 351                                                  "C3 support without BM control\n");
 352                        }
 353                }
 354        } else {
 355                /*
 356                 * WBINVD should be set in fadt, for C3 state to be
 357                 * supported on when bm_check is not required.
 358                 */
 359                if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
 360                        acpi_handle_debug(pr->handle,
 361                                          "Cache invalidation should work properly"
 362                                          " for C3 to be enabled on SMP systems\n");
 363                        return;
 364                }
 365        }
 366
 367        /*
 368         * Otherwise we've met all of our C3 requirements.
 369         * Normalize the C3 latency to expidite policy.  Enable
 370         * checking of bus mastering status (bm_check) so we can
 371         * use this in our C3 policy
 372         */
 373        cx->valid = 1;
 374
 375        /*
 376         * On older chipsets, BM_RLD needs to be set
 377         * in order for Bus Master activity to wake the
 378         * system from C3.  Newer chipsets handle DMA
 379         * during C3 automatically and BM_RLD is a NOP.
 380         * In either case, the proper way to
 381         * handle BM_RLD is to set it and leave it set.
 382         */
 383        acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
 384
 385        return;
 386}
 387
 388static int acpi_cst_latency_cmp(const void *a, const void *b)
 389{
 390        const struct acpi_processor_cx *x = a, *y = b;
 391
 392        if (!(x->valid && y->valid))
 393                return 0;
 394        if (x->latency > y->latency)
 395                return 1;
 396        if (x->latency < y->latency)
 397                return -1;
 398        return 0;
 399}
 400static void acpi_cst_latency_swap(void *a, void *b, int n)
 401{
 402        struct acpi_processor_cx *x = a, *y = b;
 403        u32 tmp;
 404
 405        if (!(x->valid && y->valid))
 406                return;
 407        tmp = x->latency;
 408        x->latency = y->latency;
 409        y->latency = tmp;
 410}
 411
 412static int acpi_processor_power_verify(struct acpi_processor *pr)
 413{
 414        unsigned int i;
 415        unsigned int working = 0;
 416        unsigned int last_latency = 0;
 417        unsigned int last_type = 0;
 418        bool buggy_latency = false;
 419
 420        pr->power.timer_broadcast_on_state = INT_MAX;
 421
 422        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 423                struct acpi_processor_cx *cx = &pr->power.states[i];
 424
 425                switch (cx->type) {
 426                case ACPI_STATE_C1:
 427                        cx->valid = 1;
 428                        break;
 429
 430                case ACPI_STATE_C2:
 431                        if (!cx->address)
 432                                break;
 433                        cx->valid = 1;
 434                        break;
 435
 436                case ACPI_STATE_C3:
 437                        acpi_processor_power_verify_c3(pr, cx);
 438                        break;
 439                }
 440                if (!cx->valid)
 441                        continue;
 442                if (cx->type >= last_type && cx->latency < last_latency)
 443                        buggy_latency = true;
 444                last_latency = cx->latency;
 445                last_type = cx->type;
 446
 447                lapic_timer_check_state(i, pr, cx);
 448                tsc_check_state(cx->type);
 449                working++;
 450        }
 451
 452        if (buggy_latency) {
 453                pr_notice("FW issue: working around C-state latencies out of order\n");
 454                sort(&pr->power.states[1], max_cstate,
 455                     sizeof(struct acpi_processor_cx),
 456                     acpi_cst_latency_cmp,
 457                     acpi_cst_latency_swap);
 458        }
 459
 460        lapic_timer_propagate_broadcast(pr);
 461
 462        return (working);
 463}
 464
 465static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 466{
 467        unsigned int i;
 468        int result;
 469
 470
 471        /* NOTE: the idle thread may not be running while calling
 472         * this function */
 473
 474        /* Zero initialize all the C-states info. */
 475        memset(pr->power.states, 0, sizeof(pr->power.states));
 476
 477        result = acpi_processor_get_power_info_cst(pr);
 478        if (result == -ENODEV)
 479                result = acpi_processor_get_power_info_fadt(pr);
 480
 481        if (result)
 482                return result;
 483
 484        acpi_processor_get_power_info_default(pr);
 485
 486        pr->power.count = acpi_processor_power_verify(pr);
 487
 488        /*
 489         * if one state of type C2 or C3 is available, mark this
 490         * CPU as being "idle manageable"
 491         */
 492        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
 493                if (pr->power.states[i].valid) {
 494                        pr->power.count = i;
 495                        pr->flags.power = 1;
 496                }
 497        }
 498
 499        return 0;
 500}
 501
 502/**
 503 * acpi_idle_bm_check - checks if bus master activity was detected
 504 */
 505static int acpi_idle_bm_check(void)
 506{
 507        u32 bm_status = 0;
 508
 509        if (bm_check_disable)
 510                return 0;
 511
 512        acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
 513        if (bm_status)
 514                acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
 515        /*
 516         * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
 517         * the true state of bus mastering activity; forcing us to
 518         * manually check the BMIDEA bit of each IDE channel.
 519         */
 520        else if (errata.piix4.bmisx) {
 521                if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
 522                    || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
 523                        bm_status = 1;
 524        }
 525        return bm_status;
 526}
 527
 528static void wait_for_freeze(void)
 529{
 530#ifdef  CONFIG_X86
 531        /* No delay is needed if we are in guest */
 532        if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
 533                return;
 534#endif
 535        /* Dummy wait op - must do something useless after P_LVL2 read
 536           because chipsets cannot guarantee that STPCLK# signal
 537           gets asserted in time to freeze execution properly. */
 538        inl(acpi_gbl_FADT.xpm_timer_block.address);
 539}
 540
 541/**
 542 * acpi_idle_do_entry - enter idle state using the appropriate method
 543 * @cx: cstate data
 544 *
 545 * Caller disables interrupt before call and enables interrupt after return.
 546 */
 547static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
 548{
 549        if (cx->entry_method == ACPI_CSTATE_FFH) {
 550                /* Call into architectural FFH based C-state */
 551                acpi_processor_ffh_cstate_enter(cx);
 552        } else if (cx->entry_method == ACPI_CSTATE_HALT) {
 553                acpi_safe_halt();
 554        } else {
 555                /* IO port based C-state */
 556                inb(cx->address);
 557                wait_for_freeze();
 558        }
 559}
 560
 561/**
 562 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
 563 * @dev: the target CPU
 564 * @index: the index of suggested state
 565 */
 566static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
 567{
 568        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 569
 570        ACPI_FLUSH_CPU_CACHE();
 571
 572        while (1) {
 573
 574                if (cx->entry_method == ACPI_CSTATE_HALT)
 575                        safe_halt();
 576                else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
 577                        inb(cx->address);
 578                        wait_for_freeze();
 579                } else
 580                        return -ENODEV;
 581
 582#if defined(CONFIG_X86) && defined(CONFIG_HOTPLUG_CPU)
 583                cond_wakeup_cpu0();
 584#endif
 585        }
 586
 587        /* Never reached */
 588        return 0;
 589}
 590
 591static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
 592{
 593        return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
 594                !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
 595}
 596
 597static int c3_cpu_count;
 598static DEFINE_RAW_SPINLOCK(c3_lock);
 599
 600/**
 601 * acpi_idle_enter_bm - enters C3 with proper BM handling
 602 * @drv: cpuidle driver
 603 * @pr: Target processor
 604 * @cx: Target state context
 605 * @index: index of target state
 606 */
 607static int acpi_idle_enter_bm(struct cpuidle_driver *drv,
 608                               struct acpi_processor *pr,
 609                               struct acpi_processor_cx *cx,
 610                               int index)
 611{
 612        static struct acpi_processor_cx safe_cx = {
 613                .entry_method = ACPI_CSTATE_HALT,
 614        };
 615
 616        /*
 617         * disable bus master
 618         * bm_check implies we need ARB_DIS
 619         * bm_control implies whether we can do ARB_DIS
 620         *
 621         * That leaves a case where bm_check is set and bm_control is not set.
 622         * In that case we cannot do much, we enter C3 without doing anything.
 623         */
 624        bool dis_bm = pr->flags.bm_control;
 625
 626        /* If we can skip BM, demote to a safe state. */
 627        if (!cx->bm_sts_skip && acpi_idle_bm_check()) {
 628                dis_bm = false;
 629                index = drv->safe_state_index;
 630                if (index >= 0) {
 631                        cx = this_cpu_read(acpi_cstate[index]);
 632                } else {
 633                        cx = &safe_cx;
 634                        index = -EBUSY;
 635                }
 636        }
 637
 638        if (dis_bm) {
 639                raw_spin_lock(&c3_lock);
 640                c3_cpu_count++;
 641                /* Disable bus master arbitration when all CPUs are in C3 */
 642                if (c3_cpu_count == num_online_cpus())
 643                        acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
 644                raw_spin_unlock(&c3_lock);
 645        }
 646
 647        rcu_idle_enter();
 648
 649        acpi_idle_do_entry(cx);
 650
 651        rcu_idle_exit();
 652
 653        /* Re-enable bus master arbitration */
 654        if (dis_bm) {
 655                raw_spin_lock(&c3_lock);
 656                acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
 657                c3_cpu_count--;
 658                raw_spin_unlock(&c3_lock);
 659        }
 660
 661        return index;
 662}
 663
 664static int acpi_idle_enter(struct cpuidle_device *dev,
 665                           struct cpuidle_driver *drv, int index)
 666{
 667        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 668        struct acpi_processor *pr;
 669
 670        pr = __this_cpu_read(processors);
 671        if (unlikely(!pr))
 672                return -EINVAL;
 673
 674        if (cx->type != ACPI_STATE_C1) {
 675                if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check)
 676                        return acpi_idle_enter_bm(drv, pr, cx, index);
 677
 678                /* C2 to C1 demotion. */
 679                if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
 680                        index = ACPI_IDLE_STATE_START;
 681                        cx = per_cpu(acpi_cstate[index], dev->cpu);
 682                }
 683        }
 684
 685        if (cx->type == ACPI_STATE_C3)
 686                ACPI_FLUSH_CPU_CACHE();
 687
 688        acpi_idle_do_entry(cx);
 689
 690        return index;
 691}
 692
 693static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
 694                                  struct cpuidle_driver *drv, int index)
 695{
 696        struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
 697
 698        if (cx->type == ACPI_STATE_C3) {
 699                struct acpi_processor *pr = __this_cpu_read(processors);
 700
 701                if (unlikely(!pr))
 702                        return 0;
 703
 704                if (pr->flags.bm_check) {
 705                        u8 bm_sts_skip = cx->bm_sts_skip;
 706
 707                        /* Don't check BM_STS, do an unconditional ARB_DIS for S2IDLE */
 708                        cx->bm_sts_skip = 1;
 709                        acpi_idle_enter_bm(drv, pr, cx, index);
 710                        cx->bm_sts_skip = bm_sts_skip;
 711
 712                        return 0;
 713                } else {
 714                        ACPI_FLUSH_CPU_CACHE();
 715                }
 716        }
 717        acpi_idle_do_entry(cx);
 718
 719        return 0;
 720}
 721
 722static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 723                                           struct cpuidle_device *dev)
 724{
 725        int i, count = ACPI_IDLE_STATE_START;
 726        struct acpi_processor_cx *cx;
 727        struct cpuidle_state *state;
 728
 729        if (max_cstate == 0)
 730                max_cstate = 1;
 731
 732        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 733                state = &acpi_idle_driver.states[count];
 734                cx = &pr->power.states[i];
 735
 736                if (!cx->valid)
 737                        continue;
 738
 739                per_cpu(acpi_cstate[count], dev->cpu) = cx;
 740
 741                if (lapic_timer_needs_broadcast(pr, cx))
 742                        state->flags |= CPUIDLE_FLAG_TIMER_STOP;
 743
 744                if (cx->type == ACPI_STATE_C3) {
 745                        state->flags |= CPUIDLE_FLAG_TLB_FLUSHED;
 746                        if (pr->flags.bm_check)
 747                                state->flags |= CPUIDLE_FLAG_RCU_IDLE;
 748                }
 749
 750                count++;
 751                if (count == CPUIDLE_STATE_MAX)
 752                        break;
 753        }
 754
 755        if (!count)
 756                return -EINVAL;
 757
 758        return 0;
 759}
 760
 761static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 762{
 763        int i, count;
 764        struct acpi_processor_cx *cx;
 765        struct cpuidle_state *state;
 766        struct cpuidle_driver *drv = &acpi_idle_driver;
 767
 768        if (max_cstate == 0)
 769                max_cstate = 1;
 770
 771        if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
 772                cpuidle_poll_state_init(drv);
 773                count = 1;
 774        } else {
 775                count = 0;
 776        }
 777
 778        for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
 779                cx = &pr->power.states[i];
 780
 781                if (!cx->valid)
 782                        continue;
 783
 784                state = &drv->states[count];
 785                snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
 786                strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
 787                state->exit_latency = cx->latency;
 788                state->target_residency = cx->latency * latency_factor;
 789                state->enter = acpi_idle_enter;
 790
 791                state->flags = 0;
 792                if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
 793                        state->enter_dead = acpi_idle_play_dead;
 794                        drv->safe_state_index = count;
 795                }
 796                /*
 797                 * Halt-induced C1 is not good for ->enter_s2idle, because it
 798                 * re-enables interrupts on exit.  Moreover, C1 is generally not
 799                 * particularly interesting from the suspend-to-idle angle, so
 800                 * avoid C1 and the situations in which we may need to fall back
 801                 * to it altogether.
 802                 */
 803                if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
 804                        state->enter_s2idle = acpi_idle_enter_s2idle;
 805
 806                count++;
 807                if (count == CPUIDLE_STATE_MAX)
 808                        break;
 809        }
 810
 811        drv->state_count = count;
 812
 813        if (!count)
 814                return -EINVAL;
 815
 816        return 0;
 817}
 818
 819static inline void acpi_processor_cstate_first_run_checks(void)
 820{
 821        static int first_run;
 822
 823        if (first_run)
 824                return;
 825        dmi_check_system(processor_power_dmi_table);
 826        max_cstate = acpi_processor_cstate_check(max_cstate);
 827        if (max_cstate < ACPI_C_STATES_MAX)
 828                pr_notice("processor limited to max C-state %d\n", max_cstate);
 829
 830        first_run++;
 831
 832        if (nocst)
 833                return;
 834
 835        acpi_processor_claim_cst_control();
 836}
 837#else
 838
 839static inline int disabled_by_idle_boot_param(void) { return 0; }
 840static inline void acpi_processor_cstate_first_run_checks(void) { }
 841static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
 842{
 843        return -ENODEV;
 844}
 845
 846static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
 847                                           struct cpuidle_device *dev)
 848{
 849        return -EINVAL;
 850}
 851
 852static int acpi_processor_setup_cstates(struct acpi_processor *pr)
 853{
 854        return -EINVAL;
 855}
 856
 857#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
 858
 859struct acpi_lpi_states_array {
 860        unsigned int size;
 861        unsigned int composite_states_size;
 862        struct acpi_lpi_state *entries;
 863        struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
 864};
 865
 866static int obj_get_integer(union acpi_object *obj, u32 *value)
 867{
 868        if (obj->type != ACPI_TYPE_INTEGER)
 869                return -EINVAL;
 870
 871        *value = obj->integer.value;
 872        return 0;
 873}
 874
 875static int acpi_processor_evaluate_lpi(acpi_handle handle,
 876                                       struct acpi_lpi_states_array *info)
 877{
 878        acpi_status status;
 879        int ret = 0;
 880        int pkg_count, state_idx = 1, loop;
 881        struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
 882        union acpi_object *lpi_data;
 883        struct acpi_lpi_state *lpi_state;
 884
 885        status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
 886        if (ACPI_FAILURE(status)) {
 887                acpi_handle_debug(handle, "No _LPI, giving up\n");
 888                return -ENODEV;
 889        }
 890
 891        lpi_data = buffer.pointer;
 892
 893        /* There must be at least 4 elements = 3 elements + 1 package */
 894        if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
 895            lpi_data->package.count < 4) {
 896                pr_debug("not enough elements in _LPI\n");
 897                ret = -ENODATA;
 898                goto end;
 899        }
 900
 901        pkg_count = lpi_data->package.elements[2].integer.value;
 902
 903        /* Validate number of power states. */
 904        if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
 905                pr_debug("count given by _LPI is not valid\n");
 906                ret = -ENODATA;
 907                goto end;
 908        }
 909
 910        lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
 911        if (!lpi_state) {
 912                ret = -ENOMEM;
 913                goto end;
 914        }
 915
 916        info->size = pkg_count;
 917        info->entries = lpi_state;
 918
 919        /* LPI States start at index 3 */
 920        for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
 921                union acpi_object *element, *pkg_elem, *obj;
 922
 923                element = &lpi_data->package.elements[loop];
 924                if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
 925                        continue;
 926
 927                pkg_elem = element->package.elements;
 928
 929                obj = pkg_elem + 6;
 930                if (obj->type == ACPI_TYPE_BUFFER) {
 931                        struct acpi_power_register *reg;
 932
 933                        reg = (struct acpi_power_register *)obj->buffer.pointer;
 934                        if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
 935                            reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
 936                                continue;
 937
 938                        lpi_state->address = reg->address;
 939                        lpi_state->entry_method =
 940                                reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
 941                                ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
 942                } else if (obj->type == ACPI_TYPE_INTEGER) {
 943                        lpi_state->entry_method = ACPI_CSTATE_INTEGER;
 944                        lpi_state->address = obj->integer.value;
 945                } else {
 946                        continue;
 947                }
 948
 949                /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
 950
 951                obj = pkg_elem + 9;
 952                if (obj->type == ACPI_TYPE_STRING)
 953                        strlcpy(lpi_state->desc, obj->string.pointer,
 954                                ACPI_CX_DESC_LEN);
 955
 956                lpi_state->index = state_idx;
 957                if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
 958                        pr_debug("No min. residency found, assuming 10 us\n");
 959                        lpi_state->min_residency = 10;
 960                }
 961
 962                if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
 963                        pr_debug("No wakeup residency found, assuming 10 us\n");
 964                        lpi_state->wake_latency = 10;
 965                }
 966
 967                if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
 968                        lpi_state->flags = 0;
 969
 970                if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
 971                        lpi_state->arch_flags = 0;
 972
 973                if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
 974                        lpi_state->res_cnt_freq = 1;
 975
 976                if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
 977                        lpi_state->enable_parent_state = 0;
 978        }
 979
 980        acpi_handle_debug(handle, "Found %d power states\n", state_idx);
 981end:
 982        kfree(buffer.pointer);
 983        return ret;
 984}
 985
 986/*
 987 * flat_state_cnt - the number of composite LPI states after the process of flattening
 988 */
 989static int flat_state_cnt;
 990
 991/**
 992 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
 993 *
 994 * @local: local LPI state
 995 * @parent: parent LPI state
 996 * @result: composite LPI state
 997 */
 998static bool combine_lpi_states(struct acpi_lpi_state *local,
 999                               struct acpi_lpi_state *parent,
1000                               struct acpi_lpi_state *result)
1001{
1002        if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1003                if (!parent->address) /* 0 means autopromotable */
1004                        return false;
1005                result->address = local->address + parent->address;
1006        } else {
1007                result->address = parent->address;
1008        }
1009
1010        result->min_residency = max(local->min_residency, parent->min_residency);
1011        result->wake_latency = local->wake_latency + parent->wake_latency;
1012        result->enable_parent_state = parent->enable_parent_state;
1013        result->entry_method = local->entry_method;
1014
1015        result->flags = parent->flags;
1016        result->arch_flags = parent->arch_flags;
1017        result->index = parent->index;
1018
1019        strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1020        strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1021        strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1022        return true;
1023}
1024
1025#define ACPI_LPI_STATE_FLAGS_ENABLED                    BIT(0)
1026
1027static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1028                                  struct acpi_lpi_state *t)
1029{
1030        curr_level->composite_states[curr_level->composite_states_size++] = t;
1031}
1032
1033static int flatten_lpi_states(struct acpi_processor *pr,
1034                              struct acpi_lpi_states_array *curr_level,
1035                              struct acpi_lpi_states_array *prev_level)
1036{
1037        int i, j, state_count = curr_level->size;
1038        struct acpi_lpi_state *p, *t = curr_level->entries;
1039
1040        curr_level->composite_states_size = 0;
1041        for (j = 0; j < state_count; j++, t++) {
1042                struct acpi_lpi_state *flpi;
1043
1044                if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1045                        continue;
1046
1047                if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1048                        pr_warn("Limiting number of LPI states to max (%d)\n",
1049                                ACPI_PROCESSOR_MAX_POWER);
1050                        pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1051                        break;
1052                }
1053
1054                flpi = &pr->power.lpi_states[flat_state_cnt];
1055
1056                if (!prev_level) { /* leaf/processor node */
1057                        memcpy(flpi, t, sizeof(*t));
1058                        stash_composite_state(curr_level, flpi);
1059                        flat_state_cnt++;
1060                        continue;
1061                }
1062
1063                for (i = 0; i < prev_level->composite_states_size; i++) {
1064                        p = prev_level->composite_states[i];
1065                        if (t->index <= p->enable_parent_state &&
1066                            combine_lpi_states(p, t, flpi)) {
1067                                stash_composite_state(curr_level, flpi);
1068                                flat_state_cnt++;
1069                                flpi++;
1070                        }
1071                }
1072        }
1073
1074        kfree(curr_level->entries);
1075        return 0;
1076}
1077
1078static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1079{
1080        int ret, i;
1081        acpi_status status;
1082        acpi_handle handle = pr->handle, pr_ahandle;
1083        struct acpi_device *d = NULL;
1084        struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1085
1086        if (!osc_pc_lpi_support_confirmed)
1087                return -EOPNOTSUPP;
1088
1089        if (!acpi_has_method(handle, "_LPI"))
1090                return -EINVAL;
1091
1092        flat_state_cnt = 0;
1093        prev = &info[0];
1094        curr = &info[1];
1095        handle = pr->handle;
1096        ret = acpi_processor_evaluate_lpi(handle, prev);
1097        if (ret)
1098                return ret;
1099        flatten_lpi_states(pr, prev, NULL);
1100
1101        status = acpi_get_parent(handle, &pr_ahandle);
1102        while (ACPI_SUCCESS(status)) {
1103                acpi_bus_get_device(pr_ahandle, &d);
1104                handle = pr_ahandle;
1105
1106                if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1107                        break;
1108
1109                /* can be optional ? */
1110                if (!acpi_has_method(handle, "_LPI"))
1111                        break;
1112
1113                ret = acpi_processor_evaluate_lpi(handle, curr);
1114                if (ret)
1115                        break;
1116
1117                /* flatten all the LPI states in this level of hierarchy */
1118                flatten_lpi_states(pr, curr, prev);
1119
1120                tmp = prev, prev = curr, curr = tmp;
1121
1122                status = acpi_get_parent(handle, &pr_ahandle);
1123        }
1124
1125        pr->power.count = flat_state_cnt;
1126        /* reset the index after flattening */
1127        for (i = 0; i < pr->power.count; i++)
1128                pr->power.lpi_states[i].index = i;
1129
1130        /* Tell driver that _LPI is supported. */
1131        pr->flags.has_lpi = 1;
1132        pr->flags.power = 1;
1133
1134        return 0;
1135}
1136
1137int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1138{
1139        return -ENODEV;
1140}
1141
1142int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1143{
1144        return -ENODEV;
1145}
1146
1147/**
1148 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1149 * @dev: the target CPU
1150 * @drv: cpuidle driver containing cpuidle state info
1151 * @index: index of target state
1152 *
1153 * Return: 0 for success or negative value for error
1154 */
1155static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1156                               struct cpuidle_driver *drv, int index)
1157{
1158        struct acpi_processor *pr;
1159        struct acpi_lpi_state *lpi;
1160
1161        pr = __this_cpu_read(processors);
1162
1163        if (unlikely(!pr))
1164                return -EINVAL;
1165
1166        lpi = &pr->power.lpi_states[index];
1167        if (lpi->entry_method == ACPI_CSTATE_FFH)
1168                return acpi_processor_ffh_lpi_enter(lpi);
1169
1170        return -EINVAL;
1171}
1172
1173static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1174{
1175        int i;
1176        struct acpi_lpi_state *lpi;
1177        struct cpuidle_state *state;
1178        struct cpuidle_driver *drv = &acpi_idle_driver;
1179
1180        if (!pr->flags.has_lpi)
1181                return -EOPNOTSUPP;
1182
1183        for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1184                lpi = &pr->power.lpi_states[i];
1185
1186                state = &drv->states[i];
1187                snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1188                strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1189                state->exit_latency = lpi->wake_latency;
1190                state->target_residency = lpi->min_residency;
1191                if (lpi->arch_flags)
1192                        state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1193                state->enter = acpi_idle_lpi_enter;
1194                drv->safe_state_index = i;
1195        }
1196
1197        drv->state_count = i;
1198
1199        return 0;
1200}
1201
1202/**
1203 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1204 * global state data i.e. idle routines
1205 *
1206 * @pr: the ACPI processor
1207 */
1208static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1209{
1210        int i;
1211        struct cpuidle_driver *drv = &acpi_idle_driver;
1212
1213        if (!pr->flags.power_setup_done || !pr->flags.power)
1214                return -EINVAL;
1215
1216        drv->safe_state_index = -1;
1217        for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1218                drv->states[i].name[0] = '\0';
1219                drv->states[i].desc[0] = '\0';
1220        }
1221
1222        if (pr->flags.has_lpi)
1223                return acpi_processor_setup_lpi_states(pr);
1224
1225        return acpi_processor_setup_cstates(pr);
1226}
1227
1228/**
1229 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1230 * device i.e. per-cpu data
1231 *
1232 * @pr: the ACPI processor
1233 * @dev : the cpuidle device
1234 */
1235static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1236                                            struct cpuidle_device *dev)
1237{
1238        if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1239                return -EINVAL;
1240
1241        dev->cpu = pr->id;
1242        if (pr->flags.has_lpi)
1243                return acpi_processor_ffh_lpi_probe(pr->id);
1244
1245        return acpi_processor_setup_cpuidle_cx(pr, dev);
1246}
1247
1248static int acpi_processor_get_power_info(struct acpi_processor *pr)
1249{
1250        int ret;
1251
1252        ret = acpi_processor_get_lpi_info(pr);
1253        if (ret)
1254                ret = acpi_processor_get_cstate_info(pr);
1255
1256        return ret;
1257}
1258
1259int acpi_processor_hotplug(struct acpi_processor *pr)
1260{
1261        int ret = 0;
1262        struct cpuidle_device *dev;
1263
1264        if (disabled_by_idle_boot_param())
1265                return 0;
1266
1267        if (!pr->flags.power_setup_done)
1268                return -ENODEV;
1269
1270        dev = per_cpu(acpi_cpuidle_device, pr->id);
1271        cpuidle_pause_and_lock();
1272        cpuidle_disable_device(dev);
1273        ret = acpi_processor_get_power_info(pr);
1274        if (!ret && pr->flags.power) {
1275                acpi_processor_setup_cpuidle_dev(pr, dev);
1276                ret = cpuidle_enable_device(dev);
1277        }
1278        cpuidle_resume_and_unlock();
1279
1280        return ret;
1281}
1282
1283int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1284{
1285        int cpu;
1286        struct acpi_processor *_pr;
1287        struct cpuidle_device *dev;
1288
1289        if (disabled_by_idle_boot_param())
1290                return 0;
1291
1292        if (!pr->flags.power_setup_done)
1293                return -ENODEV;
1294
1295        /*
1296         * FIXME:  Design the ACPI notification to make it once per
1297         * system instead of once per-cpu.  This condition is a hack
1298         * to make the code that updates C-States be called once.
1299         */
1300
1301        if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1302
1303                /* Protect against cpu-hotplug */
1304                cpus_read_lock();
1305                cpuidle_pause_and_lock();
1306
1307                /* Disable all cpuidle devices */
1308                for_each_online_cpu(cpu) {
1309                        _pr = per_cpu(processors, cpu);
1310                        if (!_pr || !_pr->flags.power_setup_done)
1311                                continue;
1312                        dev = per_cpu(acpi_cpuidle_device, cpu);
1313                        cpuidle_disable_device(dev);
1314                }
1315
1316                /* Populate Updated C-state information */
1317                acpi_processor_get_power_info(pr);
1318                acpi_processor_setup_cpuidle_states(pr);
1319
1320                /* Enable all cpuidle devices */
1321                for_each_online_cpu(cpu) {
1322                        _pr = per_cpu(processors, cpu);
1323                        if (!_pr || !_pr->flags.power_setup_done)
1324                                continue;
1325                        acpi_processor_get_power_info(_pr);
1326                        if (_pr->flags.power) {
1327                                dev = per_cpu(acpi_cpuidle_device, cpu);
1328                                acpi_processor_setup_cpuidle_dev(_pr, dev);
1329                                cpuidle_enable_device(dev);
1330                        }
1331                }
1332                cpuidle_resume_and_unlock();
1333                cpus_read_unlock();
1334        }
1335
1336        return 0;
1337}
1338
1339static int acpi_processor_registered;
1340
1341int acpi_processor_power_init(struct acpi_processor *pr)
1342{
1343        int retval;
1344        struct cpuidle_device *dev;
1345
1346        if (disabled_by_idle_boot_param())
1347                return 0;
1348
1349        acpi_processor_cstate_first_run_checks();
1350
1351        if (!acpi_processor_get_power_info(pr))
1352                pr->flags.power_setup_done = 1;
1353
1354        /*
1355         * Install the idle handler if processor power management is supported.
1356         * Note that we use previously set idle handler will be used on
1357         * platforms that only support C1.
1358         */
1359        if (pr->flags.power) {
1360                /* Register acpi_idle_driver if not already registered */
1361                if (!acpi_processor_registered) {
1362                        acpi_processor_setup_cpuidle_states(pr);
1363                        retval = cpuidle_register_driver(&acpi_idle_driver);
1364                        if (retval)
1365                                return retval;
1366                        pr_debug("%s registered with cpuidle\n",
1367                                 acpi_idle_driver.name);
1368                }
1369
1370                dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1371                if (!dev)
1372                        return -ENOMEM;
1373                per_cpu(acpi_cpuidle_device, pr->id) = dev;
1374
1375                acpi_processor_setup_cpuidle_dev(pr, dev);
1376
1377                /* Register per-cpu cpuidle_device. Cpuidle driver
1378                 * must already be registered before registering device
1379                 */
1380                retval = cpuidle_register_device(dev);
1381                if (retval) {
1382                        if (acpi_processor_registered == 0)
1383                                cpuidle_unregister_driver(&acpi_idle_driver);
1384                        return retval;
1385                }
1386                acpi_processor_registered++;
1387        }
1388        return 0;
1389}
1390
1391int acpi_processor_power_exit(struct acpi_processor *pr)
1392{
1393        struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1394
1395        if (disabled_by_idle_boot_param())
1396                return 0;
1397
1398        if (pr->flags.power) {
1399                cpuidle_unregister_device(dev);
1400                acpi_processor_registered--;
1401                if (acpi_processor_registered == 0)
1402                        cpuidle_unregister_driver(&acpi_idle_driver);
1403        }
1404
1405        pr->flags.power_setup_done = 0;
1406        return 0;
1407}
1408