linux/drivers/android/binder_alloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* binder_alloc.c
   3 *
   4 * Android IPC Subsystem
   5 *
   6 * Copyright (C) 2007-2017 Google, Inc.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/list.h>
  12#include <linux/sched/mm.h>
  13#include <linux/module.h>
  14#include <linux/rtmutex.h>
  15#include <linux/rbtree.h>
  16#include <linux/seq_file.h>
  17#include <linux/vmalloc.h>
  18#include <linux/slab.h>
  19#include <linux/sched.h>
  20#include <linux/list_lru.h>
  21#include <linux/ratelimit.h>
  22#include <asm/cacheflush.h>
  23#include <linux/uaccess.h>
  24#include <linux/highmem.h>
  25#include <linux/sizes.h>
  26#include "binder_alloc.h"
  27#include "binder_trace.h"
  28
  29struct list_lru binder_alloc_lru;
  30
  31static DEFINE_MUTEX(binder_alloc_mmap_lock);
  32
  33enum {
  34        BINDER_DEBUG_USER_ERROR             = 1U << 0,
  35        BINDER_DEBUG_OPEN_CLOSE             = 1U << 1,
  36        BINDER_DEBUG_BUFFER_ALLOC           = 1U << 2,
  37        BINDER_DEBUG_BUFFER_ALLOC_ASYNC     = 1U << 3,
  38};
  39static uint32_t binder_alloc_debug_mask = BINDER_DEBUG_USER_ERROR;
  40
  41module_param_named(debug_mask, binder_alloc_debug_mask,
  42                   uint, 0644);
  43
  44#define binder_alloc_debug(mask, x...) \
  45        do { \
  46                if (binder_alloc_debug_mask & mask) \
  47                        pr_info_ratelimited(x); \
  48        } while (0)
  49
  50static struct binder_buffer *binder_buffer_next(struct binder_buffer *buffer)
  51{
  52        return list_entry(buffer->entry.next, struct binder_buffer, entry);
  53}
  54
  55static struct binder_buffer *binder_buffer_prev(struct binder_buffer *buffer)
  56{
  57        return list_entry(buffer->entry.prev, struct binder_buffer, entry);
  58}
  59
  60static size_t binder_alloc_buffer_size(struct binder_alloc *alloc,
  61                                       struct binder_buffer *buffer)
  62{
  63        if (list_is_last(&buffer->entry, &alloc->buffers))
  64                return alloc->buffer + alloc->buffer_size - buffer->user_data;
  65        return binder_buffer_next(buffer)->user_data - buffer->user_data;
  66}
  67
  68static void binder_insert_free_buffer(struct binder_alloc *alloc,
  69                                      struct binder_buffer *new_buffer)
  70{
  71        struct rb_node **p = &alloc->free_buffers.rb_node;
  72        struct rb_node *parent = NULL;
  73        struct binder_buffer *buffer;
  74        size_t buffer_size;
  75        size_t new_buffer_size;
  76
  77        BUG_ON(!new_buffer->free);
  78
  79        new_buffer_size = binder_alloc_buffer_size(alloc, new_buffer);
  80
  81        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
  82                     "%d: add free buffer, size %zd, at %pK\n",
  83                      alloc->pid, new_buffer_size, new_buffer);
  84
  85        while (*p) {
  86                parent = *p;
  87                buffer = rb_entry(parent, struct binder_buffer, rb_node);
  88                BUG_ON(!buffer->free);
  89
  90                buffer_size = binder_alloc_buffer_size(alloc, buffer);
  91
  92                if (new_buffer_size < buffer_size)
  93                        p = &parent->rb_left;
  94                else
  95                        p = &parent->rb_right;
  96        }
  97        rb_link_node(&new_buffer->rb_node, parent, p);
  98        rb_insert_color(&new_buffer->rb_node, &alloc->free_buffers);
  99}
 100
 101static void binder_insert_allocated_buffer_locked(
 102                struct binder_alloc *alloc, struct binder_buffer *new_buffer)
 103{
 104        struct rb_node **p = &alloc->allocated_buffers.rb_node;
 105        struct rb_node *parent = NULL;
 106        struct binder_buffer *buffer;
 107
 108        BUG_ON(new_buffer->free);
 109
 110        while (*p) {
 111                parent = *p;
 112                buffer = rb_entry(parent, struct binder_buffer, rb_node);
 113                BUG_ON(buffer->free);
 114
 115                if (new_buffer->user_data < buffer->user_data)
 116                        p = &parent->rb_left;
 117                else if (new_buffer->user_data > buffer->user_data)
 118                        p = &parent->rb_right;
 119                else
 120                        BUG();
 121        }
 122        rb_link_node(&new_buffer->rb_node, parent, p);
 123        rb_insert_color(&new_buffer->rb_node, &alloc->allocated_buffers);
 124}
 125
 126static struct binder_buffer *binder_alloc_prepare_to_free_locked(
 127                struct binder_alloc *alloc,
 128                uintptr_t user_ptr)
 129{
 130        struct rb_node *n = alloc->allocated_buffers.rb_node;
 131        struct binder_buffer *buffer;
 132        void __user *uptr;
 133
 134        uptr = (void __user *)user_ptr;
 135
 136        while (n) {
 137                buffer = rb_entry(n, struct binder_buffer, rb_node);
 138                BUG_ON(buffer->free);
 139
 140                if (uptr < buffer->user_data)
 141                        n = n->rb_left;
 142                else if (uptr > buffer->user_data)
 143                        n = n->rb_right;
 144                else {
 145                        /*
 146                         * Guard against user threads attempting to
 147                         * free the buffer when in use by kernel or
 148                         * after it's already been freed.
 149                         */
 150                        if (!buffer->allow_user_free)
 151                                return ERR_PTR(-EPERM);
 152                        buffer->allow_user_free = 0;
 153                        return buffer;
 154                }
 155        }
 156        return NULL;
 157}
 158
 159/**
 160 * binder_alloc_prepare_to_free() - get buffer given user ptr
 161 * @alloc:      binder_alloc for this proc
 162 * @user_ptr:   User pointer to buffer data
 163 *
 164 * Validate userspace pointer to buffer data and return buffer corresponding to
 165 * that user pointer. Search the rb tree for buffer that matches user data
 166 * pointer.
 167 *
 168 * Return:      Pointer to buffer or NULL
 169 */
 170struct binder_buffer *binder_alloc_prepare_to_free(struct binder_alloc *alloc,
 171                                                   uintptr_t user_ptr)
 172{
 173        struct binder_buffer *buffer;
 174
 175        mutex_lock(&alloc->mutex);
 176        buffer = binder_alloc_prepare_to_free_locked(alloc, user_ptr);
 177        mutex_unlock(&alloc->mutex);
 178        return buffer;
 179}
 180
 181static int binder_update_page_range(struct binder_alloc *alloc, int allocate,
 182                                    void __user *start, void __user *end)
 183{
 184        void __user *page_addr;
 185        unsigned long user_page_addr;
 186        struct binder_lru_page *page;
 187        struct vm_area_struct *vma = NULL;
 188        struct mm_struct *mm = NULL;
 189        bool need_mm = false;
 190
 191        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 192                     "%d: %s pages %pK-%pK\n", alloc->pid,
 193                     allocate ? "allocate" : "free", start, end);
 194
 195        if (end <= start)
 196                return 0;
 197
 198        trace_binder_update_page_range(alloc, allocate, start, end);
 199
 200        if (allocate == 0)
 201                goto free_range;
 202
 203        for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 204                page = &alloc->pages[(page_addr - alloc->buffer) / PAGE_SIZE];
 205                if (!page->page_ptr) {
 206                        need_mm = true;
 207                        break;
 208                }
 209        }
 210
 211        if (need_mm && mmget_not_zero(alloc->vma_vm_mm))
 212                mm = alloc->vma_vm_mm;
 213
 214        if (mm) {
 215                mmap_read_lock(mm);
 216                vma = alloc->vma;
 217        }
 218
 219        if (!vma && need_mm) {
 220                binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 221                                   "%d: binder_alloc_buf failed to map pages in userspace, no vma\n",
 222                                   alloc->pid);
 223                goto err_no_vma;
 224        }
 225
 226        for (page_addr = start; page_addr < end; page_addr += PAGE_SIZE) {
 227                int ret;
 228                bool on_lru;
 229                size_t index;
 230
 231                index = (page_addr - alloc->buffer) / PAGE_SIZE;
 232                page = &alloc->pages[index];
 233
 234                if (page->page_ptr) {
 235                        trace_binder_alloc_lru_start(alloc, index);
 236
 237                        on_lru = list_lru_del(&binder_alloc_lru, &page->lru);
 238                        WARN_ON(!on_lru);
 239
 240                        trace_binder_alloc_lru_end(alloc, index);
 241                        continue;
 242                }
 243
 244                if (WARN_ON(!vma))
 245                        goto err_page_ptr_cleared;
 246
 247                trace_binder_alloc_page_start(alloc, index);
 248                page->page_ptr = alloc_page(GFP_KERNEL |
 249                                            __GFP_HIGHMEM |
 250                                            __GFP_ZERO);
 251                if (!page->page_ptr) {
 252                        pr_err("%d: binder_alloc_buf failed for page at %pK\n",
 253                                alloc->pid, page_addr);
 254                        goto err_alloc_page_failed;
 255                }
 256                page->alloc = alloc;
 257                INIT_LIST_HEAD(&page->lru);
 258
 259                user_page_addr = (uintptr_t)page_addr;
 260                ret = vm_insert_page(vma, user_page_addr, page[0].page_ptr);
 261                if (ret) {
 262                        pr_err("%d: binder_alloc_buf failed to map page at %lx in userspace\n",
 263                               alloc->pid, user_page_addr);
 264                        goto err_vm_insert_page_failed;
 265                }
 266
 267                if (index + 1 > alloc->pages_high)
 268                        alloc->pages_high = index + 1;
 269
 270                trace_binder_alloc_page_end(alloc, index);
 271        }
 272        if (mm) {
 273                mmap_read_unlock(mm);
 274                mmput(mm);
 275        }
 276        return 0;
 277
 278free_range:
 279        for (page_addr = end - PAGE_SIZE; 1; page_addr -= PAGE_SIZE) {
 280                bool ret;
 281                size_t index;
 282
 283                index = (page_addr - alloc->buffer) / PAGE_SIZE;
 284                page = &alloc->pages[index];
 285
 286                trace_binder_free_lru_start(alloc, index);
 287
 288                ret = list_lru_add(&binder_alloc_lru, &page->lru);
 289                WARN_ON(!ret);
 290
 291                trace_binder_free_lru_end(alloc, index);
 292                if (page_addr == start)
 293                        break;
 294                continue;
 295
 296err_vm_insert_page_failed:
 297                __free_page(page->page_ptr);
 298                page->page_ptr = NULL;
 299err_alloc_page_failed:
 300err_page_ptr_cleared:
 301                if (page_addr == start)
 302                        break;
 303        }
 304err_no_vma:
 305        if (mm) {
 306                mmap_read_unlock(mm);
 307                mmput(mm);
 308        }
 309        return vma ? -ENOMEM : -ESRCH;
 310}
 311
 312
 313static inline void binder_alloc_set_vma(struct binder_alloc *alloc,
 314                struct vm_area_struct *vma)
 315{
 316        if (vma)
 317                alloc->vma_vm_mm = vma->vm_mm;
 318        /*
 319         * If we see alloc->vma is not NULL, buffer data structures set up
 320         * completely. Look at smp_rmb side binder_alloc_get_vma.
 321         * We also want to guarantee new alloc->vma_vm_mm is always visible
 322         * if alloc->vma is set.
 323         */
 324        smp_wmb();
 325        alloc->vma = vma;
 326}
 327
 328static inline struct vm_area_struct *binder_alloc_get_vma(
 329                struct binder_alloc *alloc)
 330{
 331        struct vm_area_struct *vma = NULL;
 332
 333        if (alloc->vma) {
 334                /* Look at description in binder_alloc_set_vma */
 335                smp_rmb();
 336                vma = alloc->vma;
 337        }
 338        return vma;
 339}
 340
 341static bool debug_low_async_space_locked(struct binder_alloc *alloc, int pid)
 342{
 343        /*
 344         * Find the amount and size of buffers allocated by the current caller;
 345         * The idea is that once we cross the threshold, whoever is responsible
 346         * for the low async space is likely to try to send another async txn,
 347         * and at some point we'll catch them in the act. This is more efficient
 348         * than keeping a map per pid.
 349         */
 350        struct rb_node *n;
 351        struct binder_buffer *buffer;
 352        size_t total_alloc_size = 0;
 353        size_t num_buffers = 0;
 354
 355        for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 356                 n = rb_next(n)) {
 357                buffer = rb_entry(n, struct binder_buffer, rb_node);
 358                if (buffer->pid != pid)
 359                        continue;
 360                if (!buffer->async_transaction)
 361                        continue;
 362                total_alloc_size += binder_alloc_buffer_size(alloc, buffer)
 363                        + sizeof(struct binder_buffer);
 364                num_buffers++;
 365        }
 366
 367        /*
 368         * Warn if this pid has more than 50 transactions, or more than 50% of
 369         * async space (which is 25% of total buffer size). Oneway spam is only
 370         * detected when the threshold is exceeded.
 371         */
 372        if (num_buffers > 50 || total_alloc_size > alloc->buffer_size / 4) {
 373                binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 374                             "%d: pid %d spamming oneway? %zd buffers allocated for a total size of %zd\n",
 375                              alloc->pid, pid, num_buffers, total_alloc_size);
 376                if (!alloc->oneway_spam_detected) {
 377                        alloc->oneway_spam_detected = true;
 378                        return true;
 379                }
 380        }
 381        return false;
 382}
 383
 384static struct binder_buffer *binder_alloc_new_buf_locked(
 385                                struct binder_alloc *alloc,
 386                                size_t data_size,
 387                                size_t offsets_size,
 388                                size_t extra_buffers_size,
 389                                int is_async,
 390                                int pid)
 391{
 392        struct rb_node *n = alloc->free_buffers.rb_node;
 393        struct binder_buffer *buffer;
 394        size_t buffer_size;
 395        struct rb_node *best_fit = NULL;
 396        void __user *has_page_addr;
 397        void __user *end_page_addr;
 398        size_t size, data_offsets_size;
 399        int ret;
 400
 401        if (!binder_alloc_get_vma(alloc)) {
 402                binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 403                                   "%d: binder_alloc_buf, no vma\n",
 404                                   alloc->pid);
 405                return ERR_PTR(-ESRCH);
 406        }
 407
 408        data_offsets_size = ALIGN(data_size, sizeof(void *)) +
 409                ALIGN(offsets_size, sizeof(void *));
 410
 411        if (data_offsets_size < data_size || data_offsets_size < offsets_size) {
 412                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 413                                "%d: got transaction with invalid size %zd-%zd\n",
 414                                alloc->pid, data_size, offsets_size);
 415                return ERR_PTR(-EINVAL);
 416        }
 417        size = data_offsets_size + ALIGN(extra_buffers_size, sizeof(void *));
 418        if (size < data_offsets_size || size < extra_buffers_size) {
 419                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 420                                "%d: got transaction with invalid extra_buffers_size %zd\n",
 421                                alloc->pid, extra_buffers_size);
 422                return ERR_PTR(-EINVAL);
 423        }
 424        if (is_async &&
 425            alloc->free_async_space < size + sizeof(struct binder_buffer)) {
 426                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 427                             "%d: binder_alloc_buf size %zd failed, no async space left\n",
 428                              alloc->pid, size);
 429                return ERR_PTR(-ENOSPC);
 430        }
 431
 432        /* Pad 0-size buffers so they get assigned unique addresses */
 433        size = max(size, sizeof(void *));
 434
 435        while (n) {
 436                buffer = rb_entry(n, struct binder_buffer, rb_node);
 437                BUG_ON(!buffer->free);
 438                buffer_size = binder_alloc_buffer_size(alloc, buffer);
 439
 440                if (size < buffer_size) {
 441                        best_fit = n;
 442                        n = n->rb_left;
 443                } else if (size > buffer_size)
 444                        n = n->rb_right;
 445                else {
 446                        best_fit = n;
 447                        break;
 448                }
 449        }
 450        if (best_fit == NULL) {
 451                size_t allocated_buffers = 0;
 452                size_t largest_alloc_size = 0;
 453                size_t total_alloc_size = 0;
 454                size_t free_buffers = 0;
 455                size_t largest_free_size = 0;
 456                size_t total_free_size = 0;
 457
 458                for (n = rb_first(&alloc->allocated_buffers); n != NULL;
 459                     n = rb_next(n)) {
 460                        buffer = rb_entry(n, struct binder_buffer, rb_node);
 461                        buffer_size = binder_alloc_buffer_size(alloc, buffer);
 462                        allocated_buffers++;
 463                        total_alloc_size += buffer_size;
 464                        if (buffer_size > largest_alloc_size)
 465                                largest_alloc_size = buffer_size;
 466                }
 467                for (n = rb_first(&alloc->free_buffers); n != NULL;
 468                     n = rb_next(n)) {
 469                        buffer = rb_entry(n, struct binder_buffer, rb_node);
 470                        buffer_size = binder_alloc_buffer_size(alloc, buffer);
 471                        free_buffers++;
 472                        total_free_size += buffer_size;
 473                        if (buffer_size > largest_free_size)
 474                                largest_free_size = buffer_size;
 475                }
 476                binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 477                                   "%d: binder_alloc_buf size %zd failed, no address space\n",
 478                                   alloc->pid, size);
 479                binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 480                                   "allocated: %zd (num: %zd largest: %zd), free: %zd (num: %zd largest: %zd)\n",
 481                                   total_alloc_size, allocated_buffers,
 482                                   largest_alloc_size, total_free_size,
 483                                   free_buffers, largest_free_size);
 484                return ERR_PTR(-ENOSPC);
 485        }
 486        if (n == NULL) {
 487                buffer = rb_entry(best_fit, struct binder_buffer, rb_node);
 488                buffer_size = binder_alloc_buffer_size(alloc, buffer);
 489        }
 490
 491        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 492                     "%d: binder_alloc_buf size %zd got buffer %pK size %zd\n",
 493                      alloc->pid, size, buffer, buffer_size);
 494
 495        has_page_addr = (void __user *)
 496                (((uintptr_t)buffer->user_data + buffer_size) & PAGE_MASK);
 497        WARN_ON(n && buffer_size != size);
 498        end_page_addr =
 499                (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data + size);
 500        if (end_page_addr > has_page_addr)
 501                end_page_addr = has_page_addr;
 502        ret = binder_update_page_range(alloc, 1, (void __user *)
 503                PAGE_ALIGN((uintptr_t)buffer->user_data), end_page_addr);
 504        if (ret)
 505                return ERR_PTR(ret);
 506
 507        if (buffer_size != size) {
 508                struct binder_buffer *new_buffer;
 509
 510                new_buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 511                if (!new_buffer) {
 512                        pr_err("%s: %d failed to alloc new buffer struct\n",
 513                               __func__, alloc->pid);
 514                        goto err_alloc_buf_struct_failed;
 515                }
 516                new_buffer->user_data = (u8 __user *)buffer->user_data + size;
 517                list_add(&new_buffer->entry, &buffer->entry);
 518                new_buffer->free = 1;
 519                binder_insert_free_buffer(alloc, new_buffer);
 520        }
 521
 522        rb_erase(best_fit, &alloc->free_buffers);
 523        buffer->free = 0;
 524        buffer->allow_user_free = 0;
 525        binder_insert_allocated_buffer_locked(alloc, buffer);
 526        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 527                     "%d: binder_alloc_buf size %zd got %pK\n",
 528                      alloc->pid, size, buffer);
 529        buffer->data_size = data_size;
 530        buffer->offsets_size = offsets_size;
 531        buffer->async_transaction = is_async;
 532        buffer->extra_buffers_size = extra_buffers_size;
 533        buffer->pid = pid;
 534        buffer->oneway_spam_suspect = false;
 535        if (is_async) {
 536                alloc->free_async_space -= size + sizeof(struct binder_buffer);
 537                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 538                             "%d: binder_alloc_buf size %zd async free %zd\n",
 539                              alloc->pid, size, alloc->free_async_space);
 540                if (alloc->free_async_space < alloc->buffer_size / 10) {
 541                        /*
 542                         * Start detecting spammers once we have less than 20%
 543                         * of async space left (which is less than 10% of total
 544                         * buffer size).
 545                         */
 546                        buffer->oneway_spam_suspect = debug_low_async_space_locked(alloc, pid);
 547                } else {
 548                        alloc->oneway_spam_detected = false;
 549                }
 550        }
 551        return buffer;
 552
 553err_alloc_buf_struct_failed:
 554        binder_update_page_range(alloc, 0, (void __user *)
 555                                 PAGE_ALIGN((uintptr_t)buffer->user_data),
 556                                 end_page_addr);
 557        return ERR_PTR(-ENOMEM);
 558}
 559
 560/**
 561 * binder_alloc_new_buf() - Allocate a new binder buffer
 562 * @alloc:              binder_alloc for this proc
 563 * @data_size:          size of user data buffer
 564 * @offsets_size:       user specified buffer offset
 565 * @extra_buffers_size: size of extra space for meta-data (eg, security context)
 566 * @is_async:           buffer for async transaction
 567 * @pid:                                pid to attribute allocation to (used for debugging)
 568 *
 569 * Allocate a new buffer given the requested sizes. Returns
 570 * the kernel version of the buffer pointer. The size allocated
 571 * is the sum of the three given sizes (each rounded up to
 572 * pointer-sized boundary)
 573 *
 574 * Return:      The allocated buffer or %NULL if error
 575 */
 576struct binder_buffer *binder_alloc_new_buf(struct binder_alloc *alloc,
 577                                           size_t data_size,
 578                                           size_t offsets_size,
 579                                           size_t extra_buffers_size,
 580                                           int is_async,
 581                                           int pid)
 582{
 583        struct binder_buffer *buffer;
 584
 585        mutex_lock(&alloc->mutex);
 586        buffer = binder_alloc_new_buf_locked(alloc, data_size, offsets_size,
 587                                             extra_buffers_size, is_async, pid);
 588        mutex_unlock(&alloc->mutex);
 589        return buffer;
 590}
 591
 592static void __user *buffer_start_page(struct binder_buffer *buffer)
 593{
 594        return (void __user *)((uintptr_t)buffer->user_data & PAGE_MASK);
 595}
 596
 597static void __user *prev_buffer_end_page(struct binder_buffer *buffer)
 598{
 599        return (void __user *)
 600                (((uintptr_t)(buffer->user_data) - 1) & PAGE_MASK);
 601}
 602
 603static void binder_delete_free_buffer(struct binder_alloc *alloc,
 604                                      struct binder_buffer *buffer)
 605{
 606        struct binder_buffer *prev, *next = NULL;
 607        bool to_free = true;
 608
 609        BUG_ON(alloc->buffers.next == &buffer->entry);
 610        prev = binder_buffer_prev(buffer);
 611        BUG_ON(!prev->free);
 612        if (prev_buffer_end_page(prev) == buffer_start_page(buffer)) {
 613                to_free = false;
 614                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 615                                   "%d: merge free, buffer %pK share page with %pK\n",
 616                                   alloc->pid, buffer->user_data,
 617                                   prev->user_data);
 618        }
 619
 620        if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 621                next = binder_buffer_next(buffer);
 622                if (buffer_start_page(next) == buffer_start_page(buffer)) {
 623                        to_free = false;
 624                        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 625                                           "%d: merge free, buffer %pK share page with %pK\n",
 626                                           alloc->pid,
 627                                           buffer->user_data,
 628                                           next->user_data);
 629                }
 630        }
 631
 632        if (PAGE_ALIGNED(buffer->user_data)) {
 633                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 634                                   "%d: merge free, buffer start %pK is page aligned\n",
 635                                   alloc->pid, buffer->user_data);
 636                to_free = false;
 637        }
 638
 639        if (to_free) {
 640                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 641                                   "%d: merge free, buffer %pK do not share page with %pK or %pK\n",
 642                                   alloc->pid, buffer->user_data,
 643                                   prev->user_data,
 644                                   next ? next->user_data : NULL);
 645                binder_update_page_range(alloc, 0, buffer_start_page(buffer),
 646                                         buffer_start_page(buffer) + PAGE_SIZE);
 647        }
 648        list_del(&buffer->entry);
 649        kfree(buffer);
 650}
 651
 652static void binder_free_buf_locked(struct binder_alloc *alloc,
 653                                   struct binder_buffer *buffer)
 654{
 655        size_t size, buffer_size;
 656
 657        buffer_size = binder_alloc_buffer_size(alloc, buffer);
 658
 659        size = ALIGN(buffer->data_size, sizeof(void *)) +
 660                ALIGN(buffer->offsets_size, sizeof(void *)) +
 661                ALIGN(buffer->extra_buffers_size, sizeof(void *));
 662
 663        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 664                     "%d: binder_free_buf %pK size %zd buffer_size %zd\n",
 665                      alloc->pid, buffer, size, buffer_size);
 666
 667        BUG_ON(buffer->free);
 668        BUG_ON(size > buffer_size);
 669        BUG_ON(buffer->transaction != NULL);
 670        BUG_ON(buffer->user_data < alloc->buffer);
 671        BUG_ON(buffer->user_data > alloc->buffer + alloc->buffer_size);
 672
 673        if (buffer->async_transaction) {
 674                alloc->free_async_space += size + sizeof(struct binder_buffer);
 675
 676                binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC_ASYNC,
 677                             "%d: binder_free_buf size %zd async free %zd\n",
 678                              alloc->pid, size, alloc->free_async_space);
 679        }
 680
 681        binder_update_page_range(alloc, 0,
 682                (void __user *)PAGE_ALIGN((uintptr_t)buffer->user_data),
 683                (void __user *)(((uintptr_t)
 684                          buffer->user_data + buffer_size) & PAGE_MASK));
 685
 686        rb_erase(&buffer->rb_node, &alloc->allocated_buffers);
 687        buffer->free = 1;
 688        if (!list_is_last(&buffer->entry, &alloc->buffers)) {
 689                struct binder_buffer *next = binder_buffer_next(buffer);
 690
 691                if (next->free) {
 692                        rb_erase(&next->rb_node, &alloc->free_buffers);
 693                        binder_delete_free_buffer(alloc, next);
 694                }
 695        }
 696        if (alloc->buffers.next != &buffer->entry) {
 697                struct binder_buffer *prev = binder_buffer_prev(buffer);
 698
 699                if (prev->free) {
 700                        binder_delete_free_buffer(alloc, buffer);
 701                        rb_erase(&prev->rb_node, &alloc->free_buffers);
 702                        buffer = prev;
 703                }
 704        }
 705        binder_insert_free_buffer(alloc, buffer);
 706}
 707
 708static void binder_alloc_clear_buf(struct binder_alloc *alloc,
 709                                   struct binder_buffer *buffer);
 710/**
 711 * binder_alloc_free_buf() - free a binder buffer
 712 * @alloc:      binder_alloc for this proc
 713 * @buffer:     kernel pointer to buffer
 714 *
 715 * Free the buffer allocated via binder_alloc_new_buf()
 716 */
 717void binder_alloc_free_buf(struct binder_alloc *alloc,
 718                            struct binder_buffer *buffer)
 719{
 720        /*
 721         * We could eliminate the call to binder_alloc_clear_buf()
 722         * from binder_alloc_deferred_release() by moving this to
 723         * binder_alloc_free_buf_locked(). However, that could
 724         * increase contention for the alloc mutex if clear_on_free
 725         * is used frequently for large buffers. The mutex is not
 726         * needed for correctness here.
 727         */
 728        if (buffer->clear_on_free) {
 729                binder_alloc_clear_buf(alloc, buffer);
 730                buffer->clear_on_free = false;
 731        }
 732        mutex_lock(&alloc->mutex);
 733        binder_free_buf_locked(alloc, buffer);
 734        mutex_unlock(&alloc->mutex);
 735}
 736
 737/**
 738 * binder_alloc_mmap_handler() - map virtual address space for proc
 739 * @alloc:      alloc structure for this proc
 740 * @vma:        vma passed to mmap()
 741 *
 742 * Called by binder_mmap() to initialize the space specified in
 743 * vma for allocating binder buffers
 744 *
 745 * Return:
 746 *      0 = success
 747 *      -EBUSY = address space already mapped
 748 *      -ENOMEM = failed to map memory to given address space
 749 */
 750int binder_alloc_mmap_handler(struct binder_alloc *alloc,
 751                              struct vm_area_struct *vma)
 752{
 753        int ret;
 754        const char *failure_string;
 755        struct binder_buffer *buffer;
 756
 757        mutex_lock(&binder_alloc_mmap_lock);
 758        if (alloc->buffer_size) {
 759                ret = -EBUSY;
 760                failure_string = "already mapped";
 761                goto err_already_mapped;
 762        }
 763        alloc->buffer_size = min_t(unsigned long, vma->vm_end - vma->vm_start,
 764                                   SZ_4M);
 765        mutex_unlock(&binder_alloc_mmap_lock);
 766
 767        alloc->buffer = (void __user *)vma->vm_start;
 768
 769        alloc->pages = kcalloc(alloc->buffer_size / PAGE_SIZE,
 770                               sizeof(alloc->pages[0]),
 771                               GFP_KERNEL);
 772        if (alloc->pages == NULL) {
 773                ret = -ENOMEM;
 774                failure_string = "alloc page array";
 775                goto err_alloc_pages_failed;
 776        }
 777
 778        buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
 779        if (!buffer) {
 780                ret = -ENOMEM;
 781                failure_string = "alloc buffer struct";
 782                goto err_alloc_buf_struct_failed;
 783        }
 784
 785        buffer->user_data = alloc->buffer;
 786        list_add(&buffer->entry, &alloc->buffers);
 787        buffer->free = 1;
 788        binder_insert_free_buffer(alloc, buffer);
 789        alloc->free_async_space = alloc->buffer_size / 2;
 790        binder_alloc_set_vma(alloc, vma);
 791        mmgrab(alloc->vma_vm_mm);
 792
 793        return 0;
 794
 795err_alloc_buf_struct_failed:
 796        kfree(alloc->pages);
 797        alloc->pages = NULL;
 798err_alloc_pages_failed:
 799        alloc->buffer = NULL;
 800        mutex_lock(&binder_alloc_mmap_lock);
 801        alloc->buffer_size = 0;
 802err_already_mapped:
 803        mutex_unlock(&binder_alloc_mmap_lock);
 804        binder_alloc_debug(BINDER_DEBUG_USER_ERROR,
 805                           "%s: %d %lx-%lx %s failed %d\n", __func__,
 806                           alloc->pid, vma->vm_start, vma->vm_end,
 807                           failure_string, ret);
 808        return ret;
 809}
 810
 811
 812void binder_alloc_deferred_release(struct binder_alloc *alloc)
 813{
 814        struct rb_node *n;
 815        int buffers, page_count;
 816        struct binder_buffer *buffer;
 817
 818        buffers = 0;
 819        mutex_lock(&alloc->mutex);
 820        BUG_ON(alloc->vma);
 821
 822        while ((n = rb_first(&alloc->allocated_buffers))) {
 823                buffer = rb_entry(n, struct binder_buffer, rb_node);
 824
 825                /* Transaction should already have been freed */
 826                BUG_ON(buffer->transaction);
 827
 828                if (buffer->clear_on_free) {
 829                        binder_alloc_clear_buf(alloc, buffer);
 830                        buffer->clear_on_free = false;
 831                }
 832                binder_free_buf_locked(alloc, buffer);
 833                buffers++;
 834        }
 835
 836        while (!list_empty(&alloc->buffers)) {
 837                buffer = list_first_entry(&alloc->buffers,
 838                                          struct binder_buffer, entry);
 839                WARN_ON(!buffer->free);
 840
 841                list_del(&buffer->entry);
 842                WARN_ON_ONCE(!list_empty(&alloc->buffers));
 843                kfree(buffer);
 844        }
 845
 846        page_count = 0;
 847        if (alloc->pages) {
 848                int i;
 849
 850                for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 851                        void __user *page_addr;
 852                        bool on_lru;
 853
 854                        if (!alloc->pages[i].page_ptr)
 855                                continue;
 856
 857                        on_lru = list_lru_del(&binder_alloc_lru,
 858                                              &alloc->pages[i].lru);
 859                        page_addr = alloc->buffer + i * PAGE_SIZE;
 860                        binder_alloc_debug(BINDER_DEBUG_BUFFER_ALLOC,
 861                                     "%s: %d: page %d at %pK %s\n",
 862                                     __func__, alloc->pid, i, page_addr,
 863                                     on_lru ? "on lru" : "active");
 864                        __free_page(alloc->pages[i].page_ptr);
 865                        page_count++;
 866                }
 867                kfree(alloc->pages);
 868        }
 869        mutex_unlock(&alloc->mutex);
 870        if (alloc->vma_vm_mm)
 871                mmdrop(alloc->vma_vm_mm);
 872
 873        binder_alloc_debug(BINDER_DEBUG_OPEN_CLOSE,
 874                     "%s: %d buffers %d, pages %d\n",
 875                     __func__, alloc->pid, buffers, page_count);
 876}
 877
 878static void print_binder_buffer(struct seq_file *m, const char *prefix,
 879                                struct binder_buffer *buffer)
 880{
 881        seq_printf(m, "%s %d: %pK size %zd:%zd:%zd %s\n",
 882                   prefix, buffer->debug_id, buffer->user_data,
 883                   buffer->data_size, buffer->offsets_size,
 884                   buffer->extra_buffers_size,
 885                   buffer->transaction ? "active" : "delivered");
 886}
 887
 888/**
 889 * binder_alloc_print_allocated() - print buffer info
 890 * @m:     seq_file for output via seq_printf()
 891 * @alloc: binder_alloc for this proc
 892 *
 893 * Prints information about every buffer associated with
 894 * the binder_alloc state to the given seq_file
 895 */
 896void binder_alloc_print_allocated(struct seq_file *m,
 897                                  struct binder_alloc *alloc)
 898{
 899        struct rb_node *n;
 900
 901        mutex_lock(&alloc->mutex);
 902        for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
 903                print_binder_buffer(m, "  buffer",
 904                                    rb_entry(n, struct binder_buffer, rb_node));
 905        mutex_unlock(&alloc->mutex);
 906}
 907
 908/**
 909 * binder_alloc_print_pages() - print page usage
 910 * @m:     seq_file for output via seq_printf()
 911 * @alloc: binder_alloc for this proc
 912 */
 913void binder_alloc_print_pages(struct seq_file *m,
 914                              struct binder_alloc *alloc)
 915{
 916        struct binder_lru_page *page;
 917        int i;
 918        int active = 0;
 919        int lru = 0;
 920        int free = 0;
 921
 922        mutex_lock(&alloc->mutex);
 923        /*
 924         * Make sure the binder_alloc is fully initialized, otherwise we might
 925         * read inconsistent state.
 926         */
 927        if (binder_alloc_get_vma(alloc) != NULL) {
 928                for (i = 0; i < alloc->buffer_size / PAGE_SIZE; i++) {
 929                        page = &alloc->pages[i];
 930                        if (!page->page_ptr)
 931                                free++;
 932                        else if (list_empty(&page->lru))
 933                                active++;
 934                        else
 935                                lru++;
 936                }
 937        }
 938        mutex_unlock(&alloc->mutex);
 939        seq_printf(m, "  pages: %d:%d:%d\n", active, lru, free);
 940        seq_printf(m, "  pages high watermark: %zu\n", alloc->pages_high);
 941}
 942
 943/**
 944 * binder_alloc_get_allocated_count() - return count of buffers
 945 * @alloc: binder_alloc for this proc
 946 *
 947 * Return: count of allocated buffers
 948 */
 949int binder_alloc_get_allocated_count(struct binder_alloc *alloc)
 950{
 951        struct rb_node *n;
 952        int count = 0;
 953
 954        mutex_lock(&alloc->mutex);
 955        for (n = rb_first(&alloc->allocated_buffers); n != NULL; n = rb_next(n))
 956                count++;
 957        mutex_unlock(&alloc->mutex);
 958        return count;
 959}
 960
 961
 962/**
 963 * binder_alloc_vma_close() - invalidate address space
 964 * @alloc: binder_alloc for this proc
 965 *
 966 * Called from binder_vma_close() when releasing address space.
 967 * Clears alloc->vma to prevent new incoming transactions from
 968 * allocating more buffers.
 969 */
 970void binder_alloc_vma_close(struct binder_alloc *alloc)
 971{
 972        binder_alloc_set_vma(alloc, NULL);
 973}
 974
 975/**
 976 * binder_alloc_free_page() - shrinker callback to free pages
 977 * @item:   item to free
 978 * @lock:   lock protecting the item
 979 * @cb_arg: callback argument
 980 *
 981 * Called from list_lru_walk() in binder_shrink_scan() to free
 982 * up pages when the system is under memory pressure.
 983 */
 984enum lru_status binder_alloc_free_page(struct list_head *item,
 985                                       struct list_lru_one *lru,
 986                                       spinlock_t *lock,
 987                                       void *cb_arg)
 988        __must_hold(lock)
 989{
 990        struct mm_struct *mm = NULL;
 991        struct binder_lru_page *page = container_of(item,
 992                                                    struct binder_lru_page,
 993                                                    lru);
 994        struct binder_alloc *alloc;
 995        uintptr_t page_addr;
 996        size_t index;
 997        struct vm_area_struct *vma;
 998
 999        alloc = page->alloc;
1000        if (!mutex_trylock(&alloc->mutex))
1001                goto err_get_alloc_mutex_failed;
1002
1003        if (!page->page_ptr)
1004                goto err_page_already_freed;
1005
1006        index = page - alloc->pages;
1007        page_addr = (uintptr_t)alloc->buffer + index * PAGE_SIZE;
1008
1009        mm = alloc->vma_vm_mm;
1010        if (!mmget_not_zero(mm))
1011                goto err_mmget;
1012        if (!mmap_read_trylock(mm))
1013                goto err_mmap_read_lock_failed;
1014        vma = binder_alloc_get_vma(alloc);
1015
1016        list_lru_isolate(lru, item);
1017        spin_unlock(lock);
1018
1019        if (vma) {
1020                trace_binder_unmap_user_start(alloc, index);
1021
1022                zap_page_range(vma, page_addr, PAGE_SIZE);
1023
1024                trace_binder_unmap_user_end(alloc, index);
1025        }
1026        mmap_read_unlock(mm);
1027        mmput_async(mm);
1028
1029        trace_binder_unmap_kernel_start(alloc, index);
1030
1031        __free_page(page->page_ptr);
1032        page->page_ptr = NULL;
1033
1034        trace_binder_unmap_kernel_end(alloc, index);
1035
1036        spin_lock(lock);
1037        mutex_unlock(&alloc->mutex);
1038        return LRU_REMOVED_RETRY;
1039
1040err_mmap_read_lock_failed:
1041        mmput_async(mm);
1042err_mmget:
1043err_page_already_freed:
1044        mutex_unlock(&alloc->mutex);
1045err_get_alloc_mutex_failed:
1046        return LRU_SKIP;
1047}
1048
1049static unsigned long
1050binder_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1051{
1052        unsigned long ret = list_lru_count(&binder_alloc_lru);
1053        return ret;
1054}
1055
1056static unsigned long
1057binder_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1058{
1059        unsigned long ret;
1060
1061        ret = list_lru_walk(&binder_alloc_lru, binder_alloc_free_page,
1062                            NULL, sc->nr_to_scan);
1063        return ret;
1064}
1065
1066static struct shrinker binder_shrinker = {
1067        .count_objects = binder_shrink_count,
1068        .scan_objects = binder_shrink_scan,
1069        .seeks = DEFAULT_SEEKS,
1070};
1071
1072/**
1073 * binder_alloc_init() - called by binder_open() for per-proc initialization
1074 * @alloc: binder_alloc for this proc
1075 *
1076 * Called from binder_open() to initialize binder_alloc fields for
1077 * new binder proc
1078 */
1079void binder_alloc_init(struct binder_alloc *alloc)
1080{
1081        alloc->pid = current->group_leader->pid;
1082        mutex_init(&alloc->mutex);
1083        INIT_LIST_HEAD(&alloc->buffers);
1084}
1085
1086int binder_alloc_shrinker_init(void)
1087{
1088        int ret = list_lru_init(&binder_alloc_lru);
1089
1090        if (ret == 0) {
1091                ret = register_shrinker(&binder_shrinker);
1092                if (ret)
1093                        list_lru_destroy(&binder_alloc_lru);
1094        }
1095        return ret;
1096}
1097
1098/**
1099 * check_buffer() - verify that buffer/offset is safe to access
1100 * @alloc: binder_alloc for this proc
1101 * @buffer: binder buffer to be accessed
1102 * @offset: offset into @buffer data
1103 * @bytes: bytes to access from offset
1104 *
1105 * Check that the @offset/@bytes are within the size of the given
1106 * @buffer and that the buffer is currently active and not freeable.
1107 * Offsets must also be multiples of sizeof(u32). The kernel is
1108 * allowed to touch the buffer in two cases:
1109 *
1110 * 1) when the buffer is being created:
1111 *     (buffer->free == 0 && buffer->allow_user_free == 0)
1112 * 2) when the buffer is being torn down:
1113 *     (buffer->free == 0 && buffer->transaction == NULL).
1114 *
1115 * Return: true if the buffer is safe to access
1116 */
1117static inline bool check_buffer(struct binder_alloc *alloc,
1118                                struct binder_buffer *buffer,
1119                                binder_size_t offset, size_t bytes)
1120{
1121        size_t buffer_size = binder_alloc_buffer_size(alloc, buffer);
1122
1123        return buffer_size >= bytes &&
1124                offset <= buffer_size - bytes &&
1125                IS_ALIGNED(offset, sizeof(u32)) &&
1126                !buffer->free &&
1127                (!buffer->allow_user_free || !buffer->transaction);
1128}
1129
1130/**
1131 * binder_alloc_get_page() - get kernel pointer for given buffer offset
1132 * @alloc: binder_alloc for this proc
1133 * @buffer: binder buffer to be accessed
1134 * @buffer_offset: offset into @buffer data
1135 * @pgoffp: address to copy final page offset to
1136 *
1137 * Lookup the struct page corresponding to the address
1138 * at @buffer_offset into @buffer->user_data. If @pgoffp is not
1139 * NULL, the byte-offset into the page is written there.
1140 *
1141 * The caller is responsible to ensure that the offset points
1142 * to a valid address within the @buffer and that @buffer is
1143 * not freeable by the user. Since it can't be freed, we are
1144 * guaranteed that the corresponding elements of @alloc->pages[]
1145 * cannot change.
1146 *
1147 * Return: struct page
1148 */
1149static struct page *binder_alloc_get_page(struct binder_alloc *alloc,
1150                                          struct binder_buffer *buffer,
1151                                          binder_size_t buffer_offset,
1152                                          pgoff_t *pgoffp)
1153{
1154        binder_size_t buffer_space_offset = buffer_offset +
1155                (buffer->user_data - alloc->buffer);
1156        pgoff_t pgoff = buffer_space_offset & ~PAGE_MASK;
1157        size_t index = buffer_space_offset >> PAGE_SHIFT;
1158        struct binder_lru_page *lru_page;
1159
1160        lru_page = &alloc->pages[index];
1161        *pgoffp = pgoff;
1162        return lru_page->page_ptr;
1163}
1164
1165/**
1166 * binder_alloc_clear_buf() - zero out buffer
1167 * @alloc: binder_alloc for this proc
1168 * @buffer: binder buffer to be cleared
1169 *
1170 * memset the given buffer to 0
1171 */
1172static void binder_alloc_clear_buf(struct binder_alloc *alloc,
1173                                   struct binder_buffer *buffer)
1174{
1175        size_t bytes = binder_alloc_buffer_size(alloc, buffer);
1176        binder_size_t buffer_offset = 0;
1177
1178        while (bytes) {
1179                unsigned long size;
1180                struct page *page;
1181                pgoff_t pgoff;
1182                void *kptr;
1183
1184                page = binder_alloc_get_page(alloc, buffer,
1185                                             buffer_offset, &pgoff);
1186                size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1187                kptr = kmap(page) + pgoff;
1188                memset(kptr, 0, size);
1189                kunmap(page);
1190                bytes -= size;
1191                buffer_offset += size;
1192        }
1193}
1194
1195/**
1196 * binder_alloc_copy_user_to_buffer() - copy src user to tgt user
1197 * @alloc: binder_alloc for this proc
1198 * @buffer: binder buffer to be accessed
1199 * @buffer_offset: offset into @buffer data
1200 * @from: userspace pointer to source buffer
1201 * @bytes: bytes to copy
1202 *
1203 * Copy bytes from source userspace to target buffer.
1204 *
1205 * Return: bytes remaining to be copied
1206 */
1207unsigned long
1208binder_alloc_copy_user_to_buffer(struct binder_alloc *alloc,
1209                                 struct binder_buffer *buffer,
1210                                 binder_size_t buffer_offset,
1211                                 const void __user *from,
1212                                 size_t bytes)
1213{
1214        if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1215                return bytes;
1216
1217        while (bytes) {
1218                unsigned long size;
1219                unsigned long ret;
1220                struct page *page;
1221                pgoff_t pgoff;
1222                void *kptr;
1223
1224                page = binder_alloc_get_page(alloc, buffer,
1225                                             buffer_offset, &pgoff);
1226                size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1227                kptr = kmap(page) + pgoff;
1228                ret = copy_from_user(kptr, from, size);
1229                kunmap(page);
1230                if (ret)
1231                        return bytes - size + ret;
1232                bytes -= size;
1233                from += size;
1234                buffer_offset += size;
1235        }
1236        return 0;
1237}
1238
1239static int binder_alloc_do_buffer_copy(struct binder_alloc *alloc,
1240                                       bool to_buffer,
1241                                       struct binder_buffer *buffer,
1242                                       binder_size_t buffer_offset,
1243                                       void *ptr,
1244                                       size_t bytes)
1245{
1246        /* All copies must be 32-bit aligned and 32-bit size */
1247        if (!check_buffer(alloc, buffer, buffer_offset, bytes))
1248                return -EINVAL;
1249
1250        while (bytes) {
1251                unsigned long size;
1252                struct page *page;
1253                pgoff_t pgoff;
1254                void *tmpptr;
1255                void *base_ptr;
1256
1257                page = binder_alloc_get_page(alloc, buffer,
1258                                             buffer_offset, &pgoff);
1259                size = min_t(size_t, bytes, PAGE_SIZE - pgoff);
1260                base_ptr = kmap_atomic(page);
1261                tmpptr = base_ptr + pgoff;
1262                if (to_buffer)
1263                        memcpy(tmpptr, ptr, size);
1264                else
1265                        memcpy(ptr, tmpptr, size);
1266                /*
1267                 * kunmap_atomic() takes care of flushing the cache
1268                 * if this device has VIVT cache arch
1269                 */
1270                kunmap_atomic(base_ptr);
1271                bytes -= size;
1272                pgoff = 0;
1273                ptr = ptr + size;
1274                buffer_offset += size;
1275        }
1276        return 0;
1277}
1278
1279int binder_alloc_copy_to_buffer(struct binder_alloc *alloc,
1280                                struct binder_buffer *buffer,
1281                                binder_size_t buffer_offset,
1282                                void *src,
1283                                size_t bytes)
1284{
1285        return binder_alloc_do_buffer_copy(alloc, true, buffer, buffer_offset,
1286                                           src, bytes);
1287}
1288
1289int binder_alloc_copy_from_buffer(struct binder_alloc *alloc,
1290                                  void *dest,
1291                                  struct binder_buffer *buffer,
1292                                  binder_size_t buffer_offset,
1293                                  size_t bytes)
1294{
1295        return binder_alloc_do_buffer_copy(alloc, false, buffer, buffer_offset,
1296                                           dest, bytes);
1297}
1298
1299