linux/drivers/ata/libata-core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
   5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2004 Jeff Garzik
   7 *
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
  13 *
  14 *  Standards documents from:
  15 *      http://www.t13.org (ATA standards, PCI DMA IDE spec)
  16 *      http://www.t10.org (SCSI MMC - for ATAPI MMC)
  17 *      http://www.sata-io.org (SATA)
  18 *      http://www.compactflash.org (CF)
  19 *      http://www.qic.org (QIC157 - Tape and DSC)
  20 *      http://www.ce-ata.org (CE-ATA: not supported)
  21 *
  22 * libata is essentially a library of internal helper functions for
  23 * low-level ATA host controller drivers.  As such, the API/ABI is
  24 * likely to change as new drivers are added and updated.
  25 * Do not depend on ABI/API stability.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/pci.h>
  31#include <linux/init.h>
  32#include <linux/list.h>
  33#include <linux/mm.h>
  34#include <linux/spinlock.h>
  35#include <linux/blkdev.h>
  36#include <linux/delay.h>
  37#include <linux/timer.h>
  38#include <linux/time.h>
  39#include <linux/interrupt.h>
  40#include <linux/completion.h>
  41#include <linux/suspend.h>
  42#include <linux/workqueue.h>
  43#include <linux/scatterlist.h>
  44#include <linux/io.h>
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59#include <asm/setup.h>
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/libata.h>
  63
  64#include "libata.h"
  65#include "libata-transport.h"
  66
  67const struct ata_port_operations ata_base_port_ops = {
  68        .prereset               = ata_std_prereset,
  69        .postreset              = ata_std_postreset,
  70        .error_handler          = ata_std_error_handler,
  71        .sched_eh               = ata_std_sched_eh,
  72        .end_eh                 = ata_std_end_eh,
  73};
  74
  75const struct ata_port_operations sata_port_ops = {
  76        .inherits               = &ata_base_port_ops,
  77
  78        .qc_defer               = ata_std_qc_defer,
  79        .hardreset              = sata_std_hardreset,
  80};
  81EXPORT_SYMBOL_GPL(sata_port_ops);
  82
  83static unsigned int ata_dev_init_params(struct ata_device *dev,
  84                                        u16 heads, u16 sectors);
  85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  86static void ata_dev_xfermask(struct ata_device *dev);
  87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  88
  89atomic_t ata_print_id = ATOMIC_INIT(0);
  90
  91#ifdef CONFIG_ATA_FORCE
  92struct ata_force_param {
  93        const char      *name;
  94        u8              cbl;
  95        u8              spd_limit;
  96        unsigned long   xfer_mask;
  97        unsigned int    horkage_on;
  98        unsigned int    horkage_off;
  99        u16             lflags;
 100};
 101
 102struct ata_force_ent {
 103        int                     port;
 104        int                     device;
 105        struct ata_force_param  param;
 106};
 107
 108static struct ata_force_ent *ata_force_tbl;
 109static int ata_force_tbl_size;
 110
 111static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
 112/* param_buf is thrown away after initialization, disallow read */
 113module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 114MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 115#endif
 116
 117static int atapi_enabled = 1;
 118module_param(atapi_enabled, int, 0444);
 119MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 120
 121static int atapi_dmadir = 0;
 122module_param(atapi_dmadir, int, 0444);
 123MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 124
 125int atapi_passthru16 = 1;
 126module_param(atapi_passthru16, int, 0444);
 127MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 128
 129int libata_fua = 0;
 130module_param_named(fua, libata_fua, int, 0444);
 131MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 132
 133static int ata_ignore_hpa;
 134module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 135MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 136
 137static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 138module_param_named(dma, libata_dma_mask, int, 0444);
 139MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 140
 141static int ata_probe_timeout;
 142module_param(ata_probe_timeout, int, 0444);
 143MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 144
 145int libata_noacpi = 0;
 146module_param_named(noacpi, libata_noacpi, int, 0444);
 147MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 148
 149int libata_allow_tpm = 0;
 150module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 151MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 152
 153static int atapi_an;
 154module_param(atapi_an, int, 0444);
 155MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 156
 157MODULE_AUTHOR("Jeff Garzik");
 158MODULE_DESCRIPTION("Library module for ATA devices");
 159MODULE_LICENSE("GPL");
 160MODULE_VERSION(DRV_VERSION);
 161
 162static inline bool ata_dev_print_info(struct ata_device *dev)
 163{
 164        struct ata_eh_context *ehc = &dev->link->eh_context;
 165
 166        return ehc->i.flags & ATA_EHI_PRINTINFO;
 167}
 168
 169static bool ata_sstatus_online(u32 sstatus)
 170{
 171        return (sstatus & 0xf) == 0x3;
 172}
 173
 174/**
 175 *      ata_link_next - link iteration helper
 176 *      @link: the previous link, NULL to start
 177 *      @ap: ATA port containing links to iterate
 178 *      @mode: iteration mode, one of ATA_LITER_*
 179 *
 180 *      LOCKING:
 181 *      Host lock or EH context.
 182 *
 183 *      RETURNS:
 184 *      Pointer to the next link.
 185 */
 186struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 187                               enum ata_link_iter_mode mode)
 188{
 189        BUG_ON(mode != ATA_LITER_EDGE &&
 190               mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 191
 192        /* NULL link indicates start of iteration */
 193        if (!link)
 194                switch (mode) {
 195                case ATA_LITER_EDGE:
 196                case ATA_LITER_PMP_FIRST:
 197                        if (sata_pmp_attached(ap))
 198                                return ap->pmp_link;
 199                        fallthrough;
 200                case ATA_LITER_HOST_FIRST:
 201                        return &ap->link;
 202                }
 203
 204        /* we just iterated over the host link, what's next? */
 205        if (link == &ap->link)
 206                switch (mode) {
 207                case ATA_LITER_HOST_FIRST:
 208                        if (sata_pmp_attached(ap))
 209                                return ap->pmp_link;
 210                        fallthrough;
 211                case ATA_LITER_PMP_FIRST:
 212                        if (unlikely(ap->slave_link))
 213                                return ap->slave_link;
 214                        fallthrough;
 215                case ATA_LITER_EDGE:
 216                        return NULL;
 217                }
 218
 219        /* slave_link excludes PMP */
 220        if (unlikely(link == ap->slave_link))
 221                return NULL;
 222
 223        /* we were over a PMP link */
 224        if (++link < ap->pmp_link + ap->nr_pmp_links)
 225                return link;
 226
 227        if (mode == ATA_LITER_PMP_FIRST)
 228                return &ap->link;
 229
 230        return NULL;
 231}
 232EXPORT_SYMBOL_GPL(ata_link_next);
 233
 234/**
 235 *      ata_dev_next - device iteration helper
 236 *      @dev: the previous device, NULL to start
 237 *      @link: ATA link containing devices to iterate
 238 *      @mode: iteration mode, one of ATA_DITER_*
 239 *
 240 *      LOCKING:
 241 *      Host lock or EH context.
 242 *
 243 *      RETURNS:
 244 *      Pointer to the next device.
 245 */
 246struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 247                                enum ata_dev_iter_mode mode)
 248{
 249        BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 250               mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 251
 252        /* NULL dev indicates start of iteration */
 253        if (!dev)
 254                switch (mode) {
 255                case ATA_DITER_ENABLED:
 256                case ATA_DITER_ALL:
 257                        dev = link->device;
 258                        goto check;
 259                case ATA_DITER_ENABLED_REVERSE:
 260                case ATA_DITER_ALL_REVERSE:
 261                        dev = link->device + ata_link_max_devices(link) - 1;
 262                        goto check;
 263                }
 264
 265 next:
 266        /* move to the next one */
 267        switch (mode) {
 268        case ATA_DITER_ENABLED:
 269        case ATA_DITER_ALL:
 270                if (++dev < link->device + ata_link_max_devices(link))
 271                        goto check;
 272                return NULL;
 273        case ATA_DITER_ENABLED_REVERSE:
 274        case ATA_DITER_ALL_REVERSE:
 275                if (--dev >= link->device)
 276                        goto check;
 277                return NULL;
 278        }
 279
 280 check:
 281        if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 282            !ata_dev_enabled(dev))
 283                goto next;
 284        return dev;
 285}
 286EXPORT_SYMBOL_GPL(ata_dev_next);
 287
 288/**
 289 *      ata_dev_phys_link - find physical link for a device
 290 *      @dev: ATA device to look up physical link for
 291 *
 292 *      Look up physical link which @dev is attached to.  Note that
 293 *      this is different from @dev->link only when @dev is on slave
 294 *      link.  For all other cases, it's the same as @dev->link.
 295 *
 296 *      LOCKING:
 297 *      Don't care.
 298 *
 299 *      RETURNS:
 300 *      Pointer to the found physical link.
 301 */
 302struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 303{
 304        struct ata_port *ap = dev->link->ap;
 305
 306        if (!ap->slave_link)
 307                return dev->link;
 308        if (!dev->devno)
 309                return &ap->link;
 310        return ap->slave_link;
 311}
 312
 313#ifdef CONFIG_ATA_FORCE
 314/**
 315 *      ata_force_cbl - force cable type according to libata.force
 316 *      @ap: ATA port of interest
 317 *
 318 *      Force cable type according to libata.force and whine about it.
 319 *      The last entry which has matching port number is used, so it
 320 *      can be specified as part of device force parameters.  For
 321 *      example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 322 *      same effect.
 323 *
 324 *      LOCKING:
 325 *      EH context.
 326 */
 327void ata_force_cbl(struct ata_port *ap)
 328{
 329        int i;
 330
 331        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 332                const struct ata_force_ent *fe = &ata_force_tbl[i];
 333
 334                if (fe->port != -1 && fe->port != ap->print_id)
 335                        continue;
 336
 337                if (fe->param.cbl == ATA_CBL_NONE)
 338                        continue;
 339
 340                ap->cbl = fe->param.cbl;
 341                ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 342                return;
 343        }
 344}
 345
 346/**
 347 *      ata_force_link_limits - force link limits according to libata.force
 348 *      @link: ATA link of interest
 349 *
 350 *      Force link flags and SATA spd limit according to libata.force
 351 *      and whine about it.  When only the port part is specified
 352 *      (e.g. 1:), the limit applies to all links connected to both
 353 *      the host link and all fan-out ports connected via PMP.  If the
 354 *      device part is specified as 0 (e.g. 1.00:), it specifies the
 355 *      first fan-out link not the host link.  Device number 15 always
 356 *      points to the host link whether PMP is attached or not.  If the
 357 *      controller has slave link, device number 16 points to it.
 358 *
 359 *      LOCKING:
 360 *      EH context.
 361 */
 362static void ata_force_link_limits(struct ata_link *link)
 363{
 364        bool did_spd = false;
 365        int linkno = link->pmp;
 366        int i;
 367
 368        if (ata_is_host_link(link))
 369                linkno += 15;
 370
 371        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 372                const struct ata_force_ent *fe = &ata_force_tbl[i];
 373
 374                if (fe->port != -1 && fe->port != link->ap->print_id)
 375                        continue;
 376
 377                if (fe->device != -1 && fe->device != linkno)
 378                        continue;
 379
 380                /* only honor the first spd limit */
 381                if (!did_spd && fe->param.spd_limit) {
 382                        link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 383                        ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 384                                        fe->param.name);
 385                        did_spd = true;
 386                }
 387
 388                /* let lflags stack */
 389                if (fe->param.lflags) {
 390                        link->flags |= fe->param.lflags;
 391                        ata_link_notice(link,
 392                                        "FORCE: link flag 0x%x forced -> 0x%x\n",
 393                                        fe->param.lflags, link->flags);
 394                }
 395        }
 396}
 397
 398/**
 399 *      ata_force_xfermask - force xfermask according to libata.force
 400 *      @dev: ATA device of interest
 401 *
 402 *      Force xfer_mask according to libata.force and whine about it.
 403 *      For consistency with link selection, device number 15 selects
 404 *      the first device connected to the host link.
 405 *
 406 *      LOCKING:
 407 *      EH context.
 408 */
 409static void ata_force_xfermask(struct ata_device *dev)
 410{
 411        int devno = dev->link->pmp + dev->devno;
 412        int alt_devno = devno;
 413        int i;
 414
 415        /* allow n.15/16 for devices attached to host port */
 416        if (ata_is_host_link(dev->link))
 417                alt_devno += 15;
 418
 419        for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 420                const struct ata_force_ent *fe = &ata_force_tbl[i];
 421                unsigned long pio_mask, mwdma_mask, udma_mask;
 422
 423                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 424                        continue;
 425
 426                if (fe->device != -1 && fe->device != devno &&
 427                    fe->device != alt_devno)
 428                        continue;
 429
 430                if (!fe->param.xfer_mask)
 431                        continue;
 432
 433                ata_unpack_xfermask(fe->param.xfer_mask,
 434                                    &pio_mask, &mwdma_mask, &udma_mask);
 435                if (udma_mask)
 436                        dev->udma_mask = udma_mask;
 437                else if (mwdma_mask) {
 438                        dev->udma_mask = 0;
 439                        dev->mwdma_mask = mwdma_mask;
 440                } else {
 441                        dev->udma_mask = 0;
 442                        dev->mwdma_mask = 0;
 443                        dev->pio_mask = pio_mask;
 444                }
 445
 446                ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 447                               fe->param.name);
 448                return;
 449        }
 450}
 451
 452/**
 453 *      ata_force_horkage - force horkage according to libata.force
 454 *      @dev: ATA device of interest
 455 *
 456 *      Force horkage according to libata.force and whine about it.
 457 *      For consistency with link selection, device number 15 selects
 458 *      the first device connected to the host link.
 459 *
 460 *      LOCKING:
 461 *      EH context.
 462 */
 463static void ata_force_horkage(struct ata_device *dev)
 464{
 465        int devno = dev->link->pmp + dev->devno;
 466        int alt_devno = devno;
 467        int i;
 468
 469        /* allow n.15/16 for devices attached to host port */
 470        if (ata_is_host_link(dev->link))
 471                alt_devno += 15;
 472
 473        for (i = 0; i < ata_force_tbl_size; i++) {
 474                const struct ata_force_ent *fe = &ata_force_tbl[i];
 475
 476                if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 477                        continue;
 478
 479                if (fe->device != -1 && fe->device != devno &&
 480                    fe->device != alt_devno)
 481                        continue;
 482
 483                if (!(~dev->horkage & fe->param.horkage_on) &&
 484                    !(dev->horkage & fe->param.horkage_off))
 485                        continue;
 486
 487                dev->horkage |= fe->param.horkage_on;
 488                dev->horkage &= ~fe->param.horkage_off;
 489
 490                ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 491                               fe->param.name);
 492        }
 493}
 494#else
 495static inline void ata_force_link_limits(struct ata_link *link) { }
 496static inline void ata_force_xfermask(struct ata_device *dev) { }
 497static inline void ata_force_horkage(struct ata_device *dev) { }
 498#endif
 499
 500/**
 501 *      atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 502 *      @opcode: SCSI opcode
 503 *
 504 *      Determine ATAPI command type from @opcode.
 505 *
 506 *      LOCKING:
 507 *      None.
 508 *
 509 *      RETURNS:
 510 *      ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 511 */
 512int atapi_cmd_type(u8 opcode)
 513{
 514        switch (opcode) {
 515        case GPCMD_READ_10:
 516        case GPCMD_READ_12:
 517                return ATAPI_READ;
 518
 519        case GPCMD_WRITE_10:
 520        case GPCMD_WRITE_12:
 521        case GPCMD_WRITE_AND_VERIFY_10:
 522                return ATAPI_WRITE;
 523
 524        case GPCMD_READ_CD:
 525        case GPCMD_READ_CD_MSF:
 526                return ATAPI_READ_CD;
 527
 528        case ATA_16:
 529        case ATA_12:
 530                if (atapi_passthru16)
 531                        return ATAPI_PASS_THRU;
 532                fallthrough;
 533        default:
 534                return ATAPI_MISC;
 535        }
 536}
 537EXPORT_SYMBOL_GPL(atapi_cmd_type);
 538
 539static const u8 ata_rw_cmds[] = {
 540        /* pio multi */
 541        ATA_CMD_READ_MULTI,
 542        ATA_CMD_WRITE_MULTI,
 543        ATA_CMD_READ_MULTI_EXT,
 544        ATA_CMD_WRITE_MULTI_EXT,
 545        0,
 546        0,
 547        0,
 548        ATA_CMD_WRITE_MULTI_FUA_EXT,
 549        /* pio */
 550        ATA_CMD_PIO_READ,
 551        ATA_CMD_PIO_WRITE,
 552        ATA_CMD_PIO_READ_EXT,
 553        ATA_CMD_PIO_WRITE_EXT,
 554        0,
 555        0,
 556        0,
 557        0,
 558        /* dma */
 559        ATA_CMD_READ,
 560        ATA_CMD_WRITE,
 561        ATA_CMD_READ_EXT,
 562        ATA_CMD_WRITE_EXT,
 563        0,
 564        0,
 565        0,
 566        ATA_CMD_WRITE_FUA_EXT
 567};
 568
 569/**
 570 *      ata_rwcmd_protocol - set taskfile r/w commands and protocol
 571 *      @tf: command to examine and configure
 572 *      @dev: device tf belongs to
 573 *
 574 *      Examine the device configuration and tf->flags to calculate
 575 *      the proper read/write commands and protocol to use.
 576 *
 577 *      LOCKING:
 578 *      caller.
 579 */
 580static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 581{
 582        u8 cmd;
 583
 584        int index, fua, lba48, write;
 585
 586        fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 587        lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 588        write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 589
 590        if (dev->flags & ATA_DFLAG_PIO) {
 591                tf->protocol = ATA_PROT_PIO;
 592                index = dev->multi_count ? 0 : 8;
 593        } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 594                /* Unable to use DMA due to host limitation */
 595                tf->protocol = ATA_PROT_PIO;
 596                index = dev->multi_count ? 0 : 8;
 597        } else {
 598                tf->protocol = ATA_PROT_DMA;
 599                index = 16;
 600        }
 601
 602        cmd = ata_rw_cmds[index + fua + lba48 + write];
 603        if (cmd) {
 604                tf->command = cmd;
 605                return 0;
 606        }
 607        return -1;
 608}
 609
 610/**
 611 *      ata_tf_read_block - Read block address from ATA taskfile
 612 *      @tf: ATA taskfile of interest
 613 *      @dev: ATA device @tf belongs to
 614 *
 615 *      LOCKING:
 616 *      None.
 617 *
 618 *      Read block address from @tf.  This function can handle all
 619 *      three address formats - LBA, LBA48 and CHS.  tf->protocol and
 620 *      flags select the address format to use.
 621 *
 622 *      RETURNS:
 623 *      Block address read from @tf.
 624 */
 625u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 626{
 627        u64 block = 0;
 628
 629        if (tf->flags & ATA_TFLAG_LBA) {
 630                if (tf->flags & ATA_TFLAG_LBA48) {
 631                        block |= (u64)tf->hob_lbah << 40;
 632                        block |= (u64)tf->hob_lbam << 32;
 633                        block |= (u64)tf->hob_lbal << 24;
 634                } else
 635                        block |= (tf->device & 0xf) << 24;
 636
 637                block |= tf->lbah << 16;
 638                block |= tf->lbam << 8;
 639                block |= tf->lbal;
 640        } else {
 641                u32 cyl, head, sect;
 642
 643                cyl = tf->lbam | (tf->lbah << 8);
 644                head = tf->device & 0xf;
 645                sect = tf->lbal;
 646
 647                if (!sect) {
 648                        ata_dev_warn(dev,
 649                                     "device reported invalid CHS sector 0\n");
 650                        return U64_MAX;
 651                }
 652
 653                block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 654        }
 655
 656        return block;
 657}
 658
 659/**
 660 *      ata_build_rw_tf - Build ATA taskfile for given read/write request
 661 *      @tf: Target ATA taskfile
 662 *      @dev: ATA device @tf belongs to
 663 *      @block: Block address
 664 *      @n_block: Number of blocks
 665 *      @tf_flags: RW/FUA etc...
 666 *      @tag: tag
 667 *      @class: IO priority class
 668 *
 669 *      LOCKING:
 670 *      None.
 671 *
 672 *      Build ATA taskfile @tf for read/write request described by
 673 *      @block, @n_block, @tf_flags and @tag on @dev.
 674 *
 675 *      RETURNS:
 676 *
 677 *      0 on success, -ERANGE if the request is too large for @dev,
 678 *      -EINVAL if the request is invalid.
 679 */
 680int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 681                    u64 block, u32 n_block, unsigned int tf_flags,
 682                    unsigned int tag, int class)
 683{
 684        tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 685        tf->flags |= tf_flags;
 686
 687        if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
 688                /* yay, NCQ */
 689                if (!lba_48_ok(block, n_block))
 690                        return -ERANGE;
 691
 692                tf->protocol = ATA_PROT_NCQ;
 693                tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 694
 695                if (tf->flags & ATA_TFLAG_WRITE)
 696                        tf->command = ATA_CMD_FPDMA_WRITE;
 697                else
 698                        tf->command = ATA_CMD_FPDMA_READ;
 699
 700                tf->nsect = tag << 3;
 701                tf->hob_feature = (n_block >> 8) & 0xff;
 702                tf->feature = n_block & 0xff;
 703
 704                tf->hob_lbah = (block >> 40) & 0xff;
 705                tf->hob_lbam = (block >> 32) & 0xff;
 706                tf->hob_lbal = (block >> 24) & 0xff;
 707                tf->lbah = (block >> 16) & 0xff;
 708                tf->lbam = (block >> 8) & 0xff;
 709                tf->lbal = block & 0xff;
 710
 711                tf->device = ATA_LBA;
 712                if (tf->flags & ATA_TFLAG_FUA)
 713                        tf->device |= 1 << 7;
 714
 715                if (dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE &&
 716                    class == IOPRIO_CLASS_RT)
 717                        tf->hob_nsect |= ATA_PRIO_HIGH << ATA_SHIFT_PRIO;
 718        } else if (dev->flags & ATA_DFLAG_LBA) {
 719                tf->flags |= ATA_TFLAG_LBA;
 720
 721                if (lba_28_ok(block, n_block)) {
 722                        /* use LBA28 */
 723                        tf->device |= (block >> 24) & 0xf;
 724                } else if (lba_48_ok(block, n_block)) {
 725                        if (!(dev->flags & ATA_DFLAG_LBA48))
 726                                return -ERANGE;
 727
 728                        /* use LBA48 */
 729                        tf->flags |= ATA_TFLAG_LBA48;
 730
 731                        tf->hob_nsect = (n_block >> 8) & 0xff;
 732
 733                        tf->hob_lbah = (block >> 40) & 0xff;
 734                        tf->hob_lbam = (block >> 32) & 0xff;
 735                        tf->hob_lbal = (block >> 24) & 0xff;
 736                } else
 737                        /* request too large even for LBA48 */
 738                        return -ERANGE;
 739
 740                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 741                        return -EINVAL;
 742
 743                tf->nsect = n_block & 0xff;
 744
 745                tf->lbah = (block >> 16) & 0xff;
 746                tf->lbam = (block >> 8) & 0xff;
 747                tf->lbal = block & 0xff;
 748
 749                tf->device |= ATA_LBA;
 750        } else {
 751                /* CHS */
 752                u32 sect, head, cyl, track;
 753
 754                /* The request -may- be too large for CHS addressing. */
 755                if (!lba_28_ok(block, n_block))
 756                        return -ERANGE;
 757
 758                if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 759                        return -EINVAL;
 760
 761                /* Convert LBA to CHS */
 762                track = (u32)block / dev->sectors;
 763                cyl   = track / dev->heads;
 764                head  = track % dev->heads;
 765                sect  = (u32)block % dev->sectors + 1;
 766
 767                DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 768                        (u32)block, track, cyl, head, sect);
 769
 770                /* Check whether the converted CHS can fit.
 771                   Cylinder: 0-65535
 772                   Head: 0-15
 773                   Sector: 1-255*/
 774                if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 775                        return -ERANGE;
 776
 777                tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 778                tf->lbal = sect;
 779                tf->lbam = cyl;
 780                tf->lbah = cyl >> 8;
 781                tf->device |= head;
 782        }
 783
 784        return 0;
 785}
 786
 787/**
 788 *      ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 789 *      @pio_mask: pio_mask
 790 *      @mwdma_mask: mwdma_mask
 791 *      @udma_mask: udma_mask
 792 *
 793 *      Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 794 *      unsigned int xfer_mask.
 795 *
 796 *      LOCKING:
 797 *      None.
 798 *
 799 *      RETURNS:
 800 *      Packed xfer_mask.
 801 */
 802unsigned long ata_pack_xfermask(unsigned long pio_mask,
 803                                unsigned long mwdma_mask,
 804                                unsigned long udma_mask)
 805{
 806        return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 807                ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 808                ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 809}
 810EXPORT_SYMBOL_GPL(ata_pack_xfermask);
 811
 812/**
 813 *      ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 814 *      @xfer_mask: xfer_mask to unpack
 815 *      @pio_mask: resulting pio_mask
 816 *      @mwdma_mask: resulting mwdma_mask
 817 *      @udma_mask: resulting udma_mask
 818 *
 819 *      Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 820 *      Any NULL destination masks will be ignored.
 821 */
 822void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 823                         unsigned long *mwdma_mask, unsigned long *udma_mask)
 824{
 825        if (pio_mask)
 826                *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 827        if (mwdma_mask)
 828                *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 829        if (udma_mask)
 830                *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 831}
 832
 833static const struct ata_xfer_ent {
 834        int shift, bits;
 835        u8 base;
 836} ata_xfer_tbl[] = {
 837        { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 838        { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 839        { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 840        { -1, },
 841};
 842
 843/**
 844 *      ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 845 *      @xfer_mask: xfer_mask of interest
 846 *
 847 *      Return matching XFER_* value for @xfer_mask.  Only the highest
 848 *      bit of @xfer_mask is considered.
 849 *
 850 *      LOCKING:
 851 *      None.
 852 *
 853 *      RETURNS:
 854 *      Matching XFER_* value, 0xff if no match found.
 855 */
 856u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 857{
 858        int highbit = fls(xfer_mask) - 1;
 859        const struct ata_xfer_ent *ent;
 860
 861        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 862                if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 863                        return ent->base + highbit - ent->shift;
 864        return 0xff;
 865}
 866EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
 867
 868/**
 869 *      ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 870 *      @xfer_mode: XFER_* of interest
 871 *
 872 *      Return matching xfer_mask for @xfer_mode.
 873 *
 874 *      LOCKING:
 875 *      None.
 876 *
 877 *      RETURNS:
 878 *      Matching xfer_mask, 0 if no match found.
 879 */
 880unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 881{
 882        const struct ata_xfer_ent *ent;
 883
 884        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 885                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 886                        return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 887                                & ~((1 << ent->shift) - 1);
 888        return 0;
 889}
 890EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
 891
 892/**
 893 *      ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 894 *      @xfer_mode: XFER_* of interest
 895 *
 896 *      Return matching xfer_shift for @xfer_mode.
 897 *
 898 *      LOCKING:
 899 *      None.
 900 *
 901 *      RETURNS:
 902 *      Matching xfer_shift, -1 if no match found.
 903 */
 904int ata_xfer_mode2shift(unsigned long xfer_mode)
 905{
 906        const struct ata_xfer_ent *ent;
 907
 908        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 909                if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 910                        return ent->shift;
 911        return -1;
 912}
 913EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
 914
 915/**
 916 *      ata_mode_string - convert xfer_mask to string
 917 *      @xfer_mask: mask of bits supported; only highest bit counts.
 918 *
 919 *      Determine string which represents the highest speed
 920 *      (highest bit in @modemask).
 921 *
 922 *      LOCKING:
 923 *      None.
 924 *
 925 *      RETURNS:
 926 *      Constant C string representing highest speed listed in
 927 *      @mode_mask, or the constant C string "<n/a>".
 928 */
 929const char *ata_mode_string(unsigned long xfer_mask)
 930{
 931        static const char * const xfer_mode_str[] = {
 932                "PIO0",
 933                "PIO1",
 934                "PIO2",
 935                "PIO3",
 936                "PIO4",
 937                "PIO5",
 938                "PIO6",
 939                "MWDMA0",
 940                "MWDMA1",
 941                "MWDMA2",
 942                "MWDMA3",
 943                "MWDMA4",
 944                "UDMA/16",
 945                "UDMA/25",
 946                "UDMA/33",
 947                "UDMA/44",
 948                "UDMA/66",
 949                "UDMA/100",
 950                "UDMA/133",
 951                "UDMA7",
 952        };
 953        int highbit;
 954
 955        highbit = fls(xfer_mask) - 1;
 956        if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 957                return xfer_mode_str[highbit];
 958        return "<n/a>";
 959}
 960EXPORT_SYMBOL_GPL(ata_mode_string);
 961
 962const char *sata_spd_string(unsigned int spd)
 963{
 964        static const char * const spd_str[] = {
 965                "1.5 Gbps",
 966                "3.0 Gbps",
 967                "6.0 Gbps",
 968        };
 969
 970        if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 971                return "<unknown>";
 972        return spd_str[spd - 1];
 973}
 974
 975/**
 976 *      ata_dev_classify - determine device type based on ATA-spec signature
 977 *      @tf: ATA taskfile register set for device to be identified
 978 *
 979 *      Determine from taskfile register contents whether a device is
 980 *      ATA or ATAPI, as per "Signature and persistence" section
 981 *      of ATA/PI spec (volume 1, sect 5.14).
 982 *
 983 *      LOCKING:
 984 *      None.
 985 *
 986 *      RETURNS:
 987 *      Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
 988 *      %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
 989 */
 990unsigned int ata_dev_classify(const struct ata_taskfile *tf)
 991{
 992        /* Apple's open source Darwin code hints that some devices only
 993         * put a proper signature into the LBA mid/high registers,
 994         * So, we only check those.  It's sufficient for uniqueness.
 995         *
 996         * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
 997         * signatures for ATA and ATAPI devices attached on SerialATA,
 998         * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
 999         * spec has never mentioned about using different signatures
1000         * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1001         * Multiplier specification began to use 0x69/0x96 to identify
1002         * port multpliers and 0x3c/0xc3 to identify SEMB device.
1003         * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1004         * 0x69/0x96 shortly and described them as reserved for
1005         * SerialATA.
1006         *
1007         * We follow the current spec and consider that 0x69/0x96
1008         * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1009         * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1010         * SEMB signature.  This is worked around in
1011         * ata_dev_read_id().
1012         */
1013        if ((tf->lbam == 0) && (tf->lbah == 0)) {
1014                DPRINTK("found ATA device by sig\n");
1015                return ATA_DEV_ATA;
1016        }
1017
1018        if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1019                DPRINTK("found ATAPI device by sig\n");
1020                return ATA_DEV_ATAPI;
1021        }
1022
1023        if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1024                DPRINTK("found PMP device by sig\n");
1025                return ATA_DEV_PMP;
1026        }
1027
1028        if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1029                DPRINTK("found SEMB device by sig (could be ATA device)\n");
1030                return ATA_DEV_SEMB;
1031        }
1032
1033        if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1034                DPRINTK("found ZAC device by sig\n");
1035                return ATA_DEV_ZAC;
1036        }
1037
1038        DPRINTK("unknown device\n");
1039        return ATA_DEV_UNKNOWN;
1040}
1041EXPORT_SYMBOL_GPL(ata_dev_classify);
1042
1043/**
1044 *      ata_id_string - Convert IDENTIFY DEVICE page into string
1045 *      @id: IDENTIFY DEVICE results we will examine
1046 *      @s: string into which data is output
1047 *      @ofs: offset into identify device page
1048 *      @len: length of string to return. must be an even number.
1049 *
1050 *      The strings in the IDENTIFY DEVICE page are broken up into
1051 *      16-bit chunks.  Run through the string, and output each
1052 *      8-bit chunk linearly, regardless of platform.
1053 *
1054 *      LOCKING:
1055 *      caller.
1056 */
1057
1058void ata_id_string(const u16 *id, unsigned char *s,
1059                   unsigned int ofs, unsigned int len)
1060{
1061        unsigned int c;
1062
1063        BUG_ON(len & 1);
1064
1065        while (len > 0) {
1066                c = id[ofs] >> 8;
1067                *s = c;
1068                s++;
1069
1070                c = id[ofs] & 0xff;
1071                *s = c;
1072                s++;
1073
1074                ofs++;
1075                len -= 2;
1076        }
1077}
1078EXPORT_SYMBOL_GPL(ata_id_string);
1079
1080/**
1081 *      ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1082 *      @id: IDENTIFY DEVICE results we will examine
1083 *      @s: string into which data is output
1084 *      @ofs: offset into identify device page
1085 *      @len: length of string to return. must be an odd number.
1086 *
1087 *      This function is identical to ata_id_string except that it
1088 *      trims trailing spaces and terminates the resulting string with
1089 *      null.  @len must be actual maximum length (even number) + 1.
1090 *
1091 *      LOCKING:
1092 *      caller.
1093 */
1094void ata_id_c_string(const u16 *id, unsigned char *s,
1095                     unsigned int ofs, unsigned int len)
1096{
1097        unsigned char *p;
1098
1099        ata_id_string(id, s, ofs, len - 1);
1100
1101        p = s + strnlen(s, len - 1);
1102        while (p > s && p[-1] == ' ')
1103                p--;
1104        *p = '\0';
1105}
1106EXPORT_SYMBOL_GPL(ata_id_c_string);
1107
1108static u64 ata_id_n_sectors(const u16 *id)
1109{
1110        if (ata_id_has_lba(id)) {
1111                if (ata_id_has_lba48(id))
1112                        return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1113                else
1114                        return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1115        } else {
1116                if (ata_id_current_chs_valid(id))
1117                        return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1118                               id[ATA_ID_CUR_SECTORS];
1119                else
1120                        return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1121                               id[ATA_ID_SECTORS];
1122        }
1123}
1124
1125u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1126{
1127        u64 sectors = 0;
1128
1129        sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1130        sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1131        sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1132        sectors |= (tf->lbah & 0xff) << 16;
1133        sectors |= (tf->lbam & 0xff) << 8;
1134        sectors |= (tf->lbal & 0xff);
1135
1136        return sectors;
1137}
1138
1139u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1140{
1141        u64 sectors = 0;
1142
1143        sectors |= (tf->device & 0x0f) << 24;
1144        sectors |= (tf->lbah & 0xff) << 16;
1145        sectors |= (tf->lbam & 0xff) << 8;
1146        sectors |= (tf->lbal & 0xff);
1147
1148        return sectors;
1149}
1150
1151/**
1152 *      ata_read_native_max_address - Read native max address
1153 *      @dev: target device
1154 *      @max_sectors: out parameter for the result native max address
1155 *
1156 *      Perform an LBA48 or LBA28 native size query upon the device in
1157 *      question.
1158 *
1159 *      RETURNS:
1160 *      0 on success, -EACCES if command is aborted by the drive.
1161 *      -EIO on other errors.
1162 */
1163static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1164{
1165        unsigned int err_mask;
1166        struct ata_taskfile tf;
1167        int lba48 = ata_id_has_lba48(dev->id);
1168
1169        ata_tf_init(dev, &tf);
1170
1171        /* always clear all address registers */
1172        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1173
1174        if (lba48) {
1175                tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1176                tf.flags |= ATA_TFLAG_LBA48;
1177        } else
1178                tf.command = ATA_CMD_READ_NATIVE_MAX;
1179
1180        tf.protocol = ATA_PROT_NODATA;
1181        tf.device |= ATA_LBA;
1182
1183        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1184        if (err_mask) {
1185                ata_dev_warn(dev,
1186                             "failed to read native max address (err_mask=0x%x)\n",
1187                             err_mask);
1188                if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1189                        return -EACCES;
1190                return -EIO;
1191        }
1192
1193        if (lba48)
1194                *max_sectors = ata_tf_to_lba48(&tf) + 1;
1195        else
1196                *max_sectors = ata_tf_to_lba(&tf) + 1;
1197        if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1198                (*max_sectors)--;
1199        return 0;
1200}
1201
1202/**
1203 *      ata_set_max_sectors - Set max sectors
1204 *      @dev: target device
1205 *      @new_sectors: new max sectors value to set for the device
1206 *
1207 *      Set max sectors of @dev to @new_sectors.
1208 *
1209 *      RETURNS:
1210 *      0 on success, -EACCES if command is aborted or denied (due to
1211 *      previous non-volatile SET_MAX) by the drive.  -EIO on other
1212 *      errors.
1213 */
1214static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1215{
1216        unsigned int err_mask;
1217        struct ata_taskfile tf;
1218        int lba48 = ata_id_has_lba48(dev->id);
1219
1220        new_sectors--;
1221
1222        ata_tf_init(dev, &tf);
1223
1224        tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1225
1226        if (lba48) {
1227                tf.command = ATA_CMD_SET_MAX_EXT;
1228                tf.flags |= ATA_TFLAG_LBA48;
1229
1230                tf.hob_lbal = (new_sectors >> 24) & 0xff;
1231                tf.hob_lbam = (new_sectors >> 32) & 0xff;
1232                tf.hob_lbah = (new_sectors >> 40) & 0xff;
1233        } else {
1234                tf.command = ATA_CMD_SET_MAX;
1235
1236                tf.device |= (new_sectors >> 24) & 0xf;
1237        }
1238
1239        tf.protocol = ATA_PROT_NODATA;
1240        tf.device |= ATA_LBA;
1241
1242        tf.lbal = (new_sectors >> 0) & 0xff;
1243        tf.lbam = (new_sectors >> 8) & 0xff;
1244        tf.lbah = (new_sectors >> 16) & 0xff;
1245
1246        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1247        if (err_mask) {
1248                ata_dev_warn(dev,
1249                             "failed to set max address (err_mask=0x%x)\n",
1250                             err_mask);
1251                if (err_mask == AC_ERR_DEV &&
1252                    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1253                        return -EACCES;
1254                return -EIO;
1255        }
1256
1257        return 0;
1258}
1259
1260/**
1261 *      ata_hpa_resize          -       Resize a device with an HPA set
1262 *      @dev: Device to resize
1263 *
1264 *      Read the size of an LBA28 or LBA48 disk with HPA features and resize
1265 *      it if required to the full size of the media. The caller must check
1266 *      the drive has the HPA feature set enabled.
1267 *
1268 *      RETURNS:
1269 *      0 on success, -errno on failure.
1270 */
1271static int ata_hpa_resize(struct ata_device *dev)
1272{
1273        bool print_info = ata_dev_print_info(dev);
1274        bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1275        u64 sectors = ata_id_n_sectors(dev->id);
1276        u64 native_sectors;
1277        int rc;
1278
1279        /* do we need to do it? */
1280        if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1281            !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1282            (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1283                return 0;
1284
1285        /* read native max address */
1286        rc = ata_read_native_max_address(dev, &native_sectors);
1287        if (rc) {
1288                /* If device aborted the command or HPA isn't going to
1289                 * be unlocked, skip HPA resizing.
1290                 */
1291                if (rc == -EACCES || !unlock_hpa) {
1292                        ata_dev_warn(dev,
1293                                     "HPA support seems broken, skipping HPA handling\n");
1294                        dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1295
1296                        /* we can continue if device aborted the command */
1297                        if (rc == -EACCES)
1298                                rc = 0;
1299                }
1300
1301                return rc;
1302        }
1303        dev->n_native_sectors = native_sectors;
1304
1305        /* nothing to do? */
1306        if (native_sectors <= sectors || !unlock_hpa) {
1307                if (!print_info || native_sectors == sectors)
1308                        return 0;
1309
1310                if (native_sectors > sectors)
1311                        ata_dev_info(dev,
1312                                "HPA detected: current %llu, native %llu\n",
1313                                (unsigned long long)sectors,
1314                                (unsigned long long)native_sectors);
1315                else if (native_sectors < sectors)
1316                        ata_dev_warn(dev,
1317                                "native sectors (%llu) is smaller than sectors (%llu)\n",
1318                                (unsigned long long)native_sectors,
1319                                (unsigned long long)sectors);
1320                return 0;
1321        }
1322
1323        /* let's unlock HPA */
1324        rc = ata_set_max_sectors(dev, native_sectors);
1325        if (rc == -EACCES) {
1326                /* if device aborted the command, skip HPA resizing */
1327                ata_dev_warn(dev,
1328                             "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1329                             (unsigned long long)sectors,
1330                             (unsigned long long)native_sectors);
1331                dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1332                return 0;
1333        } else if (rc)
1334                return rc;
1335
1336        /* re-read IDENTIFY data */
1337        rc = ata_dev_reread_id(dev, 0);
1338        if (rc) {
1339                ata_dev_err(dev,
1340                            "failed to re-read IDENTIFY data after HPA resizing\n");
1341                return rc;
1342        }
1343
1344        if (print_info) {
1345                u64 new_sectors = ata_id_n_sectors(dev->id);
1346                ata_dev_info(dev,
1347                        "HPA unlocked: %llu -> %llu, native %llu\n",
1348                        (unsigned long long)sectors,
1349                        (unsigned long long)new_sectors,
1350                        (unsigned long long)native_sectors);
1351        }
1352
1353        return 0;
1354}
1355
1356/**
1357 *      ata_dump_id - IDENTIFY DEVICE info debugging output
1358 *      @id: IDENTIFY DEVICE page to dump
1359 *
1360 *      Dump selected 16-bit words from the given IDENTIFY DEVICE
1361 *      page.
1362 *
1363 *      LOCKING:
1364 *      caller.
1365 */
1366
1367static inline void ata_dump_id(const u16 *id)
1368{
1369        DPRINTK("49==0x%04x  "
1370                "53==0x%04x  "
1371                "63==0x%04x  "
1372                "64==0x%04x  "
1373                "75==0x%04x  \n",
1374                id[49],
1375                id[53],
1376                id[63],
1377                id[64],
1378                id[75]);
1379        DPRINTK("80==0x%04x  "
1380                "81==0x%04x  "
1381                "82==0x%04x  "
1382                "83==0x%04x  "
1383                "84==0x%04x  \n",
1384                id[80],
1385                id[81],
1386                id[82],
1387                id[83],
1388                id[84]);
1389        DPRINTK("88==0x%04x  "
1390                "93==0x%04x\n",
1391                id[88],
1392                id[93]);
1393}
1394
1395/**
1396 *      ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1397 *      @id: IDENTIFY data to compute xfer mask from
1398 *
1399 *      Compute the xfermask for this device. This is not as trivial
1400 *      as it seems if we must consider early devices correctly.
1401 *
1402 *      FIXME: pre IDE drive timing (do we care ?).
1403 *
1404 *      LOCKING:
1405 *      None.
1406 *
1407 *      RETURNS:
1408 *      Computed xfermask
1409 */
1410unsigned long ata_id_xfermask(const u16 *id)
1411{
1412        unsigned long pio_mask, mwdma_mask, udma_mask;
1413
1414        /* Usual case. Word 53 indicates word 64 is valid */
1415        if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1416                pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1417                pio_mask <<= 3;
1418                pio_mask |= 0x7;
1419        } else {
1420                /* If word 64 isn't valid then Word 51 high byte holds
1421                 * the PIO timing number for the maximum. Turn it into
1422                 * a mask.
1423                 */
1424                u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1425                if (mode < 5)   /* Valid PIO range */
1426                        pio_mask = (2 << mode) - 1;
1427                else
1428                        pio_mask = 1;
1429
1430                /* But wait.. there's more. Design your standards by
1431                 * committee and you too can get a free iordy field to
1432                 * process. However its the speeds not the modes that
1433                 * are supported... Note drivers using the timing API
1434                 * will get this right anyway
1435                 */
1436        }
1437
1438        mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1439
1440        if (ata_id_is_cfa(id)) {
1441                /*
1442                 *      Process compact flash extended modes
1443                 */
1444                int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1445                int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1446
1447                if (pio)
1448                        pio_mask |= (1 << 5);
1449                if (pio > 1)
1450                        pio_mask |= (1 << 6);
1451                if (dma)
1452                        mwdma_mask |= (1 << 3);
1453                if (dma > 1)
1454                        mwdma_mask |= (1 << 4);
1455        }
1456
1457        udma_mask = 0;
1458        if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1459                udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1460
1461        return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1462}
1463EXPORT_SYMBOL_GPL(ata_id_xfermask);
1464
1465static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1466{
1467        struct completion *waiting = qc->private_data;
1468
1469        complete(waiting);
1470}
1471
1472/**
1473 *      ata_exec_internal_sg - execute libata internal command
1474 *      @dev: Device to which the command is sent
1475 *      @tf: Taskfile registers for the command and the result
1476 *      @cdb: CDB for packet command
1477 *      @dma_dir: Data transfer direction of the command
1478 *      @sgl: sg list for the data buffer of the command
1479 *      @n_elem: Number of sg entries
1480 *      @timeout: Timeout in msecs (0 for default)
1481 *
1482 *      Executes libata internal command with timeout.  @tf contains
1483 *      command on entry and result on return.  Timeout and error
1484 *      conditions are reported via return value.  No recovery action
1485 *      is taken after a command times out.  It's caller's duty to
1486 *      clean up after timeout.
1487 *
1488 *      LOCKING:
1489 *      None.  Should be called with kernel context, might sleep.
1490 *
1491 *      RETURNS:
1492 *      Zero on success, AC_ERR_* mask on failure
1493 */
1494unsigned ata_exec_internal_sg(struct ata_device *dev,
1495                              struct ata_taskfile *tf, const u8 *cdb,
1496                              int dma_dir, struct scatterlist *sgl,
1497                              unsigned int n_elem, unsigned long timeout)
1498{
1499        struct ata_link *link = dev->link;
1500        struct ata_port *ap = link->ap;
1501        u8 command = tf->command;
1502        int auto_timeout = 0;
1503        struct ata_queued_cmd *qc;
1504        unsigned int preempted_tag;
1505        u32 preempted_sactive;
1506        u64 preempted_qc_active;
1507        int preempted_nr_active_links;
1508        DECLARE_COMPLETION_ONSTACK(wait);
1509        unsigned long flags;
1510        unsigned int err_mask;
1511        int rc;
1512
1513        spin_lock_irqsave(ap->lock, flags);
1514
1515        /* no internal command while frozen */
1516        if (ap->pflags & ATA_PFLAG_FROZEN) {
1517                spin_unlock_irqrestore(ap->lock, flags);
1518                return AC_ERR_SYSTEM;
1519        }
1520
1521        /* initialize internal qc */
1522        qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1523
1524        qc->tag = ATA_TAG_INTERNAL;
1525        qc->hw_tag = 0;
1526        qc->scsicmd = NULL;
1527        qc->ap = ap;
1528        qc->dev = dev;
1529        ata_qc_reinit(qc);
1530
1531        preempted_tag = link->active_tag;
1532        preempted_sactive = link->sactive;
1533        preempted_qc_active = ap->qc_active;
1534        preempted_nr_active_links = ap->nr_active_links;
1535        link->active_tag = ATA_TAG_POISON;
1536        link->sactive = 0;
1537        ap->qc_active = 0;
1538        ap->nr_active_links = 0;
1539
1540        /* prepare & issue qc */
1541        qc->tf = *tf;
1542        if (cdb)
1543                memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1544
1545        /* some SATA bridges need us to indicate data xfer direction */
1546        if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1547            dma_dir == DMA_FROM_DEVICE)
1548                qc->tf.feature |= ATAPI_DMADIR;
1549
1550        qc->flags |= ATA_QCFLAG_RESULT_TF;
1551        qc->dma_dir = dma_dir;
1552        if (dma_dir != DMA_NONE) {
1553                unsigned int i, buflen = 0;
1554                struct scatterlist *sg;
1555
1556                for_each_sg(sgl, sg, n_elem, i)
1557                        buflen += sg->length;
1558
1559                ata_sg_init(qc, sgl, n_elem);
1560                qc->nbytes = buflen;
1561        }
1562
1563        qc->private_data = &wait;
1564        qc->complete_fn = ata_qc_complete_internal;
1565
1566        ata_qc_issue(qc);
1567
1568        spin_unlock_irqrestore(ap->lock, flags);
1569
1570        if (!timeout) {
1571                if (ata_probe_timeout)
1572                        timeout = ata_probe_timeout * 1000;
1573                else {
1574                        timeout = ata_internal_cmd_timeout(dev, command);
1575                        auto_timeout = 1;
1576                }
1577        }
1578
1579        if (ap->ops->error_handler)
1580                ata_eh_release(ap);
1581
1582        rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1583
1584        if (ap->ops->error_handler)
1585                ata_eh_acquire(ap);
1586
1587        ata_sff_flush_pio_task(ap);
1588
1589        if (!rc) {
1590                spin_lock_irqsave(ap->lock, flags);
1591
1592                /* We're racing with irq here.  If we lose, the
1593                 * following test prevents us from completing the qc
1594                 * twice.  If we win, the port is frozen and will be
1595                 * cleaned up by ->post_internal_cmd().
1596                 */
1597                if (qc->flags & ATA_QCFLAG_ACTIVE) {
1598                        qc->err_mask |= AC_ERR_TIMEOUT;
1599
1600                        if (ap->ops->error_handler)
1601                                ata_port_freeze(ap);
1602                        else
1603                                ata_qc_complete(qc);
1604
1605                        if (ata_msg_warn(ap))
1606                                ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1607                                             command);
1608                }
1609
1610                spin_unlock_irqrestore(ap->lock, flags);
1611        }
1612
1613        /* do post_internal_cmd */
1614        if (ap->ops->post_internal_cmd)
1615                ap->ops->post_internal_cmd(qc);
1616
1617        /* perform minimal error analysis */
1618        if (qc->flags & ATA_QCFLAG_FAILED) {
1619                if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1620                        qc->err_mask |= AC_ERR_DEV;
1621
1622                if (!qc->err_mask)
1623                        qc->err_mask |= AC_ERR_OTHER;
1624
1625                if (qc->err_mask & ~AC_ERR_OTHER)
1626                        qc->err_mask &= ~AC_ERR_OTHER;
1627        } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1628                qc->result_tf.command |= ATA_SENSE;
1629        }
1630
1631        /* finish up */
1632        spin_lock_irqsave(ap->lock, flags);
1633
1634        *tf = qc->result_tf;
1635        err_mask = qc->err_mask;
1636
1637        ata_qc_free(qc);
1638        link->active_tag = preempted_tag;
1639        link->sactive = preempted_sactive;
1640        ap->qc_active = preempted_qc_active;
1641        ap->nr_active_links = preempted_nr_active_links;
1642
1643        spin_unlock_irqrestore(ap->lock, flags);
1644
1645        if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1646                ata_internal_cmd_timed_out(dev, command);
1647
1648        return err_mask;
1649}
1650
1651/**
1652 *      ata_exec_internal - execute libata internal command
1653 *      @dev: Device to which the command is sent
1654 *      @tf: Taskfile registers for the command and the result
1655 *      @cdb: CDB for packet command
1656 *      @dma_dir: Data transfer direction of the command
1657 *      @buf: Data buffer of the command
1658 *      @buflen: Length of data buffer
1659 *      @timeout: Timeout in msecs (0 for default)
1660 *
1661 *      Wrapper around ata_exec_internal_sg() which takes simple
1662 *      buffer instead of sg list.
1663 *
1664 *      LOCKING:
1665 *      None.  Should be called with kernel context, might sleep.
1666 *
1667 *      RETURNS:
1668 *      Zero on success, AC_ERR_* mask on failure
1669 */
1670unsigned ata_exec_internal(struct ata_device *dev,
1671                           struct ata_taskfile *tf, const u8 *cdb,
1672                           int dma_dir, void *buf, unsigned int buflen,
1673                           unsigned long timeout)
1674{
1675        struct scatterlist *psg = NULL, sg;
1676        unsigned int n_elem = 0;
1677
1678        if (dma_dir != DMA_NONE) {
1679                WARN_ON(!buf);
1680                sg_init_one(&sg, buf, buflen);
1681                psg = &sg;
1682                n_elem++;
1683        }
1684
1685        return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1686                                    timeout);
1687}
1688
1689/**
1690 *      ata_pio_need_iordy      -       check if iordy needed
1691 *      @adev: ATA device
1692 *
1693 *      Check if the current speed of the device requires IORDY. Used
1694 *      by various controllers for chip configuration.
1695 */
1696unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1697{
1698        /* Don't set IORDY if we're preparing for reset.  IORDY may
1699         * lead to controller lock up on certain controllers if the
1700         * port is not occupied.  See bko#11703 for details.
1701         */
1702        if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1703                return 0;
1704        /* Controller doesn't support IORDY.  Probably a pointless
1705         * check as the caller should know this.
1706         */
1707        if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1708                return 0;
1709        /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1710        if (ata_id_is_cfa(adev->id)
1711            && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1712                return 0;
1713        /* PIO3 and higher it is mandatory */
1714        if (adev->pio_mode > XFER_PIO_2)
1715                return 1;
1716        /* We turn it on when possible */
1717        if (ata_id_has_iordy(adev->id))
1718                return 1;
1719        return 0;
1720}
1721EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1722
1723/**
1724 *      ata_pio_mask_no_iordy   -       Return the non IORDY mask
1725 *      @adev: ATA device
1726 *
1727 *      Compute the highest mode possible if we are not using iordy. Return
1728 *      -1 if no iordy mode is available.
1729 */
1730static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1731{
1732        /* If we have no drive specific rule, then PIO 2 is non IORDY */
1733        if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1734                u16 pio = adev->id[ATA_ID_EIDE_PIO];
1735                /* Is the speed faster than the drive allows non IORDY ? */
1736                if (pio) {
1737                        /* This is cycle times not frequency - watch the logic! */
1738                        if (pio > 240)  /* PIO2 is 240nS per cycle */
1739                                return 3 << ATA_SHIFT_PIO;
1740                        return 7 << ATA_SHIFT_PIO;
1741                }
1742        }
1743        return 3 << ATA_SHIFT_PIO;
1744}
1745
1746/**
1747 *      ata_do_dev_read_id              -       default ID read method
1748 *      @dev: device
1749 *      @tf: proposed taskfile
1750 *      @id: data buffer
1751 *
1752 *      Issue the identify taskfile and hand back the buffer containing
1753 *      identify data. For some RAID controllers and for pre ATA devices
1754 *      this function is wrapped or replaced by the driver
1755 */
1756unsigned int ata_do_dev_read_id(struct ata_device *dev,
1757                                        struct ata_taskfile *tf, u16 *id)
1758{
1759        return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1760                                     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1761}
1762EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1763
1764/**
1765 *      ata_dev_read_id - Read ID data from the specified device
1766 *      @dev: target device
1767 *      @p_class: pointer to class of the target device (may be changed)
1768 *      @flags: ATA_READID_* flags
1769 *      @id: buffer to read IDENTIFY data into
1770 *
1771 *      Read ID data from the specified device.  ATA_CMD_ID_ATA is
1772 *      performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1773 *      devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1774 *      for pre-ATA4 drives.
1775 *
1776 *      FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1777 *      now we abort if we hit that case.
1778 *
1779 *      LOCKING:
1780 *      Kernel thread context (may sleep)
1781 *
1782 *      RETURNS:
1783 *      0 on success, -errno otherwise.
1784 */
1785int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1786                    unsigned int flags, u16 *id)
1787{
1788        struct ata_port *ap = dev->link->ap;
1789        unsigned int class = *p_class;
1790        struct ata_taskfile tf;
1791        unsigned int err_mask = 0;
1792        const char *reason;
1793        bool is_semb = class == ATA_DEV_SEMB;
1794        int may_fallback = 1, tried_spinup = 0;
1795        int rc;
1796
1797        if (ata_msg_ctl(ap))
1798                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1799
1800retry:
1801        ata_tf_init(dev, &tf);
1802
1803        switch (class) {
1804        case ATA_DEV_SEMB:
1805                class = ATA_DEV_ATA;    /* some hard drives report SEMB sig */
1806                fallthrough;
1807        case ATA_DEV_ATA:
1808        case ATA_DEV_ZAC:
1809                tf.command = ATA_CMD_ID_ATA;
1810                break;
1811        case ATA_DEV_ATAPI:
1812                tf.command = ATA_CMD_ID_ATAPI;
1813                break;
1814        default:
1815                rc = -ENODEV;
1816                reason = "unsupported class";
1817                goto err_out;
1818        }
1819
1820        tf.protocol = ATA_PROT_PIO;
1821
1822        /* Some devices choke if TF registers contain garbage.  Make
1823         * sure those are properly initialized.
1824         */
1825        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1826
1827        /* Device presence detection is unreliable on some
1828         * controllers.  Always poll IDENTIFY if available.
1829         */
1830        tf.flags |= ATA_TFLAG_POLLING;
1831
1832        if (ap->ops->read_id)
1833                err_mask = ap->ops->read_id(dev, &tf, id);
1834        else
1835                err_mask = ata_do_dev_read_id(dev, &tf, id);
1836
1837        if (err_mask) {
1838                if (err_mask & AC_ERR_NODEV_HINT) {
1839                        ata_dev_dbg(dev, "NODEV after polling detection\n");
1840                        return -ENOENT;
1841                }
1842
1843                if (is_semb) {
1844                        ata_dev_info(dev,
1845                     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1846                        /* SEMB is not supported yet */
1847                        *p_class = ATA_DEV_SEMB_UNSUP;
1848                        return 0;
1849                }
1850
1851                if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1852                        /* Device or controller might have reported
1853                         * the wrong device class.  Give a shot at the
1854                         * other IDENTIFY if the current one is
1855                         * aborted by the device.
1856                         */
1857                        if (may_fallback) {
1858                                may_fallback = 0;
1859
1860                                if (class == ATA_DEV_ATA)
1861                                        class = ATA_DEV_ATAPI;
1862                                else
1863                                        class = ATA_DEV_ATA;
1864                                goto retry;
1865                        }
1866
1867                        /* Control reaches here iff the device aborted
1868                         * both flavors of IDENTIFYs which happens
1869                         * sometimes with phantom devices.
1870                         */
1871                        ata_dev_dbg(dev,
1872                                    "both IDENTIFYs aborted, assuming NODEV\n");
1873                        return -ENOENT;
1874                }
1875
1876                rc = -EIO;
1877                reason = "I/O error";
1878                goto err_out;
1879        }
1880
1881        if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1882                ata_dev_dbg(dev, "dumping IDENTIFY data, "
1883                            "class=%d may_fallback=%d tried_spinup=%d\n",
1884                            class, may_fallback, tried_spinup);
1885                print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1886                               16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1887        }
1888
1889        /* Falling back doesn't make sense if ID data was read
1890         * successfully at least once.
1891         */
1892        may_fallback = 0;
1893
1894        swap_buf_le16(id, ATA_ID_WORDS);
1895
1896        /* sanity check */
1897        rc = -EINVAL;
1898        reason = "device reports invalid type";
1899
1900        if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1901                if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1902                        goto err_out;
1903                if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1904                                                        ata_id_is_ata(id)) {
1905                        ata_dev_dbg(dev,
1906                                "host indicates ignore ATA devices, ignored\n");
1907                        return -ENOENT;
1908                }
1909        } else {
1910                if (ata_id_is_ata(id))
1911                        goto err_out;
1912        }
1913
1914        if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1915                tried_spinup = 1;
1916                /*
1917                 * Drive powered-up in standby mode, and requires a specific
1918                 * SET_FEATURES spin-up subcommand before it will accept
1919                 * anything other than the original IDENTIFY command.
1920                 */
1921                err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1922                if (err_mask && id[2] != 0x738c) {
1923                        rc = -EIO;
1924                        reason = "SPINUP failed";
1925                        goto err_out;
1926                }
1927                /*
1928                 * If the drive initially returned incomplete IDENTIFY info,
1929                 * we now must reissue the IDENTIFY command.
1930                 */
1931                if (id[2] == 0x37c8)
1932                        goto retry;
1933        }
1934
1935        if ((flags & ATA_READID_POSTRESET) &&
1936            (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1937                /*
1938                 * The exact sequence expected by certain pre-ATA4 drives is:
1939                 * SRST RESET
1940                 * IDENTIFY (optional in early ATA)
1941                 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1942                 * anything else..
1943                 * Some drives were very specific about that exact sequence.
1944                 *
1945                 * Note that ATA4 says lba is mandatory so the second check
1946                 * should never trigger.
1947                 */
1948                if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1949                        err_mask = ata_dev_init_params(dev, id[3], id[6]);
1950                        if (err_mask) {
1951                                rc = -EIO;
1952                                reason = "INIT_DEV_PARAMS failed";
1953                                goto err_out;
1954                        }
1955
1956                        /* current CHS translation info (id[53-58]) might be
1957                         * changed. reread the identify device info.
1958                         */
1959                        flags &= ~ATA_READID_POSTRESET;
1960                        goto retry;
1961                }
1962        }
1963
1964        *p_class = class;
1965
1966        return 0;
1967
1968 err_out:
1969        if (ata_msg_warn(ap))
1970                ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1971                             reason, err_mask);
1972        return rc;
1973}
1974
1975/**
1976 *      ata_read_log_page - read a specific log page
1977 *      @dev: target device
1978 *      @log: log to read
1979 *      @page: page to read
1980 *      @buf: buffer to store read page
1981 *      @sectors: number of sectors to read
1982 *
1983 *      Read log page using READ_LOG_EXT command.
1984 *
1985 *      LOCKING:
1986 *      Kernel thread context (may sleep).
1987 *
1988 *      RETURNS:
1989 *      0 on success, AC_ERR_* mask otherwise.
1990 */
1991unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1992                               u8 page, void *buf, unsigned int sectors)
1993{
1994        unsigned long ap_flags = dev->link->ap->flags;
1995        struct ata_taskfile tf;
1996        unsigned int err_mask;
1997        bool dma = false;
1998
1999        DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2000
2001        /*
2002         * Return error without actually issuing the command on controllers
2003         * which e.g. lockup on a read log page.
2004         */
2005        if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2006                return AC_ERR_DEV;
2007
2008retry:
2009        ata_tf_init(dev, &tf);
2010        if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2011            !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2012                tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2013                tf.protocol = ATA_PROT_DMA;
2014                dma = true;
2015        } else {
2016                tf.command = ATA_CMD_READ_LOG_EXT;
2017                tf.protocol = ATA_PROT_PIO;
2018                dma = false;
2019        }
2020        tf.lbal = log;
2021        tf.lbam = page;
2022        tf.nsect = sectors;
2023        tf.hob_nsect = sectors >> 8;
2024        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2025
2026        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2027                                     buf, sectors * ATA_SECT_SIZE, 0);
2028
2029        if (err_mask) {
2030                if (dma) {
2031                        dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2032                        goto retry;
2033                }
2034                ata_dev_err(dev, "Read log page 0x%02x failed, Emask 0x%x\n",
2035                            (unsigned int)page, err_mask);
2036        }
2037
2038        return err_mask;
2039}
2040
2041static bool ata_log_supported(struct ata_device *dev, u8 log)
2042{
2043        struct ata_port *ap = dev->link->ap;
2044
2045        if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2046                return false;
2047        return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2048}
2049
2050static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2051{
2052        struct ata_port *ap = dev->link->ap;
2053        unsigned int err, i;
2054
2055        if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2056                ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2057                return false;
2058        }
2059
2060        /*
2061         * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2062         * supported.
2063         */
2064        err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2065                                1);
2066        if (err)
2067                return false;
2068
2069        for (i = 0; i < ap->sector_buf[8]; i++) {
2070                if (ap->sector_buf[9 + i] == page)
2071                        return true;
2072        }
2073
2074        return false;
2075}
2076
2077static int ata_do_link_spd_horkage(struct ata_device *dev)
2078{
2079        struct ata_link *plink = ata_dev_phys_link(dev);
2080        u32 target, target_limit;
2081
2082        if (!sata_scr_valid(plink))
2083                return 0;
2084
2085        if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2086                target = 1;
2087        else
2088                return 0;
2089
2090        target_limit = (1 << target) - 1;
2091
2092        /* if already on stricter limit, no need to push further */
2093        if (plink->sata_spd_limit <= target_limit)
2094                return 0;
2095
2096        plink->sata_spd_limit = target_limit;
2097
2098        /* Request another EH round by returning -EAGAIN if link is
2099         * going faster than the target speed.  Forward progress is
2100         * guaranteed by setting sata_spd_limit to target_limit above.
2101         */
2102        if (plink->sata_spd > target) {
2103                ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2104                             sata_spd_string(target));
2105                return -EAGAIN;
2106        }
2107        return 0;
2108}
2109
2110static inline u8 ata_dev_knobble(struct ata_device *dev)
2111{
2112        struct ata_port *ap = dev->link->ap;
2113
2114        if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2115                return 0;
2116
2117        return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2118}
2119
2120static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2121{
2122        struct ata_port *ap = dev->link->ap;
2123        unsigned int err_mask;
2124
2125        if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2126                ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2127                return;
2128        }
2129        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2130                                     0, ap->sector_buf, 1);
2131        if (!err_mask) {
2132                u8 *cmds = dev->ncq_send_recv_cmds;
2133
2134                dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2135                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2136
2137                if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2138                        ata_dev_dbg(dev, "disabling queued TRIM support\n");
2139                        cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2140                                ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2141                }
2142        }
2143}
2144
2145static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2146{
2147        struct ata_port *ap = dev->link->ap;
2148        unsigned int err_mask;
2149
2150        if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2151                ata_dev_warn(dev,
2152                             "NCQ Send/Recv Log not supported\n");
2153                return;
2154        }
2155        err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2156                                     0, ap->sector_buf, 1);
2157        if (!err_mask) {
2158                u8 *cmds = dev->ncq_non_data_cmds;
2159
2160                memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2161        }
2162}
2163
2164static void ata_dev_config_ncq_prio(struct ata_device *dev)
2165{
2166        struct ata_port *ap = dev->link->ap;
2167        unsigned int err_mask;
2168
2169        err_mask = ata_read_log_page(dev,
2170                                     ATA_LOG_IDENTIFY_DEVICE,
2171                                     ATA_LOG_SATA_SETTINGS,
2172                                     ap->sector_buf,
2173                                     1);
2174        if (err_mask)
2175                goto not_supported;
2176
2177        if (!(ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)))
2178                goto not_supported;
2179
2180        dev->flags |= ATA_DFLAG_NCQ_PRIO;
2181
2182        return;
2183
2184not_supported:
2185        dev->flags &= ~ATA_DFLAG_NCQ_PRIO_ENABLE;
2186        dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2187}
2188
2189static bool ata_dev_check_adapter(struct ata_device *dev,
2190                                  unsigned short vendor_id)
2191{
2192        struct pci_dev *pcidev = NULL;
2193        struct device *parent_dev = NULL;
2194
2195        for (parent_dev = dev->tdev.parent; parent_dev != NULL;
2196             parent_dev = parent_dev->parent) {
2197                if (dev_is_pci(parent_dev)) {
2198                        pcidev = to_pci_dev(parent_dev);
2199                        if (pcidev->vendor == vendor_id)
2200                                return true;
2201                        break;
2202                }
2203        }
2204
2205        return false;
2206}
2207
2208static int ata_dev_config_ncq(struct ata_device *dev,
2209                               char *desc, size_t desc_sz)
2210{
2211        struct ata_port *ap = dev->link->ap;
2212        int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2213        unsigned int err_mask;
2214        char *aa_desc = "";
2215
2216        if (!ata_id_has_ncq(dev->id)) {
2217                desc[0] = '\0';
2218                return 0;
2219        }
2220        if (!IS_ENABLED(CONFIG_SATA_HOST))
2221                return 0;
2222        if (dev->horkage & ATA_HORKAGE_NONCQ) {
2223                snprintf(desc, desc_sz, "NCQ (not used)");
2224                return 0;
2225        }
2226
2227        if (dev->horkage & ATA_HORKAGE_NO_NCQ_ON_ATI &&
2228            ata_dev_check_adapter(dev, PCI_VENDOR_ID_ATI)) {
2229                snprintf(desc, desc_sz, "NCQ (not used)");
2230                return 0;
2231        }
2232
2233        if (ap->flags & ATA_FLAG_NCQ) {
2234                hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2235                dev->flags |= ATA_DFLAG_NCQ;
2236        }
2237
2238        if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2239                (ap->flags & ATA_FLAG_FPDMA_AA) &&
2240                ata_id_has_fpdma_aa(dev->id)) {
2241                err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2242                        SATA_FPDMA_AA);
2243                if (err_mask) {
2244                        ata_dev_err(dev,
2245                                    "failed to enable AA (error_mask=0x%x)\n",
2246                                    err_mask);
2247                        if (err_mask != AC_ERR_DEV) {
2248                                dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2249                                return -EIO;
2250                        }
2251                } else
2252                        aa_desc = ", AA";
2253        }
2254
2255        if (hdepth >= ddepth)
2256                snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2257        else
2258                snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2259                        ddepth, aa_desc);
2260
2261        if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2262                if (ata_id_has_ncq_send_and_recv(dev->id))
2263                        ata_dev_config_ncq_send_recv(dev);
2264                if (ata_id_has_ncq_non_data(dev->id))
2265                        ata_dev_config_ncq_non_data(dev);
2266                if (ata_id_has_ncq_prio(dev->id))
2267                        ata_dev_config_ncq_prio(dev);
2268        }
2269
2270        return 0;
2271}
2272
2273static void ata_dev_config_sense_reporting(struct ata_device *dev)
2274{
2275        unsigned int err_mask;
2276
2277        if (!ata_id_has_sense_reporting(dev->id))
2278                return;
2279
2280        if (ata_id_sense_reporting_enabled(dev->id))
2281                return;
2282
2283        err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2284        if (err_mask) {
2285                ata_dev_dbg(dev,
2286                            "failed to enable Sense Data Reporting, Emask 0x%x\n",
2287                            err_mask);
2288        }
2289}
2290
2291static void ata_dev_config_zac(struct ata_device *dev)
2292{
2293        struct ata_port *ap = dev->link->ap;
2294        unsigned int err_mask;
2295        u8 *identify_buf = ap->sector_buf;
2296
2297        dev->zac_zones_optimal_open = U32_MAX;
2298        dev->zac_zones_optimal_nonseq = U32_MAX;
2299        dev->zac_zones_max_open = U32_MAX;
2300
2301        /*
2302         * Always set the 'ZAC' flag for Host-managed devices.
2303         */
2304        if (dev->class == ATA_DEV_ZAC)
2305                dev->flags |= ATA_DFLAG_ZAC;
2306        else if (ata_id_zoned_cap(dev->id) == 0x01)
2307                /*
2308                 * Check for host-aware devices.
2309                 */
2310                dev->flags |= ATA_DFLAG_ZAC;
2311
2312        if (!(dev->flags & ATA_DFLAG_ZAC))
2313                return;
2314
2315        if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2316                ata_dev_warn(dev,
2317                             "ATA Zoned Information Log not supported\n");
2318                return;
2319        }
2320
2321        /*
2322         * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2323         */
2324        err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2325                                     ATA_LOG_ZONED_INFORMATION,
2326                                     identify_buf, 1);
2327        if (!err_mask) {
2328                u64 zoned_cap, opt_open, opt_nonseq, max_open;
2329
2330                zoned_cap = get_unaligned_le64(&identify_buf[8]);
2331                if ((zoned_cap >> 63))
2332                        dev->zac_zoned_cap = (zoned_cap & 1);
2333                opt_open = get_unaligned_le64(&identify_buf[24]);
2334                if ((opt_open >> 63))
2335                        dev->zac_zones_optimal_open = (u32)opt_open;
2336                opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2337                if ((opt_nonseq >> 63))
2338                        dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2339                max_open = get_unaligned_le64(&identify_buf[40]);
2340                if ((max_open >> 63))
2341                        dev->zac_zones_max_open = (u32)max_open;
2342        }
2343}
2344
2345static void ata_dev_config_trusted(struct ata_device *dev)
2346{
2347        struct ata_port *ap = dev->link->ap;
2348        u64 trusted_cap;
2349        unsigned int err;
2350
2351        if (!ata_id_has_trusted(dev->id))
2352                return;
2353
2354        if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2355                ata_dev_warn(dev,
2356                             "Security Log not supported\n");
2357                return;
2358        }
2359
2360        err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2361                        ap->sector_buf, 1);
2362        if (err)
2363                return;
2364
2365        trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2366        if (!(trusted_cap & (1ULL << 63))) {
2367                ata_dev_dbg(dev,
2368                            "Trusted Computing capability qword not valid!\n");
2369                return;
2370        }
2371
2372        if (trusted_cap & (1 << 0))
2373                dev->flags |= ATA_DFLAG_TRUSTED;
2374}
2375
2376static int ata_dev_config_lba(struct ata_device *dev)
2377{
2378        struct ata_port *ap = dev->link->ap;
2379        const u16 *id = dev->id;
2380        const char *lba_desc;
2381        char ncq_desc[24];
2382        int ret;
2383
2384        dev->flags |= ATA_DFLAG_LBA;
2385
2386        if (ata_id_has_lba48(id)) {
2387                lba_desc = "LBA48";
2388                dev->flags |= ATA_DFLAG_LBA48;
2389                if (dev->n_sectors >= (1UL << 28) &&
2390                    ata_id_has_flush_ext(id))
2391                        dev->flags |= ATA_DFLAG_FLUSH_EXT;
2392        } else {
2393                lba_desc = "LBA";
2394        }
2395
2396        /* config NCQ */
2397        ret = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2398
2399        /* print device info to dmesg */
2400        if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2401                ata_dev_info(dev,
2402                             "%llu sectors, multi %u: %s %s\n",
2403                             (unsigned long long)dev->n_sectors,
2404                             dev->multi_count, lba_desc, ncq_desc);
2405
2406        return ret;
2407}
2408
2409static void ata_dev_config_chs(struct ata_device *dev)
2410{
2411        struct ata_port *ap = dev->link->ap;
2412        const u16 *id = dev->id;
2413
2414        if (ata_id_current_chs_valid(id)) {
2415                /* Current CHS translation is valid. */
2416                dev->cylinders = id[54];
2417                dev->heads     = id[55];
2418                dev->sectors   = id[56];
2419        } else {
2420                /* Default translation */
2421                dev->cylinders  = id[1];
2422                dev->heads      = id[3];
2423                dev->sectors    = id[6];
2424        }
2425
2426        /* print device info to dmesg */
2427        if (ata_msg_drv(ap) && ata_dev_print_info(dev))
2428                ata_dev_info(dev,
2429                             "%llu sectors, multi %u, CHS %u/%u/%u\n",
2430                             (unsigned long long)dev->n_sectors,
2431                             dev->multi_count, dev->cylinders,
2432                             dev->heads, dev->sectors);
2433}
2434
2435static void ata_dev_config_devslp(struct ata_device *dev)
2436{
2437        u8 *sata_setting = dev->link->ap->sector_buf;
2438        unsigned int err_mask;
2439        int i, j;
2440
2441        /*
2442         * Check device sleep capability. Get DevSlp timing variables
2443         * from SATA Settings page of Identify Device Data Log.
2444         */
2445        if (!ata_id_has_devslp(dev->id))
2446                return;
2447
2448        err_mask = ata_read_log_page(dev,
2449                                     ATA_LOG_IDENTIFY_DEVICE,
2450                                     ATA_LOG_SATA_SETTINGS,
2451                                     sata_setting, 1);
2452        if (err_mask)
2453                return;
2454
2455        dev->flags |= ATA_DFLAG_DEVSLP;
2456        for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2457                j = ATA_LOG_DEVSLP_OFFSET + i;
2458                dev->devslp_timing[i] = sata_setting[j];
2459        }
2460}
2461
2462static void ata_dev_print_features(struct ata_device *dev)
2463{
2464        if (!(dev->flags & ATA_DFLAG_FEATURES_MASK))
2465                return;
2466
2467        ata_dev_info(dev,
2468                     "Features:%s%s%s%s%s\n",
2469                     dev->flags & ATA_DFLAG_TRUSTED ? " Trust" : "",
2470                     dev->flags & ATA_DFLAG_DA ? " Dev-Attention" : "",
2471                     dev->flags & ATA_DFLAG_DEVSLP ? " Dev-Sleep" : "",
2472                     dev->flags & ATA_DFLAG_NCQ_SEND_RECV ? " NCQ-sndrcv" : "",
2473                     dev->flags & ATA_DFLAG_NCQ_PRIO ? " NCQ-prio" : "");
2474}
2475
2476/**
2477 *      ata_dev_configure - Configure the specified ATA/ATAPI device
2478 *      @dev: Target device to configure
2479 *
2480 *      Configure @dev according to @dev->id.  Generic and low-level
2481 *      driver specific fixups are also applied.
2482 *
2483 *      LOCKING:
2484 *      Kernel thread context (may sleep)
2485 *
2486 *      RETURNS:
2487 *      0 on success, -errno otherwise
2488 */
2489int ata_dev_configure(struct ata_device *dev)
2490{
2491        struct ata_port *ap = dev->link->ap;
2492        bool print_info = ata_dev_print_info(dev);
2493        const u16 *id = dev->id;
2494        unsigned long xfer_mask;
2495        unsigned int err_mask;
2496        char revbuf[7];         /* XYZ-99\0 */
2497        char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2498        char modelbuf[ATA_ID_PROD_LEN+1];
2499        int rc;
2500
2501        if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2502                ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2503                return 0;
2504        }
2505
2506        if (ata_msg_probe(ap))
2507                ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2508
2509        /* set horkage */
2510        dev->horkage |= ata_dev_blacklisted(dev);
2511        ata_force_horkage(dev);
2512
2513        if (dev->horkage & ATA_HORKAGE_DISABLE) {
2514                ata_dev_info(dev, "unsupported device, disabling\n");
2515                ata_dev_disable(dev);
2516                return 0;
2517        }
2518
2519        if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2520            dev->class == ATA_DEV_ATAPI) {
2521                ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2522                             atapi_enabled ? "not supported with this driver"
2523                             : "disabled");
2524                ata_dev_disable(dev);
2525                return 0;
2526        }
2527
2528        rc = ata_do_link_spd_horkage(dev);
2529        if (rc)
2530                return rc;
2531
2532        /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2533        if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2534            (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2535                dev->horkage |= ATA_HORKAGE_NOLPM;
2536
2537        if (ap->flags & ATA_FLAG_NO_LPM)
2538                dev->horkage |= ATA_HORKAGE_NOLPM;
2539
2540        if (dev->horkage & ATA_HORKAGE_NOLPM) {
2541                ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2542                dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2543        }
2544
2545        /* let ACPI work its magic */
2546        rc = ata_acpi_on_devcfg(dev);
2547        if (rc)
2548                return rc;
2549
2550        /* massage HPA, do it early as it might change IDENTIFY data */
2551        rc = ata_hpa_resize(dev);
2552        if (rc)
2553                return rc;
2554
2555        /* print device capabilities */
2556        if (ata_msg_probe(ap))
2557                ata_dev_dbg(dev,
2558                            "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2559                            "85:%04x 86:%04x 87:%04x 88:%04x\n",
2560                            __func__,
2561                            id[49], id[82], id[83], id[84],
2562                            id[85], id[86], id[87], id[88]);
2563
2564        /* initialize to-be-configured parameters */
2565        dev->flags &= ~ATA_DFLAG_CFG_MASK;
2566        dev->max_sectors = 0;
2567        dev->cdb_len = 0;
2568        dev->n_sectors = 0;
2569        dev->cylinders = 0;
2570        dev->heads = 0;
2571        dev->sectors = 0;
2572        dev->multi_count = 0;
2573
2574        /*
2575         * common ATA, ATAPI feature tests
2576         */
2577
2578        /* find max transfer mode; for printk only */
2579        xfer_mask = ata_id_xfermask(id);
2580
2581        if (ata_msg_probe(ap))
2582                ata_dump_id(id);
2583
2584        /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2585        ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2586                        sizeof(fwrevbuf));
2587
2588        ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2589                        sizeof(modelbuf));
2590
2591        /* ATA-specific feature tests */
2592        if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2593                if (ata_id_is_cfa(id)) {
2594                        /* CPRM may make this media unusable */
2595                        if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2596                                ata_dev_warn(dev,
2597        "supports DRM functions and may not be fully accessible\n");
2598                        snprintf(revbuf, 7, "CFA");
2599                } else {
2600                        snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2601                        /* Warn the user if the device has TPM extensions */
2602                        if (ata_id_has_tpm(id))
2603                                ata_dev_warn(dev,
2604        "supports DRM functions and may not be fully accessible\n");
2605                }
2606
2607                dev->n_sectors = ata_id_n_sectors(id);
2608
2609                /* get current R/W Multiple count setting */
2610                if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2611                        unsigned int max = dev->id[47] & 0xff;
2612                        unsigned int cnt = dev->id[59] & 0xff;
2613                        /* only recognize/allow powers of two here */
2614                        if (is_power_of_2(max) && is_power_of_2(cnt))
2615                                if (cnt <= max)
2616                                        dev->multi_count = cnt;
2617                }
2618
2619                /* print device info to dmesg */
2620                if (ata_msg_drv(ap) && print_info)
2621                        ata_dev_info(dev, "%s: %s, %s, max %s\n",
2622                                     revbuf, modelbuf, fwrevbuf,
2623                                     ata_mode_string(xfer_mask));
2624
2625                if (ata_id_has_lba(id)) {
2626                        rc = ata_dev_config_lba(dev);
2627                        if (rc)
2628                                return rc;
2629                } else {
2630                        ata_dev_config_chs(dev);
2631                }
2632
2633                ata_dev_config_devslp(dev);
2634                ata_dev_config_sense_reporting(dev);
2635                ata_dev_config_zac(dev);
2636                ata_dev_config_trusted(dev);
2637                dev->cdb_len = 32;
2638
2639                if (ata_msg_drv(ap) && print_info)
2640                        ata_dev_print_features(dev);
2641        }
2642
2643        /* ATAPI-specific feature tests */
2644        else if (dev->class == ATA_DEV_ATAPI) {
2645                const char *cdb_intr_string = "";
2646                const char *atapi_an_string = "";
2647                const char *dma_dir_string = "";
2648                u32 sntf;
2649
2650                rc = atapi_cdb_len(id);
2651                if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2652                        if (ata_msg_warn(ap))
2653                                ata_dev_warn(dev, "unsupported CDB len\n");
2654                        rc = -EINVAL;
2655                        goto err_out_nosup;
2656                }
2657                dev->cdb_len = (unsigned int) rc;
2658
2659                /* Enable ATAPI AN if both the host and device have
2660                 * the support.  If PMP is attached, SNTF is required
2661                 * to enable ATAPI AN to discern between PHY status
2662                 * changed notifications and ATAPI ANs.
2663                 */
2664                if (atapi_an &&
2665                    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2666                    (!sata_pmp_attached(ap) ||
2667                     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2668                        /* issue SET feature command to turn this on */
2669                        err_mask = ata_dev_set_feature(dev,
2670                                        SETFEATURES_SATA_ENABLE, SATA_AN);
2671                        if (err_mask)
2672                                ata_dev_err(dev,
2673                                            "failed to enable ATAPI AN (err_mask=0x%x)\n",
2674                                            err_mask);
2675                        else {
2676                                dev->flags |= ATA_DFLAG_AN;
2677                                atapi_an_string = ", ATAPI AN";
2678                        }
2679                }
2680
2681                if (ata_id_cdb_intr(dev->id)) {
2682                        dev->flags |= ATA_DFLAG_CDB_INTR;
2683                        cdb_intr_string = ", CDB intr";
2684                }
2685
2686                if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2687                        dev->flags |= ATA_DFLAG_DMADIR;
2688                        dma_dir_string = ", DMADIR";
2689                }
2690
2691                if (ata_id_has_da(dev->id)) {
2692                        dev->flags |= ATA_DFLAG_DA;
2693                        zpodd_init(dev);
2694                }
2695
2696                /* print device info to dmesg */
2697                if (ata_msg_drv(ap) && print_info)
2698                        ata_dev_info(dev,
2699                                     "ATAPI: %s, %s, max %s%s%s%s\n",
2700                                     modelbuf, fwrevbuf,
2701                                     ata_mode_string(xfer_mask),
2702                                     cdb_intr_string, atapi_an_string,
2703                                     dma_dir_string);
2704        }
2705
2706        /* determine max_sectors */
2707        dev->max_sectors = ATA_MAX_SECTORS;
2708        if (dev->flags & ATA_DFLAG_LBA48)
2709                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2710
2711        /* Limit PATA drive on SATA cable bridge transfers to udma5,
2712           200 sectors */
2713        if (ata_dev_knobble(dev)) {
2714                if (ata_msg_drv(ap) && print_info)
2715                        ata_dev_info(dev, "applying bridge limits\n");
2716                dev->udma_mask &= ATA_UDMA5;
2717                dev->max_sectors = ATA_MAX_SECTORS;
2718        }
2719
2720        if ((dev->class == ATA_DEV_ATAPI) &&
2721            (atapi_command_packet_set(id) == TYPE_TAPE)) {
2722                dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2723                dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2724        }
2725
2726        if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2727                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2728                                         dev->max_sectors);
2729
2730        if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2731                dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2732                                         dev->max_sectors);
2733
2734        if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2735                dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2736
2737        if (ap->ops->dev_config)
2738                ap->ops->dev_config(dev);
2739
2740        if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2741                /* Let the user know. We don't want to disallow opens for
2742                   rescue purposes, or in case the vendor is just a blithering
2743                   idiot. Do this after the dev_config call as some controllers
2744                   with buggy firmware may want to avoid reporting false device
2745                   bugs */
2746
2747                if (print_info) {
2748                        ata_dev_warn(dev,
2749"Drive reports diagnostics failure. This may indicate a drive\n");
2750                        ata_dev_warn(dev,
2751"fault or invalid emulation. Contact drive vendor for information.\n");
2752                }
2753        }
2754
2755        if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2756                ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2757                ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2758        }
2759
2760        return 0;
2761
2762err_out_nosup:
2763        if (ata_msg_probe(ap))
2764                ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2765        return rc;
2766}
2767
2768/**
2769 *      ata_cable_40wire        -       return 40 wire cable type
2770 *      @ap: port
2771 *
2772 *      Helper method for drivers which want to hardwire 40 wire cable
2773 *      detection.
2774 */
2775
2776int ata_cable_40wire(struct ata_port *ap)
2777{
2778        return ATA_CBL_PATA40;
2779}
2780EXPORT_SYMBOL_GPL(ata_cable_40wire);
2781
2782/**
2783 *      ata_cable_80wire        -       return 80 wire cable type
2784 *      @ap: port
2785 *
2786 *      Helper method for drivers which want to hardwire 80 wire cable
2787 *      detection.
2788 */
2789
2790int ata_cable_80wire(struct ata_port *ap)
2791{
2792        return ATA_CBL_PATA80;
2793}
2794EXPORT_SYMBOL_GPL(ata_cable_80wire);
2795
2796/**
2797 *      ata_cable_unknown       -       return unknown PATA cable.
2798 *      @ap: port
2799 *
2800 *      Helper method for drivers which have no PATA cable detection.
2801 */
2802
2803int ata_cable_unknown(struct ata_port *ap)
2804{
2805        return ATA_CBL_PATA_UNK;
2806}
2807EXPORT_SYMBOL_GPL(ata_cable_unknown);
2808
2809/**
2810 *      ata_cable_ignore        -       return ignored PATA cable.
2811 *      @ap: port
2812 *
2813 *      Helper method for drivers which don't use cable type to limit
2814 *      transfer mode.
2815 */
2816int ata_cable_ignore(struct ata_port *ap)
2817{
2818        return ATA_CBL_PATA_IGN;
2819}
2820EXPORT_SYMBOL_GPL(ata_cable_ignore);
2821
2822/**
2823 *      ata_cable_sata  -       return SATA cable type
2824 *      @ap: port
2825 *
2826 *      Helper method for drivers which have SATA cables
2827 */
2828
2829int ata_cable_sata(struct ata_port *ap)
2830{
2831        return ATA_CBL_SATA;
2832}
2833EXPORT_SYMBOL_GPL(ata_cable_sata);
2834
2835/**
2836 *      ata_bus_probe - Reset and probe ATA bus
2837 *      @ap: Bus to probe
2838 *
2839 *      Master ATA bus probing function.  Initiates a hardware-dependent
2840 *      bus reset, then attempts to identify any devices found on
2841 *      the bus.
2842 *
2843 *      LOCKING:
2844 *      PCI/etc. bus probe sem.
2845 *
2846 *      RETURNS:
2847 *      Zero on success, negative errno otherwise.
2848 */
2849
2850int ata_bus_probe(struct ata_port *ap)
2851{
2852        unsigned int classes[ATA_MAX_DEVICES];
2853        int tries[ATA_MAX_DEVICES];
2854        int rc;
2855        struct ata_device *dev;
2856
2857        ata_for_each_dev(dev, &ap->link, ALL)
2858                tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2859
2860 retry:
2861        ata_for_each_dev(dev, &ap->link, ALL) {
2862                /* If we issue an SRST then an ATA drive (not ATAPI)
2863                 * may change configuration and be in PIO0 timing. If
2864                 * we do a hard reset (or are coming from power on)
2865                 * this is true for ATA or ATAPI. Until we've set a
2866                 * suitable controller mode we should not touch the
2867                 * bus as we may be talking too fast.
2868                 */
2869                dev->pio_mode = XFER_PIO_0;
2870                dev->dma_mode = 0xff;
2871
2872                /* If the controller has a pio mode setup function
2873                 * then use it to set the chipset to rights. Don't
2874                 * touch the DMA setup as that will be dealt with when
2875                 * configuring devices.
2876                 */
2877                if (ap->ops->set_piomode)
2878                        ap->ops->set_piomode(ap, dev);
2879        }
2880
2881        /* reset and determine device classes */
2882        ap->ops->phy_reset(ap);
2883
2884        ata_for_each_dev(dev, &ap->link, ALL) {
2885                if (dev->class != ATA_DEV_UNKNOWN)
2886                        classes[dev->devno] = dev->class;
2887                else
2888                        classes[dev->devno] = ATA_DEV_NONE;
2889
2890                dev->class = ATA_DEV_UNKNOWN;
2891        }
2892
2893        /* read IDENTIFY page and configure devices. We have to do the identify
2894           specific sequence bass-ackwards so that PDIAG- is released by
2895           the slave device */
2896
2897        ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2898                if (tries[dev->devno])
2899                        dev->class = classes[dev->devno];
2900
2901                if (!ata_dev_enabled(dev))
2902                        continue;
2903
2904                rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2905                                     dev->id);
2906                if (rc)
2907                        goto fail;
2908        }
2909
2910        /* Now ask for the cable type as PDIAG- should have been released */
2911        if (ap->ops->cable_detect)
2912                ap->cbl = ap->ops->cable_detect(ap);
2913
2914        /* We may have SATA bridge glue hiding here irrespective of
2915         * the reported cable types and sensed types.  When SATA
2916         * drives indicate we have a bridge, we don't know which end
2917         * of the link the bridge is which is a problem.
2918         */
2919        ata_for_each_dev(dev, &ap->link, ENABLED)
2920                if (ata_id_is_sata(dev->id))
2921                        ap->cbl = ATA_CBL_SATA;
2922
2923        /* After the identify sequence we can now set up the devices. We do
2924           this in the normal order so that the user doesn't get confused */
2925
2926        ata_for_each_dev(dev, &ap->link, ENABLED) {
2927                ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2928                rc = ata_dev_configure(dev);
2929                ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2930                if (rc)
2931                        goto fail;
2932        }
2933
2934        /* configure transfer mode */
2935        rc = ata_set_mode(&ap->link, &dev);
2936        if (rc)
2937                goto fail;
2938
2939        ata_for_each_dev(dev, &ap->link, ENABLED)
2940                return 0;
2941
2942        return -ENODEV;
2943
2944 fail:
2945        tries[dev->devno]--;
2946
2947        switch (rc) {
2948        case -EINVAL:
2949                /* eeek, something went very wrong, give up */
2950                tries[dev->devno] = 0;
2951                break;
2952
2953        case -ENODEV:
2954                /* give it just one more chance */
2955                tries[dev->devno] = min(tries[dev->devno], 1);
2956                fallthrough;
2957        case -EIO:
2958                if (tries[dev->devno] == 1) {
2959                        /* This is the last chance, better to slow
2960                         * down than lose it.
2961                         */
2962                        sata_down_spd_limit(&ap->link, 0);
2963                        ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2964                }
2965        }
2966
2967        if (!tries[dev->devno])
2968                ata_dev_disable(dev);
2969
2970        goto retry;
2971}
2972
2973/**
2974 *      sata_print_link_status - Print SATA link status
2975 *      @link: SATA link to printk link status about
2976 *
2977 *      This function prints link speed and status of a SATA link.
2978 *
2979 *      LOCKING:
2980 *      None.
2981 */
2982static void sata_print_link_status(struct ata_link *link)
2983{
2984        u32 sstatus, scontrol, tmp;
2985
2986        if (sata_scr_read(link, SCR_STATUS, &sstatus))
2987                return;
2988        sata_scr_read(link, SCR_CONTROL, &scontrol);
2989
2990        if (ata_phys_link_online(link)) {
2991                tmp = (sstatus >> 4) & 0xf;
2992                ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2993                              sata_spd_string(tmp), sstatus, scontrol);
2994        } else {
2995                ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2996                              sstatus, scontrol);
2997        }
2998}
2999
3000/**
3001 *      ata_dev_pair            -       return other device on cable
3002 *      @adev: device
3003 *
3004 *      Obtain the other device on the same cable, or if none is
3005 *      present NULL is returned
3006 */
3007
3008struct ata_device *ata_dev_pair(struct ata_device *adev)
3009{
3010        struct ata_link *link = adev->link;
3011        struct ata_device *pair = &link->device[1 - adev->devno];
3012        if (!ata_dev_enabled(pair))
3013                return NULL;
3014        return pair;
3015}
3016EXPORT_SYMBOL_GPL(ata_dev_pair);
3017
3018/**
3019 *      sata_down_spd_limit - adjust SATA spd limit downward
3020 *      @link: Link to adjust SATA spd limit for
3021 *      @spd_limit: Additional limit
3022 *
3023 *      Adjust SATA spd limit of @link downward.  Note that this
3024 *      function only adjusts the limit.  The change must be applied
3025 *      using sata_set_spd().
3026 *
3027 *      If @spd_limit is non-zero, the speed is limited to equal to or
3028 *      lower than @spd_limit if such speed is supported.  If
3029 *      @spd_limit is slower than any supported speed, only the lowest
3030 *      supported speed is allowed.
3031 *
3032 *      LOCKING:
3033 *      Inherited from caller.
3034 *
3035 *      RETURNS:
3036 *      0 on success, negative errno on failure
3037 */
3038int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3039{
3040        u32 sstatus, spd, mask;
3041        int rc, bit;
3042
3043        if (!sata_scr_valid(link))
3044                return -EOPNOTSUPP;
3045
3046        /* If SCR can be read, use it to determine the current SPD.
3047         * If not, use cached value in link->sata_spd.
3048         */
3049        rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3050        if (rc == 0 && ata_sstatus_online(sstatus))
3051                spd = (sstatus >> 4) & 0xf;
3052        else
3053                spd = link->sata_spd;
3054
3055        mask = link->sata_spd_limit;
3056        if (mask <= 1)
3057                return -EINVAL;
3058
3059        /* unconditionally mask off the highest bit */
3060        bit = fls(mask) - 1;
3061        mask &= ~(1 << bit);
3062
3063        /*
3064         * Mask off all speeds higher than or equal to the current one.  At
3065         * this point, if current SPD is not available and we previously
3066         * recorded the link speed from SStatus, the driver has already
3067         * masked off the highest bit so mask should already be 1 or 0.
3068         * Otherwise, we should not force 1.5Gbps on a link where we have
3069         * not previously recorded speed from SStatus.  Just return in this
3070         * case.
3071         */
3072        if (spd > 1)
3073                mask &= (1 << (spd - 1)) - 1;
3074        else
3075                return -EINVAL;
3076
3077        /* were we already at the bottom? */
3078        if (!mask)
3079                return -EINVAL;
3080
3081        if (spd_limit) {
3082                if (mask & ((1 << spd_limit) - 1))
3083                        mask &= (1 << spd_limit) - 1;
3084                else {
3085                        bit = ffs(mask) - 1;
3086                        mask = 1 << bit;
3087                }
3088        }
3089
3090        link->sata_spd_limit = mask;
3091
3092        ata_link_warn(link, "limiting SATA link speed to %s\n",
3093                      sata_spd_string(fls(mask)));
3094
3095        return 0;
3096}
3097
3098#ifdef CONFIG_ATA_ACPI
3099/**
3100 *      ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3101 *      @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3102 *      @cycle: cycle duration in ns
3103 *
3104 *      Return matching xfer mode for @cycle.  The returned mode is of
3105 *      the transfer type specified by @xfer_shift.  If @cycle is too
3106 *      slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3107 *      than the fastest known mode, the fasted mode is returned.
3108 *
3109 *      LOCKING:
3110 *      None.
3111 *
3112 *      RETURNS:
3113 *      Matching xfer_mode, 0xff if no match found.
3114 */
3115u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3116{
3117        u8 base_mode = 0xff, last_mode = 0xff;
3118        const struct ata_xfer_ent *ent;
3119        const struct ata_timing *t;
3120
3121        for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3122                if (ent->shift == xfer_shift)
3123                        base_mode = ent->base;
3124
3125        for (t = ata_timing_find_mode(base_mode);
3126             t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3127                unsigned short this_cycle;
3128
3129                switch (xfer_shift) {
3130                case ATA_SHIFT_PIO:
3131                case ATA_SHIFT_MWDMA:
3132                        this_cycle = t->cycle;
3133                        break;
3134                case ATA_SHIFT_UDMA:
3135                        this_cycle = t->udma;
3136                        break;
3137                default:
3138                        return 0xff;
3139                }
3140
3141                if (cycle > this_cycle)
3142                        break;
3143
3144                last_mode = t->mode;
3145        }
3146
3147        return last_mode;
3148}
3149#endif
3150
3151/**
3152 *      ata_down_xfermask_limit - adjust dev xfer masks downward
3153 *      @dev: Device to adjust xfer masks
3154 *      @sel: ATA_DNXFER_* selector
3155 *
3156 *      Adjust xfer masks of @dev downward.  Note that this function
3157 *      does not apply the change.  Invoking ata_set_mode() afterwards
3158 *      will apply the limit.
3159 *
3160 *      LOCKING:
3161 *      Inherited from caller.
3162 *
3163 *      RETURNS:
3164 *      0 on success, negative errno on failure
3165 */
3166int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3167{
3168        char buf[32];
3169        unsigned long orig_mask, xfer_mask;
3170        unsigned long pio_mask, mwdma_mask, udma_mask;
3171        int quiet, highbit;
3172
3173        quiet = !!(sel & ATA_DNXFER_QUIET);
3174        sel &= ~ATA_DNXFER_QUIET;
3175
3176        xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3177                                                  dev->mwdma_mask,
3178                                                  dev->udma_mask);
3179        ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3180
3181        switch (sel) {
3182        case ATA_DNXFER_PIO:
3183                highbit = fls(pio_mask) - 1;
3184                pio_mask &= ~(1 << highbit);
3185                break;
3186
3187        case ATA_DNXFER_DMA:
3188                if (udma_mask) {
3189                        highbit = fls(udma_mask) - 1;
3190                        udma_mask &= ~(1 << highbit);
3191                        if (!udma_mask)
3192                                return -ENOENT;
3193                } else if (mwdma_mask) {
3194                        highbit = fls(mwdma_mask) - 1;
3195                        mwdma_mask &= ~(1 << highbit);
3196                        if (!mwdma_mask)
3197                                return -ENOENT;
3198                }
3199                break;
3200
3201        case ATA_DNXFER_40C:
3202                udma_mask &= ATA_UDMA_MASK_40C;
3203                break;
3204
3205        case ATA_DNXFER_FORCE_PIO0:
3206                pio_mask &= 1;
3207                fallthrough;
3208        case ATA_DNXFER_FORCE_PIO:
3209                mwdma_mask = 0;
3210                udma_mask = 0;
3211                break;
3212
3213        default:
3214                BUG();
3215        }
3216
3217        xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3218
3219        if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3220                return -ENOENT;
3221
3222        if (!quiet) {
3223                if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3224                        snprintf(buf, sizeof(buf), "%s:%s",
3225                                 ata_mode_string(xfer_mask),
3226                                 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3227                else
3228                        snprintf(buf, sizeof(buf), "%s",
3229                                 ata_mode_string(xfer_mask));
3230
3231                ata_dev_warn(dev, "limiting speed to %s\n", buf);
3232        }
3233
3234        ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3235                            &dev->udma_mask);
3236
3237        return 0;
3238}
3239
3240static int ata_dev_set_mode(struct ata_device *dev)
3241{
3242        struct ata_port *ap = dev->link->ap;
3243        struct ata_eh_context *ehc = &dev->link->eh_context;
3244        const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3245        const char *dev_err_whine = "";
3246        int ign_dev_err = 0;
3247        unsigned int err_mask = 0;
3248        int rc;
3249
3250        dev->flags &= ~ATA_DFLAG_PIO;
3251        if (dev->xfer_shift == ATA_SHIFT_PIO)
3252                dev->flags |= ATA_DFLAG_PIO;
3253
3254        if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3255                dev_err_whine = " (SET_XFERMODE skipped)";
3256        else {
3257                if (nosetxfer)
3258                        ata_dev_warn(dev,
3259                                     "NOSETXFER but PATA detected - can't "
3260                                     "skip SETXFER, might malfunction\n");
3261                err_mask = ata_dev_set_xfermode(dev);
3262        }
3263
3264        if (err_mask & ~AC_ERR_DEV)
3265                goto fail;
3266
3267        /* revalidate */
3268        ehc->i.flags |= ATA_EHI_POST_SETMODE;
3269        rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3270        ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3271        if (rc)
3272                return rc;
3273
3274        if (dev->xfer_shift == ATA_SHIFT_PIO) {
3275                /* Old CFA may refuse this command, which is just fine */
3276                if (ata_id_is_cfa(dev->id))
3277                        ign_dev_err = 1;
3278                /* Catch several broken garbage emulations plus some pre
3279                   ATA devices */
3280                if (ata_id_major_version(dev->id) == 0 &&
3281                                        dev->pio_mode <= XFER_PIO_2)
3282                        ign_dev_err = 1;
3283                /* Some very old devices and some bad newer ones fail
3284                   any kind of SET_XFERMODE request but support PIO0-2
3285                   timings and no IORDY */
3286                if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3287                        ign_dev_err = 1;
3288        }
3289        /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3290           Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3291        if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3292            dev->dma_mode == XFER_MW_DMA_0 &&
3293            (dev->id[63] >> 8) & 1)
3294                ign_dev_err = 1;
3295
3296        /* if the device is actually configured correctly, ignore dev err */
3297        if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3298                ign_dev_err = 1;
3299
3300        if (err_mask & AC_ERR_DEV) {
3301                if (!ign_dev_err)
3302                        goto fail;
3303                else
3304                        dev_err_whine = " (device error ignored)";
3305        }
3306
3307        DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3308                dev->xfer_shift, (int)dev->xfer_mode);
3309
3310        if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3311            ehc->i.flags & ATA_EHI_DID_HARDRESET)
3312                ata_dev_info(dev, "configured for %s%s\n",
3313                             ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3314                             dev_err_whine);
3315
3316        return 0;
3317
3318 fail:
3319        ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3320        return -EIO;
3321}
3322
3323/**
3324 *      ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3325 *      @link: link on which timings will be programmed
3326 *      @r_failed_dev: out parameter for failed device
3327 *
3328 *      Standard implementation of the function used to tune and set
3329 *      ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3330 *      ata_dev_set_mode() fails, pointer to the failing device is
3331 *      returned in @r_failed_dev.
3332 *
3333 *      LOCKING:
3334 *      PCI/etc. bus probe sem.
3335 *
3336 *      RETURNS:
3337 *      0 on success, negative errno otherwise
3338 */
3339
3340int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3341{
3342        struct ata_port *ap = link->ap;
3343        struct ata_device *dev;
3344        int rc = 0, used_dma = 0, found = 0;
3345
3346        /* step 1: calculate xfer_mask */
3347        ata_for_each_dev(dev, link, ENABLED) {
3348                unsigned long pio_mask, dma_mask;
3349                unsigned int mode_mask;
3350
3351                mode_mask = ATA_DMA_MASK_ATA;
3352                if (dev->class == ATA_DEV_ATAPI)
3353                        mode_mask = ATA_DMA_MASK_ATAPI;
3354                else if (ata_id_is_cfa(dev->id))
3355                        mode_mask = ATA_DMA_MASK_CFA;
3356
3357                ata_dev_xfermask(dev);
3358                ata_force_xfermask(dev);
3359
3360                pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3361
3362                if (libata_dma_mask & mode_mask)
3363                        dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3364                                                     dev->udma_mask);
3365                else
3366                        dma_mask = 0;
3367
3368                dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3369                dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3370
3371                found = 1;
3372                if (ata_dma_enabled(dev))
3373                        used_dma = 1;
3374        }
3375        if (!found)
3376                goto out;
3377
3378        /* step 2: always set host PIO timings */
3379        ata_for_each_dev(dev, link, ENABLED) {
3380                if (dev->pio_mode == 0xff) {
3381                        ata_dev_warn(dev, "no PIO support\n");
3382                        rc = -EINVAL;
3383                        goto out;
3384                }
3385
3386                dev->xfer_mode = dev->pio_mode;
3387                dev->xfer_shift = ATA_SHIFT_PIO;
3388                if (ap->ops->set_piomode)
3389                        ap->ops->set_piomode(ap, dev);
3390        }
3391
3392        /* step 3: set host DMA timings */
3393        ata_for_each_dev(dev, link, ENABLED) {
3394                if (!ata_dma_enabled(dev))
3395                        continue;
3396
3397                dev->xfer_mode = dev->dma_mode;
3398                dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3399                if (ap->ops->set_dmamode)
3400                        ap->ops->set_dmamode(ap, dev);
3401        }
3402
3403        /* step 4: update devices' xfer mode */
3404        ata_for_each_dev(dev, link, ENABLED) {
3405                rc = ata_dev_set_mode(dev);
3406                if (rc)
3407                        goto out;
3408        }
3409
3410        /* Record simplex status. If we selected DMA then the other
3411         * host channels are not permitted to do so.
3412         */
3413        if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3414                ap->host->simplex_claimed = ap;
3415
3416 out:
3417        if (rc)
3418                *r_failed_dev = dev;
3419        return rc;
3420}
3421EXPORT_SYMBOL_GPL(ata_do_set_mode);
3422
3423/**
3424 *      ata_wait_ready - wait for link to become ready
3425 *      @link: link to be waited on
3426 *      @deadline: deadline jiffies for the operation
3427 *      @check_ready: callback to check link readiness
3428 *
3429 *      Wait for @link to become ready.  @check_ready should return
3430 *      positive number if @link is ready, 0 if it isn't, -ENODEV if
3431 *      link doesn't seem to be occupied, other errno for other error
3432 *      conditions.
3433 *
3434 *      Transient -ENODEV conditions are allowed for
3435 *      ATA_TMOUT_FF_WAIT.
3436 *
3437 *      LOCKING:
3438 *      EH context.
3439 *
3440 *      RETURNS:
3441 *      0 if @link is ready before @deadline; otherwise, -errno.
3442 */
3443int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3444                   int (*check_ready)(struct ata_link *link))
3445{
3446        unsigned long start = jiffies;
3447        unsigned long nodev_deadline;
3448        int warned = 0;
3449
3450        /* choose which 0xff timeout to use, read comment in libata.h */
3451        if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3452                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3453        else
3454                nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3455
3456        /* Slave readiness can't be tested separately from master.  On
3457         * M/S emulation configuration, this function should be called
3458         * only on the master and it will handle both master and slave.
3459         */
3460        WARN_ON(link == link->ap->slave_link);
3461
3462        if (time_after(nodev_deadline, deadline))
3463                nodev_deadline = deadline;
3464
3465        while (1) {
3466                unsigned long now = jiffies;
3467                int ready, tmp;
3468
3469                ready = tmp = check_ready(link);
3470                if (ready > 0)
3471                        return 0;
3472
3473                /*
3474                 * -ENODEV could be transient.  Ignore -ENODEV if link
3475                 * is online.  Also, some SATA devices take a long
3476                 * time to clear 0xff after reset.  Wait for
3477                 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3478                 * offline.
3479                 *
3480                 * Note that some PATA controllers (pata_ali) explode
3481                 * if status register is read more than once when
3482                 * there's no device attached.
3483                 */
3484                if (ready == -ENODEV) {
3485                        if (ata_link_online(link))
3486                                ready = 0;
3487                        else if ((link->ap->flags & ATA_FLAG_SATA) &&
3488                                 !ata_link_offline(link) &&
3489                                 time_before(now, nodev_deadline))
3490                                ready = 0;
3491                }
3492
3493                if (ready)
3494                        return ready;
3495                if (time_after(now, deadline))
3496                        return -EBUSY;
3497
3498                if (!warned && time_after(now, start + 5 * HZ) &&
3499                    (deadline - now > 3 * HZ)) {
3500                        ata_link_warn(link,
3501                                "link is slow to respond, please be patient "
3502                                "(ready=%d)\n", tmp);
3503                        warned = 1;
3504                }
3505
3506                ata_msleep(link->ap, 50);
3507        }
3508}
3509
3510/**
3511 *      ata_wait_after_reset - wait for link to become ready after reset
3512 *      @link: link to be waited on
3513 *      @deadline: deadline jiffies for the operation
3514 *      @check_ready: callback to check link readiness
3515 *
3516 *      Wait for @link to become ready after reset.
3517 *
3518 *      LOCKING:
3519 *      EH context.
3520 *
3521 *      RETURNS:
3522 *      0 if @link is ready before @deadline; otherwise, -errno.
3523 */
3524int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3525                                int (*check_ready)(struct ata_link *link))
3526{
3527        ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3528
3529        return ata_wait_ready(link, deadline, check_ready);
3530}
3531EXPORT_SYMBOL_GPL(ata_wait_after_reset);
3532
3533/**
3534 *      ata_std_prereset - prepare for reset
3535 *      @link: ATA link to be reset
3536 *      @deadline: deadline jiffies for the operation
3537 *
3538 *      @link is about to be reset.  Initialize it.  Failure from
3539 *      prereset makes libata abort whole reset sequence and give up
3540 *      that port, so prereset should be best-effort.  It does its
3541 *      best to prepare for reset sequence but if things go wrong, it
3542 *      should just whine, not fail.
3543 *
3544 *      LOCKING:
3545 *      Kernel thread context (may sleep)
3546 *
3547 *      RETURNS:
3548 *      0 on success, -errno otherwise.
3549 */
3550int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3551{
3552        struct ata_port *ap = link->ap;
3553        struct ata_eh_context *ehc = &link->eh_context;
3554        const unsigned long *timing = sata_ehc_deb_timing(ehc);
3555        int rc;
3556
3557        /* if we're about to do hardreset, nothing more to do */
3558        if (ehc->i.action & ATA_EH_HARDRESET)
3559                return 0;
3560
3561        /* if SATA, resume link */
3562        if (ap->flags & ATA_FLAG_SATA) {
3563                rc = sata_link_resume(link, timing, deadline);
3564                /* whine about phy resume failure but proceed */
3565                if (rc && rc != -EOPNOTSUPP)
3566                        ata_link_warn(link,
3567                                      "failed to resume link for reset (errno=%d)\n",
3568                                      rc);
3569        }
3570
3571        /* no point in trying softreset on offline link */
3572        if (ata_phys_link_offline(link))
3573                ehc->i.action &= ~ATA_EH_SOFTRESET;
3574
3575        return 0;
3576}
3577EXPORT_SYMBOL_GPL(ata_std_prereset);
3578
3579/**
3580 *      sata_std_hardreset - COMRESET w/o waiting or classification
3581 *      @link: link to reset
3582 *      @class: resulting class of attached device
3583 *      @deadline: deadline jiffies for the operation
3584 *
3585 *      Standard SATA COMRESET w/o waiting or classification.
3586 *
3587 *      LOCKING:
3588 *      Kernel thread context (may sleep)
3589 *
3590 *      RETURNS:
3591 *      0 if link offline, -EAGAIN if link online, -errno on errors.
3592 */
3593int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3594                       unsigned long deadline)
3595{
3596        const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3597        bool online;
3598        int rc;
3599
3600        /* do hardreset */
3601        rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3602        return online ? -EAGAIN : rc;
3603}
3604EXPORT_SYMBOL_GPL(sata_std_hardreset);
3605
3606/**
3607 *      ata_std_postreset - standard postreset callback
3608 *      @link: the target ata_link
3609 *      @classes: classes of attached devices
3610 *
3611 *      This function is invoked after a successful reset.  Note that
3612 *      the device might have been reset more than once using
3613 *      different reset methods before postreset is invoked.
3614 *
3615 *      LOCKING:
3616 *      Kernel thread context (may sleep)
3617 */
3618void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3619{
3620        u32 serror;
3621
3622        DPRINTK("ENTER\n");
3623
3624        /* reset complete, clear SError */
3625        if (!sata_scr_read(link, SCR_ERROR, &serror))
3626                sata_scr_write(link, SCR_ERROR, serror);
3627
3628        /* print link status */
3629        sata_print_link_status(link);
3630
3631        DPRINTK("EXIT\n");
3632}
3633EXPORT_SYMBOL_GPL(ata_std_postreset);
3634
3635/**
3636 *      ata_dev_same_device - Determine whether new ID matches configured device
3637 *      @dev: device to compare against
3638 *      @new_class: class of the new device
3639 *      @new_id: IDENTIFY page of the new device
3640 *
3641 *      Compare @new_class and @new_id against @dev and determine
3642 *      whether @dev is the device indicated by @new_class and
3643 *      @new_id.
3644 *
3645 *      LOCKING:
3646 *      None.
3647 *
3648 *      RETURNS:
3649 *      1 if @dev matches @new_class and @new_id, 0 otherwise.
3650 */
3651static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3652                               const u16 *new_id)
3653{
3654        const u16 *old_id = dev->id;
3655        unsigned char model[2][ATA_ID_PROD_LEN + 1];
3656        unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3657
3658        if (dev->class != new_class) {
3659                ata_dev_info(dev, "class mismatch %d != %d\n",
3660                             dev->class, new_class);
3661                return 0;
3662        }
3663
3664        ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3665        ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3666        ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3667        ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3668
3669        if (strcmp(model[0], model[1])) {
3670                ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3671                             model[0], model[1]);
3672                return 0;
3673        }
3674
3675        if (strcmp(serial[0], serial[1])) {
3676                ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3677                             serial[0], serial[1]);
3678                return 0;
3679        }
3680
3681        return 1;
3682}
3683
3684/**
3685 *      ata_dev_reread_id - Re-read IDENTIFY data
3686 *      @dev: target ATA device
3687 *      @readid_flags: read ID flags
3688 *
3689 *      Re-read IDENTIFY page and make sure @dev is still attached to
3690 *      the port.
3691 *
3692 *      LOCKING:
3693 *      Kernel thread context (may sleep)
3694 *
3695 *      RETURNS:
3696 *      0 on success, negative errno otherwise
3697 */
3698int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3699{
3700        unsigned int class = dev->class;
3701        u16 *id = (void *)dev->link->ap->sector_buf;
3702        int rc;
3703
3704        /* read ID data */
3705        rc = ata_dev_read_id(dev, &class, readid_flags, id);
3706        if (rc)
3707                return rc;
3708
3709        /* is the device still there? */
3710        if (!ata_dev_same_device(dev, class, id))
3711                return -ENODEV;
3712
3713        memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3714        return 0;
3715}
3716
3717/**
3718 *      ata_dev_revalidate - Revalidate ATA device
3719 *      @dev: device to revalidate
3720 *      @new_class: new class code
3721 *      @readid_flags: read ID flags
3722 *
3723 *      Re-read IDENTIFY page, make sure @dev is still attached to the
3724 *      port and reconfigure it according to the new IDENTIFY page.
3725 *
3726 *      LOCKING:
3727 *      Kernel thread context (may sleep)
3728 *
3729 *      RETURNS:
3730 *      0 on success, negative errno otherwise
3731 */
3732int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3733                       unsigned int readid_flags)
3734{
3735        u64 n_sectors = dev->n_sectors;
3736        u64 n_native_sectors = dev->n_native_sectors;
3737        int rc;
3738
3739        if (!ata_dev_enabled(dev))
3740                return -ENODEV;
3741
3742        /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3743        if (ata_class_enabled(new_class) &&
3744            new_class != ATA_DEV_ATA &&
3745            new_class != ATA_DEV_ATAPI &&
3746            new_class != ATA_DEV_ZAC &&
3747            new_class != ATA_DEV_SEMB) {
3748                ata_dev_info(dev, "class mismatch %u != %u\n",
3749                             dev->class, new_class);
3750                rc = -ENODEV;
3751                goto fail;
3752        }
3753
3754        /* re-read ID */
3755        rc = ata_dev_reread_id(dev, readid_flags);
3756        if (rc)
3757                goto fail;
3758
3759        /* configure device according to the new ID */
3760        rc = ata_dev_configure(dev);
3761        if (rc)
3762                goto fail;
3763
3764        /* verify n_sectors hasn't changed */
3765        if (dev->class != ATA_DEV_ATA || !n_sectors ||
3766            dev->n_sectors == n_sectors)
3767                return 0;
3768
3769        /* n_sectors has changed */
3770        ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3771                     (unsigned long long)n_sectors,
3772                     (unsigned long long)dev->n_sectors);
3773
3774        /*
3775         * Something could have caused HPA to be unlocked
3776         * involuntarily.  If n_native_sectors hasn't changed and the
3777         * new size matches it, keep the device.
3778         */
3779        if (dev->n_native_sectors == n_native_sectors &&
3780            dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3781                ata_dev_warn(dev,
3782                             "new n_sectors matches native, probably "
3783                             "late HPA unlock, n_sectors updated\n");
3784                /* use the larger n_sectors */
3785                return 0;
3786        }
3787
3788        /*
3789         * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3790         * unlocking HPA in those cases.
3791         *
3792         * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3793         */
3794        if (dev->n_native_sectors == n_native_sectors &&
3795            dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3796            !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3797                ata_dev_warn(dev,
3798                             "old n_sectors matches native, probably "
3799                             "late HPA lock, will try to unlock HPA\n");
3800                /* try unlocking HPA */
3801                dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3802                rc = -EIO;
3803        } else
3804                rc = -ENODEV;
3805
3806        /* restore original n_[native_]sectors and fail */
3807        dev->n_native_sectors = n_native_sectors;
3808        dev->n_sectors = n_sectors;
3809 fail:
3810        ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3811        return rc;
3812}
3813
3814struct ata_blacklist_entry {
3815        const char *model_num;
3816        const char *model_rev;
3817        unsigned long horkage;
3818};
3819
3820static const struct ata_blacklist_entry ata_device_blacklist [] = {
3821        /* Devices with DMA related problems under Linux */
3822        { "WDC AC11000H",       NULL,           ATA_HORKAGE_NODMA },
3823        { "WDC AC22100H",       NULL,           ATA_HORKAGE_NODMA },
3824        { "WDC AC32500H",       NULL,           ATA_HORKAGE_NODMA },
3825        { "WDC AC33100H",       NULL,           ATA_HORKAGE_NODMA },
3826        { "WDC AC31600H",       NULL,           ATA_HORKAGE_NODMA },
3827        { "WDC AC32100H",       "24.09P07",     ATA_HORKAGE_NODMA },
3828        { "WDC AC23200L",       "21.10N21",     ATA_HORKAGE_NODMA },
3829        { "Compaq CRD-8241B",   NULL,           ATA_HORKAGE_NODMA },
3830        { "CRD-8400B",          NULL,           ATA_HORKAGE_NODMA },
3831        { "CRD-848[02]B",       NULL,           ATA_HORKAGE_NODMA },
3832        { "CRD-84",             NULL,           ATA_HORKAGE_NODMA },
3833        { "SanDisk SDP3B",      NULL,           ATA_HORKAGE_NODMA },
3834        { "SanDisk SDP3B-64",   NULL,           ATA_HORKAGE_NODMA },
3835        { "SANYO CD-ROM CRD",   NULL,           ATA_HORKAGE_NODMA },
3836        { "HITACHI CDR-8",      NULL,           ATA_HORKAGE_NODMA },
3837        { "HITACHI CDR-8[34]35",NULL,           ATA_HORKAGE_NODMA },
3838        { "Toshiba CD-ROM XM-6202B", NULL,      ATA_HORKAGE_NODMA },
3839        { "TOSHIBA CD-ROM XM-1702BC", NULL,     ATA_HORKAGE_NODMA },
3840        { "CD-532E-A",          NULL,           ATA_HORKAGE_NODMA },
3841        { "E-IDE CD-ROM CR-840",NULL,           ATA_HORKAGE_NODMA },
3842        { "CD-ROM Drive/F5A",   NULL,           ATA_HORKAGE_NODMA },
3843        { "WPI CDD-820",        NULL,           ATA_HORKAGE_NODMA },
3844        { "SAMSUNG CD-ROM SC-148C", NULL,       ATA_HORKAGE_NODMA },
3845        { "SAMSUNG CD-ROM SC",  NULL,           ATA_HORKAGE_NODMA },
3846        { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3847        { "_NEC DV5800A",       NULL,           ATA_HORKAGE_NODMA },
3848        { "SAMSUNG CD-ROM SN-124", "N001",      ATA_HORKAGE_NODMA },
3849        { "Seagate STT20000A", NULL,            ATA_HORKAGE_NODMA },
3850        { " 2GB ATA Flash Disk", "ADMA428M",    ATA_HORKAGE_NODMA },
3851        { "VRFDFC22048UCHC-TE*", NULL,          ATA_HORKAGE_NODMA },
3852        /* Odd clown on sil3726/4726 PMPs */
3853        { "Config  Disk",       NULL,           ATA_HORKAGE_DISABLE },
3854
3855        /* Weird ATAPI devices */
3856        { "TORiSAN DVD-ROM DRD-N216", NULL,     ATA_HORKAGE_MAX_SEC_128 },
3857        { "QUANTUM DAT    DAT72-000", NULL,     ATA_HORKAGE_ATAPI_MOD16_DMA },
3858        { "Slimtype DVD A  DS8A8SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
3859        { "Slimtype DVD A  DS8A9SH", NULL,      ATA_HORKAGE_MAX_SEC_LBA48 },
3860
3861        /*
3862         * Causes silent data corruption with higher max sects.
3863         * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3864         */
3865        { "ST380013AS",         "3.20",         ATA_HORKAGE_MAX_SEC_1024 },
3866
3867        /*
3868         * These devices time out with higher max sects.
3869         * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3870         */
3871        { "LITEON CX1-JB*-HP",  NULL,           ATA_HORKAGE_MAX_SEC_1024 },
3872        { "LITEON EP1-*",       NULL,           ATA_HORKAGE_MAX_SEC_1024 },
3873
3874        /* Devices we expect to fail diagnostics */
3875
3876        /* Devices where NCQ should be avoided */
3877        /* NCQ is slow */
3878        { "WDC WD740ADFD-00",   NULL,           ATA_HORKAGE_NONCQ },
3879        { "WDC WD740ADFD-00NLR1", NULL,         ATA_HORKAGE_NONCQ, },
3880        /* http://thread.gmane.org/gmane.linux.ide/14907 */
3881        { "FUJITSU MHT2060BH",  NULL,           ATA_HORKAGE_NONCQ },
3882        /* NCQ is broken */
3883        { "Maxtor *",           "BANC*",        ATA_HORKAGE_NONCQ },
3884        { "Maxtor 7V300F0",     "VA111630",     ATA_HORKAGE_NONCQ },
3885        { "ST380817AS",         "3.42",         ATA_HORKAGE_NONCQ },
3886        { "ST3160023AS",        "3.42",         ATA_HORKAGE_NONCQ },
3887        { "OCZ CORE_SSD",       "02.10104",     ATA_HORKAGE_NONCQ },
3888
3889        /* Seagate NCQ + FLUSH CACHE firmware bug */
3890        { "ST31500341AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3891                                                ATA_HORKAGE_FIRMWARE_WARN },
3892
3893        { "ST31000333AS",       "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3894                                                ATA_HORKAGE_FIRMWARE_WARN },
3895
3896        { "ST3640[36]23AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3897                                                ATA_HORKAGE_FIRMWARE_WARN },
3898
3899        { "ST3320[68]13AS",     "SD1[5-9]",     ATA_HORKAGE_NONCQ |
3900                                                ATA_HORKAGE_FIRMWARE_WARN },
3901
3902        /* drives which fail FPDMA_AA activation (some may freeze afterwards)
3903           the ST disks also have LPM issues */
3904        { "ST1000LM024 HN-M101MBB", NULL,       ATA_HORKAGE_BROKEN_FPDMA_AA |
3905                                                ATA_HORKAGE_NOLPM, },
3906        { "VB0250EAVER",        "HPG7",         ATA_HORKAGE_BROKEN_FPDMA_AA },
3907
3908        /* Blacklist entries taken from Silicon Image 3124/3132
3909           Windows driver .inf file - also several Linux problem reports */
3910        { "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3911        { "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3912        { "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3913
3914        /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3915        { "C300-CTFDDAC128MAG", "0001",         ATA_HORKAGE_NONCQ, },
3916
3917        /* Sandisk SD7/8/9s lock up hard on large trims */
3918        { "SanDisk SD[789]*",   NULL,           ATA_HORKAGE_MAX_TRIM_128M, },
3919
3920        /* devices which puke on READ_NATIVE_MAX */
3921        { "HDS724040KLSA80",    "KFAOA20N",     ATA_HORKAGE_BROKEN_HPA, },
3922        { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3923        { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3924        { "MAXTOR 6L080L4",     "A93.0500",     ATA_HORKAGE_BROKEN_HPA },
3925
3926        /* this one allows HPA unlocking but fails IOs on the area */
3927        { "OCZ-VERTEX",             "1.30",     ATA_HORKAGE_BROKEN_HPA },
3928
3929        /* Devices which report 1 sector over size HPA */
3930        { "ST340823A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
3931        { "ST320413A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
3932        { "ST310211A",          NULL,           ATA_HORKAGE_HPA_SIZE, },
3933
3934        /* Devices which get the IVB wrong */
3935        { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3936        /* Maybe we should just blacklist TSSTcorp... */
3937        { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3938
3939        /* Devices that do not need bridging limits applied */
3940        { "MTRON MSP-SATA*",            NULL,   ATA_HORKAGE_BRIDGE_OK, },
3941        { "BUFFALO HD-QSU2/R5",         NULL,   ATA_HORKAGE_BRIDGE_OK, },
3942
3943        /* Devices which aren't very happy with higher link speeds */
3944        { "WD My Book",                 NULL,   ATA_HORKAGE_1_5_GBPS, },
3945        { "Seagate FreeAgent GoFlex",   NULL,   ATA_HORKAGE_1_5_GBPS, },
3946
3947        /*
3948         * Devices which choke on SETXFER.  Applies only if both the
3949         * device and controller are SATA.
3950         */
3951        { "PIONEER DVD-RW  DVRTD08",    NULL,   ATA_HORKAGE_NOSETXFER },
3952        { "PIONEER DVD-RW  DVRTD08A",   NULL,   ATA_HORKAGE_NOSETXFER },
3953        { "PIONEER DVD-RW  DVR-215",    NULL,   ATA_HORKAGE_NOSETXFER },
3954        { "PIONEER DVD-RW  DVR-212D",   NULL,   ATA_HORKAGE_NOSETXFER },
3955        { "PIONEER DVD-RW  DVR-216D",   NULL,   ATA_HORKAGE_NOSETXFER },
3956
3957        /* Crucial BX100 SSD 500GB has broken LPM support */
3958        { "CT500BX100SSD1",             NULL,   ATA_HORKAGE_NOLPM },
3959
3960        /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3961        { "Crucial_CT512MX100*",        "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3962                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
3963                                                ATA_HORKAGE_NOLPM, },
3964        /* 512GB MX100 with newer firmware has only LPM issues */
3965        { "Crucial_CT512MX100*",        NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM |
3966                                                ATA_HORKAGE_NOLPM, },
3967
3968        /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3969        { "Crucial_CT480M500*",         NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
3970                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
3971                                                ATA_HORKAGE_NOLPM, },
3972        { "Crucial_CT960M500*",         NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
3973                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
3974                                                ATA_HORKAGE_NOLPM, },
3975
3976        /* These specific Samsung models/firmware-revs do not handle LPM well */
3977        { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3978        { "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3979        { "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3980        { "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3981
3982        /* devices that don't properly handle queued TRIM commands */
3983        { "Micron_M500IT_*",            "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3984                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985        { "Micron_M500_*",              NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
3986                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3987        { "Crucial_CT*M500*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
3988                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3989        { "Micron_M5[15]0_*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3990                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3991        { "Crucial_CT*M550*",           "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3992                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3993        { "Crucial_CT*MX100*",          "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
3994                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3995        { "Samsung SSD 840*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
3996                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3997        { "Samsung SSD 850*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
3998                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
3999        { "Samsung SSD 860*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4000                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4001                                                ATA_HORKAGE_NO_NCQ_ON_ATI, },
4002        { "Samsung SSD 870*",           NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4003                                                ATA_HORKAGE_ZERO_AFTER_TRIM |
4004                                                ATA_HORKAGE_NO_NCQ_ON_ATI, },
4005        { "FCCT*M500*",                 NULL,   ATA_HORKAGE_NO_NCQ_TRIM |
4006                                                ATA_HORKAGE_ZERO_AFTER_TRIM, },
4007
4008        /* devices that don't properly handle TRIM commands */
4009        { "SuperSSpeed S238*",          NULL,   ATA_HORKAGE_NOTRIM, },
4010
4011        /*
4012         * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4013         * (Return Zero After Trim) flags in the ATA Command Set are
4014         * unreliable in the sense that they only define what happens if
4015         * the device successfully executed the DSM TRIM command. TRIM
4016         * is only advisory, however, and the device is free to silently
4017         * ignore all or parts of the request.
4018         *
4019         * Whitelist drives that are known to reliably return zeroes
4020         * after TRIM.
4021         */
4022
4023        /*
4024         * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4025         * that model before whitelisting all other intel SSDs.
4026         */
4027        { "INTEL*SSDSC2MH*",            NULL,   0, },
4028
4029        { "Micron*",                    NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4030        { "Crucial*",                   NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4031        { "INTEL*SSD*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4032        { "SSD*INTEL*",                 NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4033        { "Samsung*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4034        { "SAMSUNG*SSD*",               NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4035        { "SAMSUNG*MZ7KM*",             NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4036        { "ST[1248][0248]0[FH]*",       NULL,   ATA_HORKAGE_ZERO_AFTER_TRIM, },
4037
4038        /*
4039         * Some WD SATA-I drives spin up and down erratically when the link
4040         * is put into the slumber mode.  We don't have full list of the
4041         * affected devices.  Disable LPM if the device matches one of the
4042         * known prefixes and is SATA-1.  As a side effect LPM partial is
4043         * lost too.
4044         *
4045         * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4046         */
4047        { "WDC WD800JD-*",              NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4048        { "WDC WD1200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4049        { "WDC WD1600JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4050        { "WDC WD2000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4051        { "WDC WD2500JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4052        { "WDC WD3000JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4053        { "WDC WD3200JD-*",             NULL,   ATA_HORKAGE_WD_BROKEN_LPM },
4054
4055        /* End Marker */
4056        { }
4057};
4058
4059static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4060{
4061        unsigned char model_num[ATA_ID_PROD_LEN + 1];
4062        unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4063        const struct ata_blacklist_entry *ad = ata_device_blacklist;
4064
4065        ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4066        ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4067
4068        while (ad->model_num) {
4069                if (glob_match(ad->model_num, model_num)) {
4070                        if (ad->model_rev == NULL)
4071                                return ad->horkage;
4072                        if (glob_match(ad->model_rev, model_rev))
4073                                return ad->horkage;
4074                }
4075                ad++;
4076        }
4077        return 0;
4078}
4079
4080static int ata_dma_blacklisted(const struct ata_device *dev)
4081{
4082        /* We don't support polling DMA.
4083         * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4084         * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4085         */
4086        if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4087            (dev->flags & ATA_DFLAG_CDB_INTR))
4088                return 1;
4089        return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4090}
4091
4092/**
4093 *      ata_is_40wire           -       check drive side detection
4094 *      @dev: device
4095 *
4096 *      Perform drive side detection decoding, allowing for device vendors
4097 *      who can't follow the documentation.
4098 */
4099
4100static int ata_is_40wire(struct ata_device *dev)
4101{
4102        if (dev->horkage & ATA_HORKAGE_IVB)
4103                return ata_drive_40wire_relaxed(dev->id);
4104        return ata_drive_40wire(dev->id);
4105}
4106
4107/**
4108 *      cable_is_40wire         -       40/80/SATA decider
4109 *      @ap: port to consider
4110 *
4111 *      This function encapsulates the policy for speed management
4112 *      in one place. At the moment we don't cache the result but
4113 *      there is a good case for setting ap->cbl to the result when
4114 *      we are called with unknown cables (and figuring out if it
4115 *      impacts hotplug at all).
4116 *
4117 *      Return 1 if the cable appears to be 40 wire.
4118 */
4119
4120static int cable_is_40wire(struct ata_port *ap)
4121{
4122        struct ata_link *link;
4123        struct ata_device *dev;
4124
4125        /* If the controller thinks we are 40 wire, we are. */
4126        if (ap->cbl == ATA_CBL_PATA40)
4127                return 1;
4128
4129        /* If the controller thinks we are 80 wire, we are. */
4130        if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4131                return 0;
4132
4133        /* If the system is known to be 40 wire short cable (eg
4134         * laptop), then we allow 80 wire modes even if the drive
4135         * isn't sure.
4136         */
4137        if (ap->cbl == ATA_CBL_PATA40_SHORT)
4138                return 0;
4139
4140        /* If the controller doesn't know, we scan.
4141         *
4142         * Note: We look for all 40 wire detects at this point.  Any
4143         *       80 wire detect is taken to be 80 wire cable because
4144         * - in many setups only the one drive (slave if present) will
4145         *   give a valid detect
4146         * - if you have a non detect capable drive you don't want it
4147         *   to colour the choice
4148         */
4149        ata_for_each_link(link, ap, EDGE) {
4150                ata_for_each_dev(dev, link, ENABLED) {
4151                        if (!ata_is_40wire(dev))
4152                                return 0;
4153                }
4154        }
4155        return 1;
4156}
4157
4158/**
4159 *      ata_dev_xfermask - Compute supported xfermask of the given device
4160 *      @dev: Device to compute xfermask for
4161 *
4162 *      Compute supported xfermask of @dev and store it in
4163 *      dev->*_mask.  This function is responsible for applying all
4164 *      known limits including host controller limits, device
4165 *      blacklist, etc...
4166 *
4167 *      LOCKING:
4168 *      None.
4169 */
4170static void ata_dev_xfermask(struct ata_device *dev)
4171{
4172        struct ata_link *link = dev->link;
4173        struct ata_port *ap = link->ap;
4174        struct ata_host *host = ap->host;
4175        unsigned long xfer_mask;
4176
4177        /* controller modes available */
4178        xfer_mask = ata_pack_xfermask(ap->pio_mask,
4179                                      ap->mwdma_mask, ap->udma_mask);
4180
4181        /* drive modes available */
4182        xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4183                                       dev->mwdma_mask, dev->udma_mask);
4184        xfer_mask &= ata_id_xfermask(dev->id);
4185
4186        /*
4187         *      CFA Advanced TrueIDE timings are not allowed on a shared
4188         *      cable
4189         */
4190        if (ata_dev_pair(dev)) {
4191                /* No PIO5 or PIO6 */
4192                xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4193                /* No MWDMA3 or MWDMA 4 */
4194                xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4195        }
4196
4197        if (ata_dma_blacklisted(dev)) {
4198                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4199                ata_dev_warn(dev,
4200                             "device is on DMA blacklist, disabling DMA\n");
4201        }
4202
4203        if ((host->flags & ATA_HOST_SIMPLEX) &&
4204            host->simplex_claimed && host->simplex_claimed != ap) {
4205                xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4206                ata_dev_warn(dev,
4207                             "simplex DMA is claimed by other device, disabling DMA\n");
4208        }
4209
4210        if (ap->flags & ATA_FLAG_NO_IORDY)
4211                xfer_mask &= ata_pio_mask_no_iordy(dev);
4212
4213        if (ap->ops->mode_filter)
4214                xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4215
4216        /* Apply cable rule here.  Don't apply it early because when
4217         * we handle hot plug the cable type can itself change.
4218         * Check this last so that we know if the transfer rate was
4219         * solely limited by the cable.
4220         * Unknown or 80 wire cables reported host side are checked
4221         * drive side as well. Cases where we know a 40wire cable
4222         * is used safely for 80 are not checked here.
4223         */
4224        if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4225                /* UDMA/44 or higher would be available */
4226                if (cable_is_40wire(ap)) {
4227                        ata_dev_warn(dev,
4228                                     "limited to UDMA/33 due to 40-wire cable\n");
4229                        xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4230                }
4231
4232        ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4233                            &dev->mwdma_mask, &dev->udma_mask);
4234}
4235
4236/**
4237 *      ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4238 *      @dev: Device to which command will be sent
4239 *
4240 *      Issue SET FEATURES - XFER MODE command to device @dev
4241 *      on port @ap.
4242 *
4243 *      LOCKING:
4244 *      PCI/etc. bus probe sem.
4245 *
4246 *      RETURNS:
4247 *      0 on success, AC_ERR_* mask otherwise.
4248 */
4249
4250static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4251{
4252        struct ata_taskfile tf;
4253        unsigned int err_mask;
4254
4255        /* set up set-features taskfile */
4256        DPRINTK("set features - xfer mode\n");
4257
4258        /* Some controllers and ATAPI devices show flaky interrupt
4259         * behavior after setting xfer mode.  Use polling instead.
4260         */
4261        ata_tf_init(dev, &tf);
4262        tf.command = ATA_CMD_SET_FEATURES;
4263        tf.feature = SETFEATURES_XFER;
4264        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4265        tf.protocol = ATA_PROT_NODATA;
4266        /* If we are using IORDY we must send the mode setting command */
4267        if (ata_pio_need_iordy(dev))
4268                tf.nsect = dev->xfer_mode;
4269        /* If the device has IORDY and the controller does not - turn it off */
4270        else if (ata_id_has_iordy(dev->id))
4271                tf.nsect = 0x01;
4272        else /* In the ancient relic department - skip all of this */
4273                return 0;
4274
4275        /* On some disks, this command causes spin-up, so we need longer timeout */
4276        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4277
4278        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4279        return err_mask;
4280}
4281
4282/**
4283 *      ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4284 *      @dev: Device to which command will be sent
4285 *      @enable: Whether to enable or disable the feature
4286 *      @feature: The sector count represents the feature to set
4287 *
4288 *      Issue SET FEATURES - SATA FEATURES command to device @dev
4289 *      on port @ap with sector count
4290 *
4291 *      LOCKING:
4292 *      PCI/etc. bus probe sem.
4293 *
4294 *      RETURNS:
4295 *      0 on success, AC_ERR_* mask otherwise.
4296 */
4297unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4298{
4299        struct ata_taskfile tf;
4300        unsigned int err_mask;
4301        unsigned long timeout = 0;
4302
4303        /* set up set-features taskfile */
4304        DPRINTK("set features - SATA features\n");
4305
4306        ata_tf_init(dev, &tf);
4307        tf.command = ATA_CMD_SET_FEATURES;
4308        tf.feature = enable;
4309        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4310        tf.protocol = ATA_PROT_NODATA;
4311        tf.nsect = feature;
4312
4313        if (enable == SETFEATURES_SPINUP)
4314                timeout = ata_probe_timeout ?
4315                          ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4316        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4317
4318        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4319        return err_mask;
4320}
4321EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4322
4323/**
4324 *      ata_dev_init_params - Issue INIT DEV PARAMS command
4325 *      @dev: Device to which command will be sent
4326 *      @heads: Number of heads (taskfile parameter)
4327 *      @sectors: Number of sectors (taskfile parameter)
4328 *
4329 *      LOCKING:
4330 *      Kernel thread context (may sleep)
4331 *
4332 *      RETURNS:
4333 *      0 on success, AC_ERR_* mask otherwise.
4334 */
4335static unsigned int ata_dev_init_params(struct ata_device *dev,
4336                                        u16 heads, u16 sectors)
4337{
4338        struct ata_taskfile tf;
4339        unsigned int err_mask;
4340
4341        /* Number of sectors per track 1-255. Number of heads 1-16 */
4342        if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4343                return AC_ERR_INVALID;
4344
4345        /* set up init dev params taskfile */
4346        DPRINTK("init dev params \n");
4347
4348        ata_tf_init(dev, &tf);
4349        tf.command = ATA_CMD_INIT_DEV_PARAMS;
4350        tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4351        tf.protocol = ATA_PROT_NODATA;
4352        tf.nsect = sectors;
4353        tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4354
4355        err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4356        /* A clean abort indicates an original or just out of spec drive
4357           and we should continue as we issue the setup based on the
4358           drive reported working geometry */
4359        if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4360                err_mask = 0;
4361
4362        DPRINTK("EXIT, err_mask=%x\n", err_mask);
4363        return err_mask;
4364}
4365
4366/**
4367 *      atapi_check_dma - Check whether ATAPI DMA can be supported
4368 *      @qc: Metadata associated with taskfile to check
4369 *
4370 *      Allow low-level driver to filter ATA PACKET commands, returning
4371 *      a status indicating whether or not it is OK to use DMA for the
4372 *      supplied PACKET command.
4373 *
4374 *      LOCKING:
4375 *      spin_lock_irqsave(host lock)
4376 *
4377 *      RETURNS: 0 when ATAPI DMA can be used
4378 *               nonzero otherwise
4379 */
4380int atapi_check_dma(struct ata_queued_cmd *qc)
4381{
4382        struct ata_port *ap = qc->ap;
4383
4384        /* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4385         * few ATAPI devices choke on such DMA requests.
4386         */
4387        if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4388            unlikely(qc->nbytes & 15))
4389                return 1;
4390
4391        if (ap->ops->check_atapi_dma)
4392                return ap->ops->check_atapi_dma(qc);
4393
4394        return 0;
4395}
4396
4397/**
4398 *      ata_std_qc_defer - Check whether a qc needs to be deferred
4399 *      @qc: ATA command in question
4400 *
4401 *      Non-NCQ commands cannot run with any other command, NCQ or
4402 *      not.  As upper layer only knows the queue depth, we are
4403 *      responsible for maintaining exclusion.  This function checks
4404 *      whether a new command @qc can be issued.
4405 *
4406 *      LOCKING:
4407 *      spin_lock_irqsave(host lock)
4408 *
4409 *      RETURNS:
4410 *      ATA_DEFER_* if deferring is needed, 0 otherwise.
4411 */
4412int ata_std_qc_defer(struct ata_queued_cmd *qc)
4413{
4414        struct ata_link *link = qc->dev->link;
4415
4416        if (ata_is_ncq(qc->tf.protocol)) {
4417                if (!ata_tag_valid(link->active_tag))
4418                        return 0;
4419        } else {
4420                if (!ata_tag_valid(link->active_tag) && !link->sactive)
4421                        return 0;
4422        }
4423
4424        return ATA_DEFER_LINK;
4425}
4426EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4427
4428enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4429{
4430        return AC_ERR_OK;
4431}
4432EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4433
4434/**
4435 *      ata_sg_init - Associate command with scatter-gather table.
4436 *      @qc: Command to be associated
4437 *      @sg: Scatter-gather table.
4438 *      @n_elem: Number of elements in s/g table.
4439 *
4440 *      Initialize the data-related elements of queued_cmd @qc
4441 *      to point to a scatter-gather table @sg, containing @n_elem
4442 *      elements.
4443 *
4444 *      LOCKING:
4445 *      spin_lock_irqsave(host lock)
4446 */
4447void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4448                 unsigned int n_elem)
4449{
4450        qc->sg = sg;
4451        qc->n_elem = n_elem;
4452        qc->cursg = qc->sg;
4453}
4454
4455#ifdef CONFIG_HAS_DMA
4456
4457/**
4458 *      ata_sg_clean - Unmap DMA memory associated with command
4459 *      @qc: Command containing DMA memory to be released
4460 *
4461 *      Unmap all mapped DMA memory associated with this command.
4462 *
4463 *      LOCKING:
4464 *      spin_lock_irqsave(host lock)
4465 */
4466static void ata_sg_clean(struct ata_queued_cmd *qc)
4467{
4468        struct ata_port *ap = qc->ap;
4469        struct scatterlist *sg = qc->sg;
4470        int dir = qc->dma_dir;
4471
4472        WARN_ON_ONCE(sg == NULL);
4473
4474        VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4475
4476        if (qc->n_elem)
4477                dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4478
4479        qc->flags &= ~ATA_QCFLAG_DMAMAP;
4480        qc->sg = NULL;
4481}
4482
4483/**
4484 *      ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4485 *      @qc: Command with scatter-gather table to be mapped.
4486 *
4487 *      DMA-map the scatter-gather table associated with queued_cmd @qc.
4488 *
4489 *      LOCKING:
4490 *      spin_lock_irqsave(host lock)
4491 *
4492 *      RETURNS:
4493 *      Zero on success, negative on error.
4494 *
4495 */
4496static int ata_sg_setup(struct ata_queued_cmd *qc)
4497{
4498        struct ata_port *ap = qc->ap;
4499        unsigned int n_elem;
4500
4501        VPRINTK("ENTER, ata%u\n", ap->print_id);
4502
4503        n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4504        if (n_elem < 1)
4505                return -1;
4506
4507        VPRINTK("%d sg elements mapped\n", n_elem);
4508        qc->orig_n_elem = qc->n_elem;
4509        qc->n_elem = n_elem;
4510        qc->flags |= ATA_QCFLAG_DMAMAP;
4511
4512        return 0;
4513}
4514
4515#else /* !CONFIG_HAS_DMA */
4516
4517static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4518static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4519
4520#endif /* !CONFIG_HAS_DMA */
4521
4522/**
4523 *      swap_buf_le16 - swap halves of 16-bit words in place
4524 *      @buf:  Buffer to swap
4525 *      @buf_words:  Number of 16-bit words in buffer.
4526 *
4527 *      Swap halves of 16-bit words if needed to convert from
4528 *      little-endian byte order to native cpu byte order, or
4529 *      vice-versa.
4530 *
4531 *      LOCKING:
4532 *      Inherited from caller.
4533 */
4534void swap_buf_le16(u16 *buf, unsigned int buf_words)
4535{
4536#ifdef __BIG_ENDIAN
4537        unsigned int i;
4538
4539        for (i = 0; i < buf_words; i++)
4540                buf[i] = le16_to_cpu(buf[i]);
4541#endif /* __BIG_ENDIAN */
4542}
4543
4544/**
4545 *      ata_qc_new_init - Request an available ATA command, and initialize it
4546 *      @dev: Device from whom we request an available command structure
4547 *      @tag: tag
4548 *
4549 *      LOCKING:
4550 *      None.
4551 */
4552
4553struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4554{
4555        struct ata_port *ap = dev->link->ap;
4556        struct ata_queued_cmd *qc;
4557
4558        /* no command while frozen */
4559        if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4560                return NULL;
4561
4562        /* libsas case */
4563        if (ap->flags & ATA_FLAG_SAS_HOST) {
4564                tag = ata_sas_allocate_tag(ap);
4565                if (tag < 0)
4566                        return NULL;
4567        }
4568
4569        qc = __ata_qc_from_tag(ap, tag);
4570        qc->tag = qc->hw_tag = tag;
4571        qc->scsicmd = NULL;
4572        qc->ap = ap;
4573        qc->dev = dev;
4574
4575        ata_qc_reinit(qc);
4576
4577        return qc;
4578}
4579
4580/**
4581 *      ata_qc_free - free unused ata_queued_cmd
4582 *      @qc: Command to complete
4583 *
4584 *      Designed to free unused ata_queued_cmd object
4585 *      in case something prevents using it.
4586 *
4587 *      LOCKING:
4588 *      spin_lock_irqsave(host lock)
4589 */
4590void ata_qc_free(struct ata_queued_cmd *qc)
4591{
4592        struct ata_port *ap;
4593        unsigned int tag;
4594
4595        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4596        ap = qc->ap;
4597
4598        qc->flags = 0;
4599        tag = qc->tag;
4600        if (ata_tag_valid(tag)) {
4601                qc->tag = ATA_TAG_POISON;
4602                if (ap->flags & ATA_FLAG_SAS_HOST)
4603                        ata_sas_free_tag(tag, ap);
4604        }
4605}
4606
4607void __ata_qc_complete(struct ata_queued_cmd *qc)
4608{
4609        struct ata_port *ap;
4610        struct ata_link *link;
4611
4612        WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4613        WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4614        ap = qc->ap;
4615        link = qc->dev->link;
4616
4617        if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4618                ata_sg_clean(qc);
4619
4620        /* command should be marked inactive atomically with qc completion */
4621        if (ata_is_ncq(qc->tf.protocol)) {
4622                link->sactive &= ~(1 << qc->hw_tag);
4623                if (!link->sactive)
4624                        ap->nr_active_links--;
4625        } else {
4626                link->active_tag = ATA_TAG_POISON;
4627                ap->nr_active_links--;
4628        }
4629
4630        /* clear exclusive status */
4631        if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4632                     ap->excl_link == link))
4633                ap->excl_link = NULL;
4634
4635        /* atapi: mark qc as inactive to prevent the interrupt handler
4636         * from completing the command twice later, before the error handler
4637         * is called. (when rc != 0 and atapi request sense is needed)
4638         */
4639        qc->flags &= ~ATA_QCFLAG_ACTIVE;
4640        ap->qc_active &= ~(1ULL << qc->tag);
4641
4642        /* call completion callback */
4643        qc->complete_fn(qc);
4644}
4645
4646static void fill_result_tf(struct ata_queued_cmd *qc)
4647{
4648        struct ata_port *ap = qc->ap;
4649
4650        qc->result_tf.flags = qc->tf.flags;
4651        ap->ops->qc_fill_rtf(qc);
4652}
4653
4654static void ata_verify_xfer(struct ata_queued_cmd *qc)
4655{
4656        struct ata_device *dev = qc->dev;
4657
4658        if (!ata_is_data(qc->tf.protocol))
4659                return;
4660
4661        if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4662                return;
4663
4664        dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4665}
4666
4667/**
4668 *      ata_qc_complete - Complete an active ATA command
4669 *      @qc: Command to complete
4670 *
4671 *      Indicate to the mid and upper layers that an ATA command has
4672 *      completed, with either an ok or not-ok status.
4673 *
4674 *      Refrain from calling this function multiple times when
4675 *      successfully completing multiple NCQ commands.
4676 *      ata_qc_complete_multiple() should be used instead, which will
4677 *      properly update IRQ expect state.
4678 *
4679 *      LOCKING:
4680 *      spin_lock_irqsave(host lock)
4681 */
4682void ata_qc_complete(struct ata_queued_cmd *qc)
4683{
4684        struct ata_port *ap = qc->ap;
4685
4686        /* Trigger the LED (if available) */
4687        ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4688
4689        /* XXX: New EH and old EH use different mechanisms to
4690         * synchronize EH with regular execution path.
4691         *
4692         * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4693         * Normal execution path is responsible for not accessing a
4694         * failed qc.  libata core enforces the rule by returning NULL
4695         * from ata_qc_from_tag() for failed qcs.
4696         *
4697         * Old EH depends on ata_qc_complete() nullifying completion
4698         * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4699         * not synchronize with interrupt handler.  Only PIO task is
4700         * taken care of.
4701         */
4702        if (ap->ops->error_handler) {
4703                struct ata_device *dev = qc->dev;
4704                struct ata_eh_info *ehi = &dev->link->eh_info;
4705
4706                if (unlikely(qc->err_mask))
4707                        qc->flags |= ATA_QCFLAG_FAILED;
4708
4709                /*
4710                 * Finish internal commands without any further processing
4711                 * and always with the result TF filled.
4712                 */
4713                if (unlikely(ata_tag_internal(qc->tag))) {
4714                        fill_result_tf(qc);
4715                        trace_ata_qc_complete_internal(qc);
4716                        __ata_qc_complete(qc);
4717                        return;
4718                }
4719
4720                /*
4721                 * Non-internal qc has failed.  Fill the result TF and
4722                 * summon EH.
4723                 */
4724                if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4725                        fill_result_tf(qc);
4726                        trace_ata_qc_complete_failed(qc);
4727                        ata_qc_schedule_eh(qc);
4728                        return;
4729                }
4730
4731                WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4732
4733                /* read result TF if requested */
4734                if (qc->flags & ATA_QCFLAG_RESULT_TF)
4735                        fill_result_tf(qc);
4736
4737                trace_ata_qc_complete_done(qc);
4738                /* Some commands need post-processing after successful
4739                 * completion.
4740                 */
4741                switch (qc->tf.command) {
4742                case ATA_CMD_SET_FEATURES:
4743                        if (qc->tf.feature != SETFEATURES_WC_ON &&
4744                            qc->tf.feature != SETFEATURES_WC_OFF &&
4745                            qc->tf.feature != SETFEATURES_RA_ON &&
4746                            qc->tf.feature != SETFEATURES_RA_OFF)
4747                                break;
4748                        fallthrough;
4749                case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4750                case ATA_CMD_SET_MULTI: /* multi_count changed */
4751                        /* revalidate device */
4752                        ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4753                        ata_port_schedule_eh(ap);
4754                        break;
4755
4756                case ATA_CMD_SLEEP:
4757                        dev->flags |= ATA_DFLAG_SLEEPING;
4758                        break;
4759                }
4760
4761                if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4762                        ata_verify_xfer(qc);
4763
4764                __ata_qc_complete(qc);
4765        } else {
4766                if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4767                        return;
4768
4769                /* read result TF if failed or requested */
4770                if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4771                        fill_result_tf(qc);
4772
4773                __ata_qc_complete(qc);
4774        }
4775}
4776EXPORT_SYMBOL_GPL(ata_qc_complete);
4777
4778/**
4779 *      ata_qc_get_active - get bitmask of active qcs
4780 *      @ap: port in question
4781 *
4782 *      LOCKING:
4783 *      spin_lock_irqsave(host lock)
4784 *
4785 *      RETURNS:
4786 *      Bitmask of active qcs
4787 */
4788u64 ata_qc_get_active(struct ata_port *ap)
4789{
4790        u64 qc_active = ap->qc_active;
4791
4792        /* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4793        if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4794                qc_active |= (1 << 0);
4795                qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
4796        }
4797
4798        return qc_active;
4799}
4800EXPORT_SYMBOL_GPL(ata_qc_get_active);
4801
4802/**
4803 *      ata_qc_issue - issue taskfile to device
4804 *      @qc: command to issue to device
4805 *
4806 *      Prepare an ATA command to submission to device.
4807 *      This includes mapping the data into a DMA-able
4808 *      area, filling in the S/G table, and finally
4809 *      writing the taskfile to hardware, starting the command.
4810 *
4811 *      LOCKING:
4812 *      spin_lock_irqsave(host lock)
4813 */
4814void ata_qc_issue(struct ata_queued_cmd *qc)
4815{
4816        struct ata_port *ap = qc->ap;
4817        struct ata_link *link = qc->dev->link;
4818        u8 prot = qc->tf.protocol;
4819
4820        /* Make sure only one non-NCQ command is outstanding.  The
4821         * check is skipped for old EH because it reuses active qc to
4822         * request ATAPI sense.
4823         */
4824        WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4825
4826        if (ata_is_ncq(prot)) {
4827                WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4828
4829                if (!link->sactive)
4830                        ap->nr_active_links++;
4831                link->sactive |= 1 << qc->hw_tag;
4832        } else {
4833                WARN_ON_ONCE(link->sactive);
4834
4835                ap->nr_active_links++;
4836                link->active_tag = qc->tag;
4837        }
4838
4839        qc->flags |= ATA_QCFLAG_ACTIVE;
4840        ap->qc_active |= 1ULL << qc->tag;
4841
4842        /*
4843         * We guarantee to LLDs that they will have at least one
4844         * non-zero sg if the command is a data command.
4845         */
4846        if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
4847                goto sys_err;
4848
4849        if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4850                                 (ap->flags & ATA_FLAG_PIO_DMA)))
4851                if (ata_sg_setup(qc))
4852                        goto sys_err;
4853
4854        /* if device is sleeping, schedule reset and abort the link */
4855        if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4856                link->eh_info.action |= ATA_EH_RESET;
4857                ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4858                ata_link_abort(link);
4859                return;
4860        }
4861
4862        qc->err_mask |= ap->ops->qc_prep(qc);
4863        if (unlikely(qc->err_mask))
4864                goto err;
4865        trace_ata_qc_issue(qc);
4866        qc->err_mask |= ap->ops->qc_issue(qc);
4867        if (unlikely(qc->err_mask))
4868                goto err;
4869        return;
4870
4871sys_err:
4872        qc->err_mask |= AC_ERR_SYSTEM;
4873err:
4874        ata_qc_complete(qc);
4875}
4876
4877/**
4878 *      ata_phys_link_online - test whether the given link is online
4879 *      @link: ATA link to test
4880 *
4881 *      Test whether @link is online.  Note that this function returns
4882 *      0 if online status of @link cannot be obtained, so
4883 *      ata_link_online(link) != !ata_link_offline(link).
4884 *
4885 *      LOCKING:
4886 *      None.
4887 *
4888 *      RETURNS:
4889 *      True if the port online status is available and online.
4890 */
4891bool ata_phys_link_online(struct ata_link *link)
4892{
4893        u32 sstatus;
4894
4895        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4896            ata_sstatus_online(sstatus))
4897                return true;
4898        return false;
4899}
4900
4901/**
4902 *      ata_phys_link_offline - test whether the given link is offline
4903 *      @link: ATA link to test
4904 *
4905 *      Test whether @link is offline.  Note that this function
4906 *      returns 0 if offline status of @link cannot be obtained, so
4907 *      ata_link_online(link) != !ata_link_offline(link).
4908 *
4909 *      LOCKING:
4910 *      None.
4911 *
4912 *      RETURNS:
4913 *      True if the port offline status is available and offline.
4914 */
4915bool ata_phys_link_offline(struct ata_link *link)
4916{
4917        u32 sstatus;
4918
4919        if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4920            !ata_sstatus_online(sstatus))
4921                return true;
4922        return false;
4923}
4924
4925/**
4926 *      ata_link_online - test whether the given link is online
4927 *      @link: ATA link to test
4928 *
4929 *      Test whether @link is online.  This is identical to
4930 *      ata_phys_link_online() when there's no slave link.  When
4931 *      there's a slave link, this function should only be called on
4932 *      the master link and will return true if any of M/S links is
4933 *      online.
4934 *
4935 *      LOCKING:
4936 *      None.
4937 *
4938 *      RETURNS:
4939 *      True if the port online status is available and online.
4940 */
4941bool ata_link_online(struct ata_link *link)
4942{
4943        struct ata_link *slave = link->ap->slave_link;
4944
4945        WARN_ON(link == slave); /* shouldn't be called on slave link */
4946
4947        return ata_phys_link_online(link) ||
4948                (slave && ata_phys_link_online(slave));
4949}
4950EXPORT_SYMBOL_GPL(ata_link_online);
4951
4952/**
4953 *      ata_link_offline - test whether the given link is offline
4954 *      @link: ATA link to test
4955 *
4956 *      Test whether @link is offline.  This is identical to
4957 *      ata_phys_link_offline() when there's no slave link.  When
4958 *      there's a slave link, this function should only be called on
4959 *      the master link and will return true if both M/S links are
4960 *      offline.
4961 *
4962 *      LOCKING:
4963 *      None.
4964 *
4965 *      RETURNS:
4966 *      True if the port offline status is available and offline.
4967 */
4968bool ata_link_offline(struct ata_link *link)
4969{
4970        struct ata_link *slave = link->ap->slave_link;
4971
4972        WARN_ON(link == slave); /* shouldn't be called on slave link */
4973
4974        return ata_phys_link_offline(link) &&
4975                (!slave || ata_phys_link_offline(slave));
4976}
4977EXPORT_SYMBOL_GPL(ata_link_offline);
4978
4979#ifdef CONFIG_PM
4980static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4981                                unsigned int action, unsigned int ehi_flags,
4982                                bool async)
4983{
4984        struct ata_link *link;
4985        unsigned long flags;
4986
4987        /* Previous resume operation might still be in
4988         * progress.  Wait for PM_PENDING to clear.
4989         */
4990        if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4991                ata_port_wait_eh(ap);
4992                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4993        }
4994
4995        /* request PM ops to EH */
4996        spin_lock_irqsave(ap->lock, flags);
4997
4998        ap->pm_mesg = mesg;
4999        ap->pflags |= ATA_PFLAG_PM_PENDING;
5000        ata_for_each_link(link, ap, HOST_FIRST) {
5001                link->eh_info.action |= action;
5002                link->eh_info.flags |= ehi_flags;
5003        }
5004
5005        ata_port_schedule_eh(ap);
5006
5007        spin_unlock_irqrestore(ap->lock, flags);
5008
5009        if (!async) {
5010                ata_port_wait_eh(ap);
5011                WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5012        }
5013}
5014
5015/*
5016 * On some hardware, device fails to respond after spun down for suspend.  As
5017 * the device won't be used before being resumed, we don't need to touch the
5018 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5019 *
5020 * http://thread.gmane.org/gmane.linux.ide/46764
5021 */
5022static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5023                                                 | ATA_EHI_NO_AUTOPSY
5024                                                 | ATA_EHI_NO_RECOVERY;
5025
5026static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5027{
5028        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5029}
5030
5031static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5032{
5033        ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5034}
5035
5036static int ata_port_pm_suspend(struct device *dev)
5037{
5038        struct ata_port *ap = to_ata_port(dev);
5039
5040        if (pm_runtime_suspended(dev))
5041                return 0;
5042
5043        ata_port_suspend(ap, PMSG_SUSPEND);
5044        return 0;
5045}
5046
5047static int ata_port_pm_freeze(struct device *dev)
5048{
5049        struct ata_port *ap = to_ata_port(dev);
5050
5051        if (pm_runtime_suspended(dev))
5052                return 0;
5053
5054        ata_port_suspend(ap, PMSG_FREEZE);
5055        return 0;
5056}
5057
5058static int ata_port_pm_poweroff(struct device *dev)
5059{
5060        ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5061        return 0;
5062}
5063
5064static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5065                                                | ATA_EHI_QUIET;
5066
5067static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5068{
5069        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5070}
5071
5072static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5073{
5074        ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5075}
5076
5077static int ata_port_pm_resume(struct device *dev)
5078{
5079        ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5080        pm_runtime_disable(dev);
5081        pm_runtime_set_active(dev);
5082        pm_runtime_enable(dev);
5083        return 0;
5084}
5085
5086/*
5087 * For ODDs, the upper layer will poll for media change every few seconds,
5088 * which will make it enter and leave suspend state every few seconds. And
5089 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5090 * is very little and the ODD may malfunction after constantly being reset.
5091 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5092 * ODD is attached to the port.
5093 */
5094static int ata_port_runtime_idle(struct device *dev)
5095{
5096        struct ata_port *ap = to_ata_port(dev);
5097        struct ata_link *link;
5098        struct ata_device *adev;
5099
5100        ata_for_each_link(link, ap, HOST_FIRST) {
5101                ata_for_each_dev(adev, link, ENABLED)
5102                        if (adev->class == ATA_DEV_ATAPI &&
5103                            !zpodd_dev_enabled(adev))
5104                                return -EBUSY;
5105        }
5106
5107        return 0;
5108}
5109
5110static int ata_port_runtime_suspend(struct device *dev)
5111{
5112        ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5113        return 0;
5114}
5115
5116static int ata_port_runtime_resume(struct device *dev)
5117{
5118        ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5119        return 0;
5120}
5121
5122static const struct dev_pm_ops ata_port_pm_ops = {
5123        .suspend = ata_port_pm_suspend,
5124        .resume = ata_port_pm_resume,
5125        .freeze = ata_port_pm_freeze,
5126        .thaw = ata_port_pm_resume,
5127        .poweroff = ata_port_pm_poweroff,
5128        .restore = ata_port_pm_resume,
5129
5130        .runtime_suspend = ata_port_runtime_suspend,
5131        .runtime_resume = ata_port_runtime_resume,
5132        .runtime_idle = ata_port_runtime_idle,
5133};
5134
5135/* sas ports don't participate in pm runtime management of ata_ports,
5136 * and need to resume ata devices at the domain level, not the per-port
5137 * level. sas suspend/resume is async to allow parallel port recovery
5138 * since sas has multiple ata_port instances per Scsi_Host.
5139 */
5140void ata_sas_port_suspend(struct ata_port *ap)
5141{
5142        ata_port_suspend_async(ap, PMSG_SUSPEND);
5143}
5144EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5145
5146void ata_sas_port_resume(struct ata_port *ap)
5147{
5148        ata_port_resume_async(ap, PMSG_RESUME);
5149}
5150EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5151
5152/**
5153 *      ata_host_suspend - suspend host
5154 *      @host: host to suspend
5155 *      @mesg: PM message
5156 *
5157 *      Suspend @host.  Actual operation is performed by port suspend.
5158 */
5159int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5160{
5161        host->dev->power.power_state = mesg;
5162        return 0;
5163}
5164EXPORT_SYMBOL_GPL(ata_host_suspend);
5165
5166/**
5167 *      ata_host_resume - resume host
5168 *      @host: host to resume
5169 *
5170 *      Resume @host.  Actual operation is performed by port resume.
5171 */
5172void ata_host_resume(struct ata_host *host)
5173{
5174        host->dev->power.power_state = PMSG_ON;
5175}
5176EXPORT_SYMBOL_GPL(ata_host_resume);
5177#endif
5178
5179const struct device_type ata_port_type = {
5180        .name = "ata_port",
5181#ifdef CONFIG_PM
5182        .pm = &ata_port_pm_ops,
5183#endif
5184};
5185
5186/**
5187 *      ata_dev_init - Initialize an ata_device structure
5188 *      @dev: Device structure to initialize
5189 *
5190 *      Initialize @dev in preparation for probing.
5191 *
5192 *      LOCKING:
5193 *      Inherited from caller.
5194 */
5195void ata_dev_init(struct ata_device *dev)
5196{
5197        struct ata_link *link = ata_dev_phys_link(dev);
5198        struct ata_port *ap = link->ap;
5199        unsigned long flags;
5200
5201        /* SATA spd limit is bound to the attached device, reset together */
5202        link->sata_spd_limit = link->hw_sata_spd_limit;
5203        link->sata_spd = 0;
5204
5205        /* High bits of dev->flags are used to record warm plug
5206         * requests which occur asynchronously.  Synchronize using
5207         * host lock.
5208         */
5209        spin_lock_irqsave(ap->lock, flags);
5210        dev->flags &= ~ATA_DFLAG_INIT_MASK;
5211        dev->horkage = 0;
5212        spin_unlock_irqrestore(ap->lock, flags);
5213
5214        memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5215               ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5216        dev->pio_mask = UINT_MAX;
5217        dev->mwdma_mask = UINT_MAX;
5218        dev->udma_mask = UINT_MAX;
5219}
5220
5221/**
5222 *      ata_link_init - Initialize an ata_link structure
5223 *      @ap: ATA port link is attached to
5224 *      @link: Link structure to initialize
5225 *      @pmp: Port multiplier port number
5226 *
5227 *      Initialize @link.
5228 *
5229 *      LOCKING:
5230 *      Kernel thread context (may sleep)
5231 */
5232void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5233{
5234        int i;
5235
5236        /* clear everything except for devices */
5237        memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5238               ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5239
5240        link->ap = ap;
5241        link->pmp = pmp;
5242        link->active_tag = ATA_TAG_POISON;
5243        link->hw_sata_spd_limit = UINT_MAX;
5244
5245        /* can't use iterator, ap isn't initialized yet */
5246        for (i = 0; i < ATA_MAX_DEVICES; i++) {
5247                struct ata_device *dev = &link->device[i];
5248
5249                dev->link = link;
5250                dev->devno = dev - link->device;
5251#ifdef CONFIG_ATA_ACPI
5252                dev->gtf_filter = ata_acpi_gtf_filter;
5253#endif
5254                ata_dev_init(dev);
5255        }
5256}
5257
5258/**
5259 *      sata_link_init_spd - Initialize link->sata_spd_limit
5260 *      @link: Link to configure sata_spd_limit for
5261 *
5262 *      Initialize ``link->[hw_]sata_spd_limit`` to the currently
5263 *      configured value.
5264 *
5265 *      LOCKING:
5266 *      Kernel thread context (may sleep).
5267 *
5268 *      RETURNS:
5269 *      0 on success, -errno on failure.
5270 */
5271int sata_link_init_spd(struct ata_link *link)
5272{
5273        u8 spd;
5274        int rc;
5275
5276        rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5277        if (rc)
5278                return rc;
5279
5280        spd = (link->saved_scontrol >> 4) & 0xf;
5281        if (spd)
5282                link->hw_sata_spd_limit &= (1 << spd) - 1;
5283
5284        ata_force_link_limits(link);
5285
5286        link->sata_spd_limit = link->hw_sata_spd_limit;
5287
5288        return 0;
5289}
5290
5291/**
5292 *      ata_port_alloc - allocate and initialize basic ATA port resources
5293 *      @host: ATA host this allocated port belongs to
5294 *
5295 *      Allocate and initialize basic ATA port resources.
5296 *
5297 *      RETURNS:
5298 *      Allocate ATA port on success, NULL on failure.
5299 *
5300 *      LOCKING:
5301 *      Inherited from calling layer (may sleep).
5302 */
5303struct ata_port *ata_port_alloc(struct ata_host *host)
5304{
5305        struct ata_port *ap;
5306
5307        DPRINTK("ENTER\n");
5308
5309        ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5310        if (!ap)
5311                return NULL;
5312
5313        ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5314        ap->lock = &host->lock;
5315        ap->print_id = -1;
5316        ap->local_port_no = -1;
5317        ap->host = host;
5318        ap->dev = host->dev;
5319
5320#if defined(ATA_VERBOSE_DEBUG)
5321        /* turn on all debugging levels */
5322        ap->msg_enable = 0x00FF;
5323#elif defined(ATA_DEBUG)
5324        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5325#else
5326        ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5327#endif
5328
5329        mutex_init(&ap->scsi_scan_mutex);
5330        INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5331        INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5332        INIT_LIST_HEAD(&ap->eh_done_q);
5333        init_waitqueue_head(&ap->eh_wait_q);
5334        init_completion(&ap->park_req_pending);
5335        timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5336                    TIMER_DEFERRABLE);
5337
5338        ap->cbl = ATA_CBL_NONE;
5339
5340        ata_link_init(ap, &ap->link, 0);
5341
5342#ifdef ATA_IRQ_TRAP
5343        ap->stats.unhandled_irq = 1;
5344        ap->stats.idle_irq = 1;
5345#endif
5346        ata_sff_port_init(ap);
5347
5348        return ap;
5349}
5350
5351static void ata_devres_release(struct device *gendev, void *res)
5352{
5353        struct ata_host *host = dev_get_drvdata(gendev);
5354        int i;
5355
5356        for (i = 0; i < host->n_ports; i++) {
5357                struct ata_port *ap = host->ports[i];
5358
5359                if (!ap)
5360                        continue;
5361
5362                if (ap->scsi_host)
5363                        scsi_host_put(ap->scsi_host);
5364
5365        }
5366
5367        dev_set_drvdata(gendev, NULL);
5368        ata_host_put(host);
5369}
5370
5371static void ata_host_release(struct kref *kref)
5372{
5373        struct ata_host *host = container_of(kref, struct ata_host, kref);
5374        int i;
5375
5376        for (i = 0; i < host->n_ports; i++) {
5377                struct ata_port *ap = host->ports[i];
5378
5379                kfree(ap->pmp_link);
5380                kfree(ap->slave_link);
5381                kfree(ap);
5382                host->ports[i] = NULL;
5383        }
5384        kfree(host);
5385}
5386
5387void ata_host_get(struct ata_host *host)
5388{
5389        kref_get(&host->kref);
5390}
5391
5392void ata_host_put(struct ata_host *host)
5393{
5394        kref_put(&host->kref, ata_host_release);
5395}
5396EXPORT_SYMBOL_GPL(ata_host_put);
5397
5398/**
5399 *      ata_host_alloc - allocate and init basic ATA host resources
5400 *      @dev: generic device this host is associated with
5401 *      @max_ports: maximum number of ATA ports associated with this host
5402 *
5403 *      Allocate and initialize basic ATA host resources.  LLD calls
5404 *      this function to allocate a host, initializes it fully and
5405 *      attaches it using ata_host_register().
5406 *
5407 *      @max_ports ports are allocated and host->n_ports is
5408 *      initialized to @max_ports.  The caller is allowed to decrease
5409 *      host->n_ports before calling ata_host_register().  The unused
5410 *      ports will be automatically freed on registration.
5411 *
5412 *      RETURNS:
5413 *      Allocate ATA host on success, NULL on failure.
5414 *
5415 *      LOCKING:
5416 *      Inherited from calling layer (may sleep).
5417 */
5418struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5419{
5420        struct ata_host *host;
5421        size_t sz;
5422        int i;
5423        void *dr;
5424
5425        DPRINTK("ENTER\n");
5426
5427        /* alloc a container for our list of ATA ports (buses) */
5428        sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5429        host = kzalloc(sz, GFP_KERNEL);
5430        if (!host)
5431                return NULL;
5432
5433        if (!devres_open_group(dev, NULL, GFP_KERNEL))
5434                goto err_free;
5435
5436        dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5437        if (!dr)
5438                goto err_out;
5439
5440        devres_add(dev, dr);
5441        dev_set_drvdata(dev, host);
5442
5443        spin_lock_init(&host->lock);
5444        mutex_init(&host->eh_mutex);
5445        host->dev = dev;
5446        host->n_ports = max_ports;
5447        kref_init(&host->kref);
5448
5449        /* allocate ports bound to this host */
5450        for (i = 0; i < max_ports; i++) {
5451                struct ata_port *ap;
5452
5453                ap = ata_port_alloc(host);
5454                if (!ap)
5455                        goto err_out;
5456
5457                ap->port_no = i;
5458                host->ports[i] = ap;
5459        }
5460
5461        devres_remove_group(dev, NULL);
5462        return host;
5463
5464 err_out:
5465        devres_release_group(dev, NULL);
5466 err_free:
5467        kfree(host);
5468        return NULL;
5469}
5470EXPORT_SYMBOL_GPL(ata_host_alloc);
5471
5472/**
5473 *      ata_host_alloc_pinfo - alloc host and init with port_info array
5474 *      @dev: generic device this host is associated with
5475 *      @ppi: array of ATA port_info to initialize host with
5476 *      @n_ports: number of ATA ports attached to this host
5477 *
5478 *      Allocate ATA host and initialize with info from @ppi.  If NULL
5479 *      terminated, @ppi may contain fewer entries than @n_ports.  The
5480 *      last entry will be used for the remaining ports.
5481 *
5482 *      RETURNS:
5483 *      Allocate ATA host on success, NULL on failure.
5484 *
5485 *      LOCKING:
5486 *      Inherited from calling layer (may sleep).
5487 */
5488struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5489                                      const struct ata_port_info * const * ppi,
5490                                      int n_ports)
5491{
5492        const struct ata_port_info *pi;
5493        struct ata_host *host;
5494        int i, j;
5495
5496        host = ata_host_alloc(dev, n_ports);
5497        if (!host)
5498                return NULL;
5499
5500        for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5501                struct ata_port *ap = host->ports[i];
5502
5503                if (ppi[j])
5504                        pi = ppi[j++];
5505
5506                ap->pio_mask = pi->pio_mask;
5507                ap->mwdma_mask = pi->mwdma_mask;
5508                ap->udma_mask = pi->udma_mask;
5509                ap->flags |= pi->flags;
5510                ap->link.flags |= pi->link_flags;
5511                ap->ops = pi->port_ops;
5512
5513                if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5514                        host->ops = pi->port_ops;
5515        }
5516
5517        return host;
5518}
5519EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
5520
5521static void ata_host_stop(struct device *gendev, void *res)
5522{
5523        struct ata_host *host = dev_get_drvdata(gendev);
5524        int i;
5525
5526        WARN_ON(!(host->flags & ATA_HOST_STARTED));
5527
5528        for (i = 0; i < host->n_ports; i++) {
5529                struct ata_port *ap = host->ports[i];
5530
5531                if (ap->ops->port_stop)
5532                        ap->ops->port_stop(ap);
5533        }
5534
5535        if (host->ops->host_stop)
5536                host->ops->host_stop(host);
5537}
5538
5539/**
5540 *      ata_finalize_port_ops - finalize ata_port_operations
5541 *      @ops: ata_port_operations to finalize
5542 *
5543 *      An ata_port_operations can inherit from another ops and that
5544 *      ops can again inherit from another.  This can go on as many
5545 *      times as necessary as long as there is no loop in the
5546 *      inheritance chain.
5547 *
5548 *      Ops tables are finalized when the host is started.  NULL or
5549 *      unspecified entries are inherited from the closet ancestor
5550 *      which has the method and the entry is populated with it.
5551 *      After finalization, the ops table directly points to all the
5552 *      methods and ->inherits is no longer necessary and cleared.
5553 *
5554 *      Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5555 *
5556 *      LOCKING:
5557 *      None.
5558 */
5559static void ata_finalize_port_ops(struct ata_port_operations *ops)
5560{
5561        static DEFINE_SPINLOCK(lock);
5562        const struct ata_port_operations *cur;
5563        void **begin = (void **)ops;
5564        void **end = (void **)&ops->inherits;
5565        void **pp;
5566
5567        if (!ops || !ops->inherits)
5568                return;
5569
5570        spin_lock(&lock);
5571
5572        for (cur = ops->inherits; cur; cur = cur->inherits) {
5573                void **inherit = (void **)cur;
5574
5575                for (pp = begin; pp < end; pp++, inherit++)
5576                        if (!*pp)
5577                                *pp = *inherit;
5578        }
5579
5580        for (pp = begin; pp < end; pp++)
5581                if (IS_ERR(*pp))
5582                        *pp = NULL;
5583
5584        ops->inherits = NULL;
5585
5586        spin_unlock(&lock);
5587}
5588
5589/**
5590 *      ata_host_start - start and freeze ports of an ATA host
5591 *      @host: ATA host to start ports for
5592 *
5593 *      Start and then freeze ports of @host.  Started status is
5594 *      recorded in host->flags, so this function can be called
5595 *      multiple times.  Ports are guaranteed to get started only
5596 *      once.  If host->ops isn't initialized yet, its set to the
5597 *      first non-dummy port ops.
5598 *
5599 *      LOCKING:
5600 *      Inherited from calling layer (may sleep).
5601 *
5602 *      RETURNS:
5603 *      0 if all ports are started successfully, -errno otherwise.
5604 */
5605int ata_host_start(struct ata_host *host)
5606{
5607        int have_stop = 0;
5608        void *start_dr = NULL;
5609        int i, rc;
5610
5611        if (host->flags & ATA_HOST_STARTED)
5612                return 0;
5613
5614        ata_finalize_port_ops(host->ops);
5615
5616        for (i = 0; i < host->n_ports; i++) {
5617                struct ata_port *ap = host->ports[i];
5618
5619                ata_finalize_port_ops(ap->ops);
5620
5621                if (!host->ops && !ata_port_is_dummy(ap))
5622                        host->ops = ap->ops;
5623
5624                if (ap->ops->port_stop)
5625                        have_stop = 1;
5626        }
5627
5628        if (host->ops && host->ops->host_stop)
5629                have_stop = 1;
5630
5631        if (have_stop) {
5632                start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5633                if (!start_dr)
5634                        return -ENOMEM;
5635        }
5636
5637        for (i = 0; i < host->n_ports; i++) {
5638                struct ata_port *ap = host->ports[i];
5639
5640                if (ap->ops->port_start) {
5641                        rc = ap->ops->port_start(ap);
5642                        if (rc) {
5643                                if (rc != -ENODEV)
5644                                        dev_err(host->dev,
5645                                                "failed to start port %d (errno=%d)\n",
5646                                                i, rc);
5647                                goto err_out;
5648                        }
5649                }
5650                ata_eh_freeze_port(ap);
5651        }
5652
5653        if (start_dr)
5654                devres_add(host->dev, start_dr);
5655        host->flags |= ATA_HOST_STARTED;
5656        return 0;
5657
5658 err_out:
5659        while (--i >= 0) {
5660                struct ata_port *ap = host->ports[i];
5661
5662                if (ap->ops->port_stop)
5663                        ap->ops->port_stop(ap);
5664        }
5665        devres_free(start_dr);
5666        return rc;
5667}
5668EXPORT_SYMBOL_GPL(ata_host_start);
5669
5670/**
5671 *      ata_host_init - Initialize a host struct for sas (ipr, libsas)
5672 *      @host:  host to initialize
5673 *      @dev:   device host is attached to
5674 *      @ops:   port_ops
5675 *
5676 */
5677void ata_host_init(struct ata_host *host, struct device *dev,
5678                   struct ata_port_operations *ops)
5679{
5680        spin_lock_init(&host->lock);
5681        mutex_init(&host->eh_mutex);
5682        host->n_tags = ATA_MAX_QUEUE;
5683        host->dev = dev;
5684        host->ops = ops;
5685        kref_init(&host->kref);
5686}
5687EXPORT_SYMBOL_GPL(ata_host_init);
5688
5689void __ata_port_probe(struct ata_port *ap)
5690{
5691        struct ata_eh_info *ehi = &ap->link.eh_info;
5692        unsigned long flags;
5693
5694        /* kick EH for boot probing */
5695        spin_lock_irqsave(ap->lock, flags);
5696
5697        ehi->probe_mask |= ATA_ALL_DEVICES;
5698        ehi->action |= ATA_EH_RESET;
5699        ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5700
5701        ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5702        ap->pflags |= ATA_PFLAG_LOADING;
5703        ata_port_schedule_eh(ap);
5704
5705        spin_unlock_irqrestore(ap->lock, flags);
5706}
5707
5708int ata_port_probe(struct ata_port *ap)
5709{
5710        int rc = 0;
5711
5712        if (ap->ops->error_handler) {
5713                __ata_port_probe(ap);
5714                ata_port_wait_eh(ap);
5715        } else {
5716                DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5717                rc = ata_bus_probe(ap);
5718                DPRINTK("ata%u: bus probe end\n", ap->print_id);
5719        }
5720        return rc;
5721}
5722
5723
5724static void async_port_probe(void *data, async_cookie_t cookie)
5725{
5726        struct ata_port *ap = data;
5727
5728        /*
5729         * If we're not allowed to scan this host in parallel,
5730         * we need to wait until all previous scans have completed
5731         * before going further.
5732         * Jeff Garzik says this is only within a controller, so we
5733         * don't need to wait for port 0, only for later ports.
5734         */
5735        if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5736                async_synchronize_cookie(cookie);
5737
5738        (void)ata_port_probe(ap);
5739
5740        /* in order to keep device order, we need to synchronize at this point */
5741        async_synchronize_cookie(cookie);
5742
5743        ata_scsi_scan_host(ap, 1);
5744}
5745
5746/**
5747 *      ata_host_register - register initialized ATA host
5748 *      @host: ATA host to register
5749 *      @sht: template for SCSI host
5750 *
5751 *      Register initialized ATA host.  @host is allocated using
5752 *      ata_host_alloc() and fully initialized by LLD.  This function
5753 *      starts ports, registers @host with ATA and SCSI layers and
5754 *      probe registered devices.
5755 *
5756 *      LOCKING:
5757 *      Inherited from calling layer (may sleep).
5758 *
5759 *      RETURNS:
5760 *      0 on success, -errno otherwise.
5761 */
5762int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5763{
5764        int i, rc;
5765
5766        host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5767
5768        /* host must have been started */
5769        if (!(host->flags & ATA_HOST_STARTED)) {
5770                dev_err(host->dev, "BUG: trying to register unstarted host\n");
5771                WARN_ON(1);
5772                return -EINVAL;
5773        }
5774
5775        /* Blow away unused ports.  This happens when LLD can't
5776         * determine the exact number of ports to allocate at
5777         * allocation time.
5778         */
5779        for (i = host->n_ports; host->ports[i]; i++)
5780                kfree(host->ports[i]);
5781
5782        /* give ports names and add SCSI hosts */
5783        for (i = 0; i < host->n_ports; i++) {
5784                host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5785                host->ports[i]->local_port_no = i + 1;
5786        }
5787
5788        /* Create associated sysfs transport objects  */
5789        for (i = 0; i < host->n_ports; i++) {
5790                rc = ata_tport_add(host->dev,host->ports[i]);
5791                if (rc) {
5792                        goto err_tadd;
5793                }
5794        }
5795
5796        rc = ata_scsi_add_hosts(host, sht);
5797        if (rc)
5798                goto err_tadd;
5799
5800        /* set cable, sata_spd_limit and report */
5801        for (i = 0; i < host->n_ports; i++) {
5802                struct ata_port *ap = host->ports[i];
5803                unsigned long xfer_mask;
5804
5805                /* set SATA cable type if still unset */
5806                if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5807                        ap->cbl = ATA_CBL_SATA;
5808
5809                /* init sata_spd_limit to the current value */
5810                sata_link_init_spd(&ap->link);
5811                if (ap->slave_link)
5812                        sata_link_init_spd(ap->slave_link);
5813
5814                /* print per-port info to dmesg */
5815                xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5816                                              ap->udma_mask);
5817
5818                if (!ata_port_is_dummy(ap)) {
5819                        ata_port_info(ap, "%cATA max %s %s\n",
5820                                      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5821                                      ata_mode_string(xfer_mask),
5822                                      ap->link.eh_info.desc);
5823                        ata_ehi_clear_desc(&ap->link.eh_info);
5824                } else
5825                        ata_port_info(ap, "DUMMY\n");
5826        }
5827
5828        /* perform each probe asynchronously */
5829        for (i = 0; i < host->n_ports; i++) {
5830                struct ata_port *ap = host->ports[i];
5831                ap->cookie = async_schedule(async_port_probe, ap);
5832        }
5833
5834        return 0;
5835
5836 err_tadd:
5837        while (--i >= 0) {
5838                ata_tport_delete(host->ports[i]);
5839        }
5840        return rc;
5841
5842}
5843EXPORT_SYMBOL_GPL(ata_host_register);
5844
5845/**
5846 *      ata_host_activate - start host, request IRQ and register it
5847 *      @host: target ATA host
5848 *      @irq: IRQ to request
5849 *      @irq_handler: irq_handler used when requesting IRQ
5850 *      @irq_flags: irq_flags used when requesting IRQ
5851 *      @sht: scsi_host_template to use when registering the host
5852 *
5853 *      After allocating an ATA host and initializing it, most libata
5854 *      LLDs perform three steps to activate the host - start host,
5855 *      request IRQ and register it.  This helper takes necessary
5856 *      arguments and performs the three steps in one go.
5857 *
5858 *      An invalid IRQ skips the IRQ registration and expects the host to
5859 *      have set polling mode on the port. In this case, @irq_handler
5860 *      should be NULL.
5861 *
5862 *      LOCKING:
5863 *      Inherited from calling layer (may sleep).
5864 *
5865 *      RETURNS:
5866 *      0 on success, -errno otherwise.
5867 */
5868int ata_host_activate(struct ata_host *host, int irq,
5869                      irq_handler_t irq_handler, unsigned long irq_flags,
5870                      struct scsi_host_template *sht)
5871{
5872        int i, rc;
5873        char *irq_desc;
5874
5875        rc = ata_host_start(host);
5876        if (rc)
5877                return rc;
5878
5879        /* Special case for polling mode */
5880        if (!irq) {
5881                WARN_ON(irq_handler);
5882                return ata_host_register(host, sht);
5883        }
5884
5885        irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5886                                  dev_driver_string(host->dev),
5887                                  dev_name(host->dev));
5888        if (!irq_desc)
5889                return -ENOMEM;
5890
5891        rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5892                              irq_desc, host);
5893        if (rc)
5894                return rc;
5895
5896        for (i = 0; i < host->n_ports; i++)
5897                ata_port_desc(host->ports[i], "irq %d", irq);
5898
5899        rc = ata_host_register(host, sht);
5900        /* if failed, just free the IRQ and leave ports alone */
5901        if (rc)
5902                devm_free_irq(host->dev, irq, host);
5903
5904        return rc;
5905}
5906EXPORT_SYMBOL_GPL(ata_host_activate);
5907
5908/**
5909 *      ata_port_detach - Detach ATA port in preparation of device removal
5910 *      @ap: ATA port to be detached
5911 *
5912 *      Detach all ATA devices and the associated SCSI devices of @ap;
5913 *      then, remove the associated SCSI host.  @ap is guaranteed to
5914 *      be quiescent on return from this function.
5915 *
5916 *      LOCKING:
5917 *      Kernel thread context (may sleep).
5918 */
5919static void ata_port_detach(struct ata_port *ap)
5920{
5921        unsigned long flags;
5922        struct ata_link *link;
5923        struct ata_device *dev;
5924
5925        if (!ap->ops->error_handler)
5926                goto skip_eh;
5927
5928        /* tell EH we're leaving & flush EH */
5929        spin_lock_irqsave(ap->lock, flags);
5930        ap->pflags |= ATA_PFLAG_UNLOADING;
5931        ata_port_schedule_eh(ap);
5932        spin_unlock_irqrestore(ap->lock, flags);
5933
5934        /* wait till EH commits suicide */
5935        ata_port_wait_eh(ap);
5936
5937        /* it better be dead now */
5938        WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5939
5940        cancel_delayed_work_sync(&ap->hotplug_task);
5941
5942 skip_eh:
5943        /* clean up zpodd on port removal */
5944        ata_for_each_link(link, ap, HOST_FIRST) {
5945                ata_for_each_dev(dev, link, ALL) {
5946                        if (zpodd_dev_enabled(dev))
5947                                zpodd_exit(dev);
5948                }
5949        }
5950        if (ap->pmp_link) {
5951                int i;
5952                for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5953                        ata_tlink_delete(&ap->pmp_link[i]);
5954        }
5955        /* remove the associated SCSI host */
5956        scsi_remove_host(ap->scsi_host);
5957        ata_tport_delete(ap);
5958}
5959
5960/**
5961 *      ata_host_detach - Detach all ports of an ATA host
5962 *      @host: Host to detach
5963 *
5964 *      Detach all ports of @host.
5965 *
5966 *      LOCKING:
5967 *      Kernel thread context (may sleep).
5968 */
5969void ata_host_detach(struct ata_host *host)
5970{
5971        int i;
5972
5973        for (i = 0; i < host->n_ports; i++) {
5974                /* Ensure ata_port probe has completed */
5975                async_synchronize_cookie(host->ports[i]->cookie + 1);
5976                ata_port_detach(host->ports[i]);
5977        }
5978
5979        /* the host is dead now, dissociate ACPI */
5980        ata_acpi_dissociate(host);
5981}
5982EXPORT_SYMBOL_GPL(ata_host_detach);
5983
5984#ifdef CONFIG_PCI
5985
5986/**
5987 *      ata_pci_remove_one - PCI layer callback for device removal
5988 *      @pdev: PCI device that was removed
5989 *
5990 *      PCI layer indicates to libata via this hook that hot-unplug or
5991 *      module unload event has occurred.  Detach all ports.  Resource
5992 *      release is handled via devres.
5993 *
5994 *      LOCKING:
5995 *      Inherited from PCI layer (may sleep).
5996 */
5997void ata_pci_remove_one(struct pci_dev *pdev)
5998{
5999        struct ata_host *host = pci_get_drvdata(pdev);
6000
6001        ata_host_detach(host);
6002}
6003EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6004
6005void ata_pci_shutdown_one(struct pci_dev *pdev)
6006{
6007        struct ata_host *host = pci_get_drvdata(pdev);
6008        int i;
6009
6010        for (i = 0; i < host->n_ports; i++) {
6011                struct ata_port *ap = host->ports[i];
6012
6013                ap->pflags |= ATA_PFLAG_FROZEN;
6014
6015                /* Disable port interrupts */
6016                if (ap->ops->freeze)
6017                        ap->ops->freeze(ap);
6018
6019                /* Stop the port DMA engines */
6020                if (ap->ops->port_stop)
6021                        ap->ops->port_stop(ap);
6022        }
6023}
6024EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
6025
6026/* move to PCI subsystem */
6027int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6028{
6029        unsigned long tmp = 0;
6030
6031        switch (bits->width) {
6032        case 1: {
6033                u8 tmp8 = 0;
6034                pci_read_config_byte(pdev, bits->reg, &tmp8);
6035                tmp = tmp8;
6036                break;
6037        }
6038        case 2: {
6039                u16 tmp16 = 0;
6040                pci_read_config_word(pdev, bits->reg, &tmp16);
6041                tmp = tmp16;
6042                break;
6043        }
6044        case 4: {
6045                u32 tmp32 = 0;
6046                pci_read_config_dword(pdev, bits->reg, &tmp32);
6047                tmp = tmp32;
6048                break;
6049        }
6050
6051        default:
6052                return -EINVAL;
6053        }
6054
6055        tmp &= bits->mask;
6056
6057        return (tmp == bits->val) ? 1 : 0;
6058}
6059EXPORT_SYMBOL_GPL(pci_test_config_bits);
6060
6061#ifdef CONFIG_PM
6062void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6063{
6064        pci_save_state(pdev);
6065        pci_disable_device(pdev);
6066
6067        if (mesg.event & PM_EVENT_SLEEP)
6068                pci_set_power_state(pdev, PCI_D3hot);
6069}
6070EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6071
6072int ata_pci_device_do_resume(struct pci_dev *pdev)
6073{
6074        int rc;
6075
6076        pci_set_power_state(pdev, PCI_D0);
6077        pci_restore_state(pdev);
6078
6079        rc = pcim_enable_device(pdev);
6080        if (rc) {
6081                dev_err(&pdev->dev,
6082                        "failed to enable device after resume (%d)\n", rc);
6083                return rc;
6084        }
6085
6086        pci_set_master(pdev);
6087        return 0;
6088}
6089EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6090
6091int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6092{
6093        struct ata_host *host = pci_get_drvdata(pdev);
6094        int rc = 0;
6095
6096        rc = ata_host_suspend(host, mesg);
6097        if (rc)
6098                return rc;
6099
6100        ata_pci_device_do_suspend(pdev, mesg);
6101
6102        return 0;
6103}
6104EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6105
6106int ata_pci_device_resume(struct pci_dev *pdev)
6107{
6108        struct ata_host *host = pci_get_drvdata(pdev);
6109        int rc;
6110
6111        rc = ata_pci_device_do_resume(pdev);
6112        if (rc == 0)
6113                ata_host_resume(host);
6114        return rc;
6115}
6116EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6117#endif /* CONFIG_PM */
6118#endif /* CONFIG_PCI */
6119
6120/**
6121 *      ata_platform_remove_one - Platform layer callback for device removal
6122 *      @pdev: Platform device that was removed
6123 *
6124 *      Platform layer indicates to libata via this hook that hot-unplug or
6125 *      module unload event has occurred.  Detach all ports.  Resource
6126 *      release is handled via devres.
6127 *
6128 *      LOCKING:
6129 *      Inherited from platform layer (may sleep).
6130 */
6131int ata_platform_remove_one(struct platform_device *pdev)
6132{
6133        struct ata_host *host = platform_get_drvdata(pdev);
6134
6135        ata_host_detach(host);
6136
6137        return 0;
6138}
6139EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6140
6141#ifdef CONFIG_ATA_FORCE
6142static int __init ata_parse_force_one(char **cur,
6143                                      struct ata_force_ent *force_ent,
6144                                      const char **reason)
6145{
6146        static const struct ata_force_param force_tbl[] __initconst = {
6147                { "40c",        .cbl            = ATA_CBL_PATA40 },
6148                { "80c",        .cbl            = ATA_CBL_PATA80 },
6149                { "short40c",   .cbl            = ATA_CBL_PATA40_SHORT },
6150                { "unk",        .cbl            = ATA_CBL_PATA_UNK },
6151                { "ign",        .cbl            = ATA_CBL_PATA_IGN },
6152                { "sata",       .cbl            = ATA_CBL_SATA },
6153                { "1.5Gbps",    .spd_limit      = 1 },
6154                { "3.0Gbps",    .spd_limit      = 2 },
6155                { "noncq",      .horkage_on     = ATA_HORKAGE_NONCQ },
6156                { "ncq",        .horkage_off    = ATA_HORKAGE_NONCQ },
6157                { "noncqtrim",  .horkage_on     = ATA_HORKAGE_NO_NCQ_TRIM },
6158                { "ncqtrim",    .horkage_off    = ATA_HORKAGE_NO_NCQ_TRIM },
6159                { "noncqati",   .horkage_on     = ATA_HORKAGE_NO_NCQ_ON_ATI },
6160                { "ncqati",     .horkage_off    = ATA_HORKAGE_NO_NCQ_ON_ATI },
6161                { "dump_id",    .horkage_on     = ATA_HORKAGE_DUMP_ID },
6162                { "pio0",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 0) },
6163                { "pio1",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 1) },
6164                { "pio2",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 2) },
6165                { "pio3",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 3) },
6166                { "pio4",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 4) },
6167                { "pio5",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 5) },
6168                { "pio6",       .xfer_mask      = 1 << (ATA_SHIFT_PIO + 6) },
6169                { "mwdma0",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 0) },
6170                { "mwdma1",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 1) },
6171                { "mwdma2",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 2) },
6172                { "mwdma3",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 3) },
6173                { "mwdma4",     .xfer_mask      = 1 << (ATA_SHIFT_MWDMA + 4) },
6174                { "udma0",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6175                { "udma16",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6176                { "udma/16",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 0) },
6177                { "udma1",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6178                { "udma25",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6179                { "udma/25",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 1) },
6180                { "udma2",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6181                { "udma33",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6182                { "udma/33",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 2) },
6183                { "udma3",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6184                { "udma44",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6185                { "udma/44",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 3) },
6186                { "udma4",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6187                { "udma66",     .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6188                { "udma/66",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 4) },
6189                { "udma5",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6190                { "udma100",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6191                { "udma/100",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 5) },
6192                { "udma6",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6193                { "udma133",    .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6194                { "udma/133",   .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 6) },
6195                { "udma7",      .xfer_mask      = 1 << (ATA_SHIFT_UDMA + 7) },
6196                { "nohrst",     .lflags         = ATA_LFLAG_NO_HRST },
6197                { "nosrst",     .lflags         = ATA_LFLAG_NO_SRST },
6198                { "norst",      .lflags         = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6199                { "rstonce",    .lflags         = ATA_LFLAG_RST_ONCE },
6200                { "atapi_dmadir", .horkage_on   = ATA_HORKAGE_ATAPI_DMADIR },
6201                { "disable",    .horkage_on     = ATA_HORKAGE_DISABLE },
6202        };
6203        char *start = *cur, *p = *cur;
6204        char *id, *val, *endp;
6205        const struct ata_force_param *match_fp = NULL;
6206        int nr_matches = 0, i;
6207
6208        /* find where this param ends and update *cur */
6209        while (*p != '\0' && *p != ',')
6210                p++;
6211
6212        if (*p == '\0')
6213                *cur = p;
6214        else
6215                *cur = p + 1;
6216
6217        *p = '\0';
6218
6219        /* parse */
6220        p = strchr(start, ':');
6221        if (!p) {
6222                val = strstrip(start);
6223                goto parse_val;
6224        }
6225        *p = '\0';
6226
6227        id = strstrip(start);
6228        val = strstrip(p + 1);
6229
6230        /* parse id */
6231        p = strchr(id, '.');
6232        if (p) {
6233                *p++ = '\0';
6234                force_ent->device = simple_strtoul(p, &endp, 10);
6235                if (p == endp || *endp != '\0') {
6236                        *reason = "invalid device";
6237                        return -EINVAL;
6238                }
6239        }
6240
6241        force_ent->port = simple_strtoul(id, &endp, 10);
6242        if (id == endp || *endp != '\0') {
6243                *reason = "invalid port/link";
6244                return -EINVAL;
6245        }
6246
6247 parse_val:
6248        /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6249        for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6250                const struct ata_force_param *fp = &force_tbl[i];
6251
6252                if (strncasecmp(val, fp->name, strlen(val)))
6253                        continue;
6254
6255                nr_matches++;
6256                match_fp = fp;
6257
6258                if (strcasecmp(val, fp->name) == 0) {
6259                        nr_matches = 1;
6260                        break;
6261                }
6262        }
6263
6264        if (!nr_matches) {
6265                *reason = "unknown value";
6266                return -EINVAL;
6267        }
6268        if (nr_matches > 1) {
6269                *reason = "ambiguous value";
6270                return -EINVAL;
6271        }
6272
6273        force_ent->param = *match_fp;
6274
6275        return 0;
6276}
6277
6278static void __init ata_parse_force_param(void)
6279{
6280        int idx = 0, size = 1;
6281        int last_port = -1, last_device = -1;
6282        char *p, *cur, *next;
6283
6284        /* calculate maximum number of params and allocate force_tbl */
6285        for (p = ata_force_param_buf; *p; p++)
6286                if (*p == ',')
6287                        size++;
6288
6289        ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6290        if (!ata_force_tbl) {
6291                printk(KERN_WARNING "ata: failed to extend force table, "
6292                       "libata.force ignored\n");
6293                return;
6294        }
6295
6296        /* parse and populate the table */
6297        for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6298                const char *reason = "";
6299                struct ata_force_ent te = { .port = -1, .device = -1 };
6300
6301                next = cur;
6302                if (ata_parse_force_one(&next, &te, &reason)) {
6303                        printk(KERN_WARNING "ata: failed to parse force "
6304                               "parameter \"%s\" (%s)\n",
6305                               cur, reason);
6306                        continue;
6307                }
6308
6309                if (te.port == -1) {
6310                        te.port = last_port;
6311                        te.device = last_device;
6312                }
6313
6314                ata_force_tbl[idx++] = te;
6315
6316                last_port = te.port;
6317                last_device = te.device;
6318        }
6319
6320        ata_force_tbl_size = idx;
6321}
6322
6323static void ata_free_force_param(void)
6324{
6325        kfree(ata_force_tbl);
6326}
6327#else
6328static inline void ata_parse_force_param(void) { }
6329static inline void ata_free_force_param(void) { }
6330#endif
6331
6332static int __init ata_init(void)
6333{
6334        int rc;
6335
6336        ata_parse_force_param();
6337
6338        rc = ata_sff_init();
6339        if (rc) {
6340                ata_free_force_param();
6341                return rc;
6342        }
6343
6344        libata_transport_init();
6345        ata_scsi_transport_template = ata_attach_transport();
6346        if (!ata_scsi_transport_template) {
6347                ata_sff_exit();
6348                rc = -ENOMEM;
6349                goto err_out;
6350        }
6351
6352        printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6353        return 0;
6354
6355err_out:
6356        return rc;
6357}
6358
6359static void __exit ata_exit(void)
6360{
6361        ata_release_transport(ata_scsi_transport_template);
6362        libata_transport_exit();
6363        ata_sff_exit();
6364        ata_free_force_param();
6365}
6366
6367subsys_initcall(ata_init);
6368module_exit(ata_exit);
6369
6370static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6371
6372int ata_ratelimit(void)
6373{
6374        return __ratelimit(&ratelimit);
6375}
6376EXPORT_SYMBOL_GPL(ata_ratelimit);
6377
6378/**
6379 *      ata_msleep - ATA EH owner aware msleep
6380 *      @ap: ATA port to attribute the sleep to
6381 *      @msecs: duration to sleep in milliseconds
6382 *
6383 *      Sleeps @msecs.  If the current task is owner of @ap's EH, the
6384 *      ownership is released before going to sleep and reacquired
6385 *      after the sleep is complete.  IOW, other ports sharing the
6386 *      @ap->host will be allowed to own the EH while this task is
6387 *      sleeping.
6388 *
6389 *      LOCKING:
6390 *      Might sleep.
6391 */
6392void ata_msleep(struct ata_port *ap, unsigned int msecs)
6393{
6394        bool owns_eh = ap && ap->host->eh_owner == current;
6395
6396        if (owns_eh)
6397                ata_eh_release(ap);
6398
6399        if (msecs < 20) {
6400                unsigned long usecs = msecs * USEC_PER_MSEC;
6401                usleep_range(usecs, usecs + 50);
6402        } else {
6403                msleep(msecs);
6404        }
6405
6406        if (owns_eh)
6407                ata_eh_acquire(ap);
6408}
6409EXPORT_SYMBOL_GPL(ata_msleep);
6410
6411/**
6412 *      ata_wait_register - wait until register value changes
6413 *      @ap: ATA port to wait register for, can be NULL
6414 *      @reg: IO-mapped register
6415 *      @mask: Mask to apply to read register value
6416 *      @val: Wait condition
6417 *      @interval: polling interval in milliseconds
6418 *      @timeout: timeout in milliseconds
6419 *
6420 *      Waiting for some bits of register to change is a common
6421 *      operation for ATA controllers.  This function reads 32bit LE
6422 *      IO-mapped register @reg and tests for the following condition.
6423 *
6424 *      (*@reg & mask) != val
6425 *
6426 *      If the condition is met, it returns; otherwise, the process is
6427 *      repeated after @interval_msec until timeout.
6428 *
6429 *      LOCKING:
6430 *      Kernel thread context (may sleep)
6431 *
6432 *      RETURNS:
6433 *      The final register value.
6434 */
6435u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6436                      unsigned long interval, unsigned long timeout)
6437{
6438        unsigned long deadline;
6439        u32 tmp;
6440
6441        tmp = ioread32(reg);
6442
6443        /* Calculate timeout _after_ the first read to make sure
6444         * preceding writes reach the controller before starting to
6445         * eat away the timeout.
6446         */
6447        deadline = ata_deadline(jiffies, timeout);
6448
6449        while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6450                ata_msleep(ap, interval);
6451                tmp = ioread32(reg);
6452        }
6453
6454        return tmp;
6455}
6456EXPORT_SYMBOL_GPL(ata_wait_register);
6457
6458/*
6459 * Dummy port_ops
6460 */
6461static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6462{
6463        return AC_ERR_SYSTEM;
6464}
6465
6466static void ata_dummy_error_handler(struct ata_port *ap)
6467{
6468        /* truly dummy */
6469}
6470
6471struct ata_port_operations ata_dummy_port_ops = {
6472        .qc_prep                = ata_noop_qc_prep,
6473        .qc_issue               = ata_dummy_qc_issue,
6474        .error_handler          = ata_dummy_error_handler,
6475        .sched_eh               = ata_std_sched_eh,
6476        .end_eh                 = ata_std_end_eh,
6477};
6478EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6479
6480const struct ata_port_info ata_dummy_port_info = {
6481        .port_ops               = &ata_dummy_port_ops,
6482};
6483EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6484
6485/*
6486 * Utility print functions
6487 */
6488void ata_port_printk(const struct ata_port *ap, const char *level,
6489                     const char *fmt, ...)
6490{
6491        struct va_format vaf;
6492        va_list args;
6493
6494        va_start(args, fmt);
6495
6496        vaf.fmt = fmt;
6497        vaf.va = &args;
6498
6499        printk("%sata%u: %pV", level, ap->print_id, &vaf);
6500
6501        va_end(args);
6502}
6503EXPORT_SYMBOL(ata_port_printk);
6504
6505void ata_link_printk(const struct ata_link *link, const char *level,
6506                     const char *fmt, ...)
6507{
6508        struct va_format vaf;
6509        va_list args;
6510
6511        va_start(args, fmt);
6512
6513        vaf.fmt = fmt;
6514        vaf.va = &args;
6515
6516        if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6517                printk("%sata%u.%02u: %pV",
6518                       level, link->ap->print_id, link->pmp, &vaf);
6519        else
6520                printk("%sata%u: %pV",
6521                       level, link->ap->print_id, &vaf);
6522
6523        va_end(args);
6524}
6525EXPORT_SYMBOL(ata_link_printk);
6526
6527void ata_dev_printk(const struct ata_device *dev, const char *level,
6528                    const char *fmt, ...)
6529{
6530        struct va_format vaf;
6531        va_list args;
6532
6533        va_start(args, fmt);
6534
6535        vaf.fmt = fmt;
6536        vaf.va = &args;
6537
6538        printk("%sata%u.%02u: %pV",
6539               level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6540               &vaf);
6541
6542        va_end(args);
6543}
6544EXPORT_SYMBOL(ata_dev_printk);
6545
6546void ata_print_version(const struct device *dev, const char *version)
6547{
6548        dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6549}
6550EXPORT_SYMBOL(ata_print_version);
6551