linux/drivers/ata/libata-pata-timings.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Helper library for PATA timings
   4 *
   5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2004 Jeff Garzik
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/module.h>
  11#include <linux/libata.h>
  12
  13/*
  14 * This mode timing computation functionality is ported over from
  15 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
  16 */
  17/*
  18 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
  19 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
  20 * for UDMA6, which is currently supported only by Maxtor drives.
  21 *
  22 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
  23 */
  24
  25static const struct ata_timing ata_timing[] = {
  26/*      { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
  27        { XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
  28        { XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
  29        { XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
  30        { XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
  31        { XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
  32        { XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
  33        { XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
  34
  35        { XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
  36        { XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
  37        { XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
  38
  39        { XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
  40        { XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
  41        { XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
  42        { XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
  43        { XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
  44
  45/*      { XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
  46        { XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
  47        { XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
  48        { XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
  49        { XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
  50        { XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
  51        { XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
  52        { XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
  53
  54        { 0xFF }
  55};
  56
  57#define ENOUGH(v, unit)         (((v)-1)/(unit)+1)
  58#define EZ(v, unit)             ((v)?ENOUGH(((v) * 1000), unit):0)
  59
  60static void ata_timing_quantize(const struct ata_timing *t,
  61                                struct ata_timing *q, int T, int UT)
  62{
  63        q->setup        = EZ(t->setup,       T);
  64        q->act8b        = EZ(t->act8b,       T);
  65        q->rec8b        = EZ(t->rec8b,       T);
  66        q->cyc8b        = EZ(t->cyc8b,       T);
  67        q->active       = EZ(t->active,      T);
  68        q->recover      = EZ(t->recover,     T);
  69        q->dmack_hold   = EZ(t->dmack_hold,  T);
  70        q->cycle        = EZ(t->cycle,       T);
  71        q->udma         = EZ(t->udma,       UT);
  72}
  73
  74void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
  75                      struct ata_timing *m, unsigned int what)
  76{
  77        if (what & ATA_TIMING_SETUP)
  78                m->setup = max(a->setup, b->setup);
  79        if (what & ATA_TIMING_ACT8B)
  80                m->act8b = max(a->act8b, b->act8b);
  81        if (what & ATA_TIMING_REC8B)
  82                m->rec8b = max(a->rec8b, b->rec8b);
  83        if (what & ATA_TIMING_CYC8B)
  84                m->cyc8b = max(a->cyc8b, b->cyc8b);
  85        if (what & ATA_TIMING_ACTIVE)
  86                m->active = max(a->active, b->active);
  87        if (what & ATA_TIMING_RECOVER)
  88                m->recover = max(a->recover, b->recover);
  89        if (what & ATA_TIMING_DMACK_HOLD)
  90                m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
  91        if (what & ATA_TIMING_CYCLE)
  92                m->cycle = max(a->cycle, b->cycle);
  93        if (what & ATA_TIMING_UDMA)
  94                m->udma = max(a->udma, b->udma);
  95}
  96EXPORT_SYMBOL_GPL(ata_timing_merge);
  97
  98const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
  99{
 100        const struct ata_timing *t = ata_timing;
 101
 102        while (xfer_mode > t->mode)
 103                t++;
 104
 105        if (xfer_mode == t->mode)
 106                return t;
 107
 108        WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
 109                        __func__, xfer_mode);
 110
 111        return NULL;
 112}
 113EXPORT_SYMBOL_GPL(ata_timing_find_mode);
 114
 115int ata_timing_compute(struct ata_device *adev, unsigned short speed,
 116                       struct ata_timing *t, int T, int UT)
 117{
 118        const u16 *id = adev->id;
 119        const struct ata_timing *s;
 120        struct ata_timing p;
 121
 122        /*
 123         * Find the mode.
 124         */
 125        s = ata_timing_find_mode(speed);
 126        if (!s)
 127                return -EINVAL;
 128
 129        memcpy(t, s, sizeof(*s));
 130
 131        /*
 132         * If the drive is an EIDE drive, it can tell us it needs extended
 133         * PIO/MW_DMA cycle timing.
 134         */
 135
 136        if (id[ATA_ID_FIELD_VALID] & 2) {       /* EIDE drive */
 137                memset(&p, 0, sizeof(p));
 138
 139                if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
 140                        if (speed <= XFER_PIO_2)
 141                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
 142                        else if ((speed <= XFER_PIO_4) ||
 143                                 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
 144                                p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
 145                } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
 146                        p.cycle = id[ATA_ID_EIDE_DMA_MIN];
 147
 148                ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
 149        }
 150
 151        /*
 152         * Convert the timing to bus clock counts.
 153         */
 154
 155        ata_timing_quantize(t, t, T, UT);
 156
 157        /*
 158         * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
 159         * S.M.A.R.T * and some other commands. We have to ensure that the
 160         * DMA cycle timing is slower/equal than the fastest PIO timing.
 161         */
 162
 163        if (speed > XFER_PIO_6) {
 164                ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
 165                ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
 166        }
 167
 168        /*
 169         * Lengthen active & recovery time so that cycle time is correct.
 170         */
 171
 172        if (t->act8b + t->rec8b < t->cyc8b) {
 173                t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
 174                t->rec8b = t->cyc8b - t->act8b;
 175        }
 176
 177        if (t->active + t->recover < t->cycle) {
 178                t->active += (t->cycle - (t->active + t->recover)) / 2;
 179                t->recover = t->cycle - t->active;
 180        }
 181
 182        /*
 183         * In a few cases quantisation may produce enough errors to
 184         * leave t->cycle too low for the sum of active and recovery
 185         * if so we must correct this.
 186         */
 187        if (t->active + t->recover > t->cycle)
 188                t->cycle = t->active + t->recover;
 189
 190        return 0;
 191}
 192EXPORT_SYMBOL_GPL(ata_timing_compute);
 193