linux/drivers/atm/fore200e.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/of_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86                             printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87                                    __func__, __LINE__, #expr); \
  88                             panic(FORE200E "%s", __func__); \
  89                         }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
  96
  97static LIST_HEAD(fore200e_boards);
  98
  99
 100MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 101MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 102
 103static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 104    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 105    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 106};
 107
 108static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 109    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 110    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 111};
 112
 113
 114#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 115static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 116#endif
 117
 118
 119#if 0 /* currently unused */
 120static int 
 121fore200e_fore2atm_aal(enum fore200e_aal aal)
 122{
 123    switch(aal) {
 124    case FORE200E_AAL0:  return ATM_AAL0;
 125    case FORE200E_AAL34: return ATM_AAL34;
 126    case FORE200E_AAL5:  return ATM_AAL5;
 127    }
 128
 129    return -EINVAL;
 130}
 131#endif
 132
 133
 134static enum fore200e_aal
 135fore200e_atm2fore_aal(int aal)
 136{
 137    switch(aal) {
 138    case ATM_AAL0:  return FORE200E_AAL0;
 139    case ATM_AAL34: return FORE200E_AAL34;
 140    case ATM_AAL1:
 141    case ATM_AAL2:
 142    case ATM_AAL5:  return FORE200E_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147
 148
 149static char*
 150fore200e_irq_itoa(int irq)
 151{
 152    static char str[8];
 153    sprintf(str, "%d", irq);
 154    return str;
 155}
 156
 157
 158/* allocate and align a chunk of memory intended to hold the data behing exchanged
 159   between the driver and the adapter (using streaming DVMA) */
 160
 161static int
 162fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 163{
 164    unsigned long offset = 0;
 165
 166    if (alignment <= sizeof(int))
 167        alignment = 0;
 168
 169    chunk->alloc_size = size + alignment;
 170    chunk->direction  = direction;
 171
 172    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 173    if (chunk->alloc_addr == NULL)
 174        return -ENOMEM;
 175
 176    if (alignment > 0)
 177        offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 178    
 179    chunk->align_addr = chunk->alloc_addr + offset;
 180
 181    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 182                                     size, direction);
 183    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 184        kfree(chunk->alloc_addr);
 185        return -ENOMEM;
 186    }
 187    return 0;
 188}
 189
 190
 191/* free a chunk of memory */
 192
 193static void
 194fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 195{
 196    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 197                     chunk->direction);
 198    kfree(chunk->alloc_addr);
 199}
 200
 201/*
 202 * Allocate a DMA consistent chunk of memory intended to act as a communication
 203 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 204 * and the adapter.
 205 */
 206static int
 207fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 208                int size, int nbr, int alignment)
 209{
 210        /* returned chunks are page-aligned */
 211        chunk->alloc_size = size * nbr;
 212        chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 213                                               &chunk->dma_addr, GFP_KERNEL);
 214        if (!chunk->alloc_addr)
 215                return -ENOMEM;
 216        chunk->align_addr = chunk->alloc_addr;
 217        return 0;
 218}
 219
 220/*
 221 * Free a DMA consistent chunk of memory.
 222 */
 223static void
 224fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 225{
 226        dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 227                          chunk->dma_addr);
 228}
 229
 230static void
 231fore200e_spin(int msecs)
 232{
 233    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 234    while (time_before(jiffies, timeout));
 235}
 236
 237
 238static int
 239fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 240{
 241    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 242    int           ok;
 243
 244    mb();
 245    do {
 246        if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 247            break;
 248
 249    } while (time_before(jiffies, timeout));
 250
 251#if 1
 252    if (!ok) {
 253        printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 254               *addr, val);
 255    }
 256#endif
 257
 258    return ok;
 259}
 260
 261
 262static int
 263fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 264{
 265    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 266    int           ok;
 267
 268    do {
 269        if ((ok = (fore200e->bus->read(addr) == val)))
 270            break;
 271
 272    } while (time_before(jiffies, timeout));
 273
 274#if 1
 275    if (!ok) {
 276        printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 277               fore200e->bus->read(addr), val);
 278    }
 279#endif
 280
 281    return ok;
 282}
 283
 284
 285static void
 286fore200e_free_rx_buf(struct fore200e* fore200e)
 287{
 288    int scheme, magn, nbr;
 289    struct buffer* buffer;
 290
 291    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 292        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 293
 294            if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 295
 296                for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 297
 298                    struct chunk* data = &buffer[ nbr ].data;
 299
 300                    if (data->alloc_addr != NULL)
 301                        fore200e_chunk_free(fore200e, data);
 302                }
 303            }
 304        }
 305    }
 306}
 307
 308
 309static void
 310fore200e_uninit_bs_queue(struct fore200e* fore200e)
 311{
 312    int scheme, magn;
 313    
 314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 315        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 316
 317            struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 318            struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 319            
 320            if (status->alloc_addr)
 321                fore200e_dma_chunk_free(fore200e, status);
 322            
 323            if (rbd_block->alloc_addr)
 324                fore200e_dma_chunk_free(fore200e, rbd_block);
 325        }
 326    }
 327}
 328
 329
 330static int
 331fore200e_reset(struct fore200e* fore200e, int diag)
 332{
 333    int ok;
 334
 335    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 336    
 337    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 338
 339    fore200e->bus->reset(fore200e);
 340
 341    if (diag) {
 342        ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 343        if (ok == 0) {
 344            
 345            printk(FORE200E "device %s self-test failed\n", fore200e->name);
 346            return -ENODEV;
 347        }
 348
 349        printk(FORE200E "device %s self-test passed\n", fore200e->name);
 350        
 351        fore200e->state = FORE200E_STATE_RESET;
 352    }
 353
 354    return 0;
 355}
 356
 357
 358static void
 359fore200e_shutdown(struct fore200e* fore200e)
 360{
 361    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 362           fore200e->name, fore200e->phys_base, 
 363           fore200e_irq_itoa(fore200e->irq));
 364    
 365    if (fore200e->state > FORE200E_STATE_RESET) {
 366        /* first, reset the board to prevent further interrupts or data transfers */
 367        fore200e_reset(fore200e, 0);
 368    }
 369    
 370    /* then, release all allocated resources */
 371    switch(fore200e->state) {
 372
 373    case FORE200E_STATE_COMPLETE:
 374        kfree(fore200e->stats);
 375
 376        fallthrough;
 377    case FORE200E_STATE_IRQ:
 378        free_irq(fore200e->irq, fore200e->atm_dev);
 379
 380        fallthrough;
 381    case FORE200E_STATE_ALLOC_BUF:
 382        fore200e_free_rx_buf(fore200e);
 383
 384        fallthrough;
 385    case FORE200E_STATE_INIT_BSQ:
 386        fore200e_uninit_bs_queue(fore200e);
 387
 388        fallthrough;
 389    case FORE200E_STATE_INIT_RXQ:
 390        fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 391        fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 392
 393        fallthrough;
 394    case FORE200E_STATE_INIT_TXQ:
 395        fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 396        fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 397
 398        fallthrough;
 399    case FORE200E_STATE_INIT_CMDQ:
 400        fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 401
 402        fallthrough;
 403    case FORE200E_STATE_INITIALIZE:
 404        /* nothing to do for that state */
 405
 406    case FORE200E_STATE_START_FW:
 407        /* nothing to do for that state */
 408
 409    case FORE200E_STATE_RESET:
 410        /* nothing to do for that state */
 411
 412    case FORE200E_STATE_MAP:
 413        fore200e->bus->unmap(fore200e);
 414
 415        fallthrough;
 416    case FORE200E_STATE_CONFIGURE:
 417        /* nothing to do for that state */
 418
 419    case FORE200E_STATE_REGISTER:
 420        /* XXX shouldn't we *start* by deregistering the device? */
 421        atm_dev_deregister(fore200e->atm_dev);
 422
 423        fallthrough;
 424    case FORE200E_STATE_BLANK:
 425        /* nothing to do for that state */
 426        break;
 427    }
 428}
 429
 430
 431#ifdef CONFIG_PCI
 432
 433static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 434{
 435    /* on big-endian hosts, the board is configured to convert
 436       the endianess of slave RAM accesses  */
 437    return le32_to_cpu(readl(addr));
 438}
 439
 440
 441static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 442{
 443    /* on big-endian hosts, the board is configured to convert
 444       the endianess of slave RAM accesses  */
 445    writel(cpu_to_le32(val), addr);
 446}
 447
 448static int
 449fore200e_pca_irq_check(struct fore200e* fore200e)
 450{
 451    /* this is a 1 bit register */
 452    int irq_posted = readl(fore200e->regs.pca.psr);
 453
 454#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 455    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 456        DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 457    }
 458#endif
 459
 460    return irq_posted;
 461}
 462
 463
 464static void
 465fore200e_pca_irq_ack(struct fore200e* fore200e)
 466{
 467    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 468}
 469
 470
 471static void
 472fore200e_pca_reset(struct fore200e* fore200e)
 473{
 474    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 475    fore200e_spin(10);
 476    writel(0, fore200e->regs.pca.hcr);
 477}
 478
 479
 480static int fore200e_pca_map(struct fore200e* fore200e)
 481{
 482    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 483
 484    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 485    
 486    if (fore200e->virt_base == NULL) {
 487        printk(FORE200E "can't map device %s\n", fore200e->name);
 488        return -EFAULT;
 489    }
 490
 491    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 492
 493    /* gain access to the PCA specific registers  */
 494    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 495    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 496    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 497
 498    fore200e->state = FORE200E_STATE_MAP;
 499    return 0;
 500}
 501
 502
 503static void
 504fore200e_pca_unmap(struct fore200e* fore200e)
 505{
 506    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 507
 508    if (fore200e->virt_base != NULL)
 509        iounmap(fore200e->virt_base);
 510}
 511
 512
 513static int fore200e_pca_configure(struct fore200e *fore200e)
 514{
 515    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 516    u8              master_ctrl, latency;
 517
 518    DPRINTK(2, "device %s being configured\n", fore200e->name);
 519
 520    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 521        printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 522        return -EIO;
 523    }
 524
 525    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 526
 527    master_ctrl = master_ctrl
 528#if defined(__BIG_ENDIAN)
 529        /* request the PCA board to convert the endianess of slave RAM accesses */
 530        | PCA200E_CTRL_CONVERT_ENDIAN
 531#endif
 532#if 0
 533        | PCA200E_CTRL_DIS_CACHE_RD
 534        | PCA200E_CTRL_DIS_WRT_INVAL
 535        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 536        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 537#endif
 538        | PCA200E_CTRL_LARGE_PCI_BURSTS;
 539    
 540    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 541
 542    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 543       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 544       this may impact the performances of other PCI devices on the same bus, though */
 545    latency = 192;
 546    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 547
 548    fore200e->state = FORE200E_STATE_CONFIGURE;
 549    return 0;
 550}
 551
 552
 553static int __init
 554fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 555{
 556    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 557    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 558    struct prom_opcode      opcode;
 559    int                     ok;
 560    u32                     prom_dma;
 561
 562    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 563
 564    opcode.opcode = OPCODE_GET_PROM;
 565    opcode.pad    = 0;
 566
 567    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 568                              DMA_FROM_DEVICE);
 569    if (dma_mapping_error(fore200e->dev, prom_dma))
 570        return -ENOMEM;
 571
 572    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 573    
 574    *entry->status = STATUS_PENDING;
 575
 576    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 577
 578    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 579
 580    *entry->status = STATUS_FREE;
 581
 582    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 583
 584    if (ok == 0) {
 585        printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 586        return -EIO;
 587    }
 588
 589#if defined(__BIG_ENDIAN)
 590    
 591#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 592
 593    /* MAC address is stored as little-endian */
 594    swap_here(&prom->mac_addr[0]);
 595    swap_here(&prom->mac_addr[4]);
 596#endif
 597    
 598    return 0;
 599}
 600
 601
 602static int
 603fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 604{
 605    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 606
 607    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 608                   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 609}
 610
 611static const struct fore200e_bus fore200e_pci_ops = {
 612        .model_name             = "PCA-200E",
 613        .proc_name              = "pca200e",
 614        .descr_alignment        = 32,
 615        .buffer_alignment       = 4,
 616        .status_alignment       = 32,
 617        .read                   = fore200e_pca_read,
 618        .write                  = fore200e_pca_write,
 619        .configure              = fore200e_pca_configure,
 620        .map                    = fore200e_pca_map,
 621        .reset                  = fore200e_pca_reset,
 622        .prom_read              = fore200e_pca_prom_read,
 623        .unmap                  = fore200e_pca_unmap,
 624        .irq_check              = fore200e_pca_irq_check,
 625        .irq_ack                = fore200e_pca_irq_ack,
 626        .proc_read              = fore200e_pca_proc_read,
 627};
 628#endif /* CONFIG_PCI */
 629
 630#ifdef CONFIG_SBUS
 631
 632static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 633{
 634    return sbus_readl(addr);
 635}
 636
 637static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 638{
 639    sbus_writel(val, addr);
 640}
 641
 642static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 643{
 644        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 645        fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 646}
 647
 648static int fore200e_sba_irq_check(struct fore200e *fore200e)
 649{
 650        return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 651}
 652
 653static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 654{
 655        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 656        fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 657}
 658
 659static void fore200e_sba_reset(struct fore200e *fore200e)
 660{
 661        fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 662        fore200e_spin(10);
 663        fore200e->bus->write(0, fore200e->regs.sba.hcr);
 664}
 665
 666static int __init fore200e_sba_map(struct fore200e *fore200e)
 667{
 668        struct platform_device *op = to_platform_device(fore200e->dev);
 669        unsigned int bursts;
 670
 671        /* gain access to the SBA specific registers  */
 672        fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 673        fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 674        fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 675        fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 676
 677        if (!fore200e->virt_base) {
 678                printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 679                return -EFAULT;
 680        }
 681
 682        DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 683    
 684        fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 685
 686        /* get the supported DVMA burst sizes */
 687        bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 688
 689        if (sbus_can_dma_64bit())
 690                sbus_set_sbus64(&op->dev, bursts);
 691
 692        fore200e->state = FORE200E_STATE_MAP;
 693        return 0;
 694}
 695
 696static void fore200e_sba_unmap(struct fore200e *fore200e)
 697{
 698        struct platform_device *op = to_platform_device(fore200e->dev);
 699
 700        of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 701        of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 702        of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 703        of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 704}
 705
 706static int __init fore200e_sba_configure(struct fore200e *fore200e)
 707{
 708        fore200e->state = FORE200E_STATE_CONFIGURE;
 709        return 0;
 710}
 711
 712static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 713{
 714        struct platform_device *op = to_platform_device(fore200e->dev);
 715        const u8 *prop;
 716        int len;
 717
 718        prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 719        if (!prop)
 720                return -ENODEV;
 721        memcpy(&prom->mac_addr[4], prop, 4);
 722
 723        prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 724        if (!prop)
 725                return -ENODEV;
 726        memcpy(&prom->mac_addr[2], prop, 4);
 727
 728        prom->serial_number = of_getintprop_default(op->dev.of_node,
 729                                                    "serialnumber", 0);
 730        prom->hw_revision = of_getintprop_default(op->dev.of_node,
 731                                                  "promversion", 0);
 732    
 733        return 0;
 734}
 735
 736static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 737{
 738        struct platform_device *op = to_platform_device(fore200e->dev);
 739        const struct linux_prom_registers *regs;
 740
 741        regs = of_get_property(op->dev.of_node, "reg", NULL);
 742
 743        return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 744                       (regs ? regs->which_io : 0), op->dev.of_node);
 745}
 746
 747static const struct fore200e_bus fore200e_sbus_ops = {
 748        .model_name             = "SBA-200E",
 749        .proc_name              = "sba200e",
 750        .descr_alignment        = 32,
 751        .buffer_alignment       = 64,
 752        .status_alignment       = 32,
 753        .read                   = fore200e_sba_read,
 754        .write                  = fore200e_sba_write,
 755        .configure              = fore200e_sba_configure,
 756        .map                    = fore200e_sba_map,
 757        .reset                  = fore200e_sba_reset,
 758        .prom_read              = fore200e_sba_prom_read,
 759        .unmap                  = fore200e_sba_unmap,
 760        .irq_enable             = fore200e_sba_irq_enable,
 761        .irq_check              = fore200e_sba_irq_check,
 762        .irq_ack                = fore200e_sba_irq_ack,
 763        .proc_read              = fore200e_sba_proc_read,
 764};
 765#endif /* CONFIG_SBUS */
 766
 767static void
 768fore200e_tx_irq(struct fore200e* fore200e)
 769{
 770    struct host_txq*        txq = &fore200e->host_txq;
 771    struct host_txq_entry*  entry;
 772    struct atm_vcc*         vcc;
 773    struct fore200e_vc_map* vc_map;
 774
 775    if (fore200e->host_txq.txing == 0)
 776        return;
 777
 778    for (;;) {
 779        
 780        entry = &txq->host_entry[ txq->tail ];
 781
 782        if ((*entry->status & STATUS_COMPLETE) == 0) {
 783            break;
 784        }
 785
 786        DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 787                entry, txq->tail, entry->vc_map, entry->skb);
 788
 789        /* free copy of misaligned data */
 790        kfree(entry->data);
 791        
 792        /* remove DMA mapping */
 793        dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 794                                 DMA_TO_DEVICE);
 795
 796        vc_map = entry->vc_map;
 797
 798        /* vcc closed since the time the entry was submitted for tx? */
 799        if ((vc_map->vcc == NULL) ||
 800            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 801
 802            DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 803                    fore200e->atm_dev->number);
 804
 805            dev_kfree_skb_any(entry->skb);
 806        }
 807        else {
 808            ASSERT(vc_map->vcc);
 809
 810            /* vcc closed then immediately re-opened? */
 811            if (vc_map->incarn != entry->incarn) {
 812
 813                /* when a vcc is closed, some PDUs may be still pending in the tx queue.
 814                   if the same vcc is immediately re-opened, those pending PDUs must
 815                   not be popped after the completion of their emission, as they refer
 816                   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 817                   would be decremented by the size of the (unrelated) skb, possibly
 818                   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 819                   we thus bind the tx entry to the current incarnation of the vcc
 820                   when the entry is submitted for tx. When the tx later completes,
 821                   if the incarnation number of the tx entry does not match the one
 822                   of the vcc, then this implies that the vcc has been closed then re-opened.
 823                   we thus just drop the skb here. */
 824
 825                DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 826                        fore200e->atm_dev->number);
 827
 828                dev_kfree_skb_any(entry->skb);
 829            }
 830            else {
 831                vcc = vc_map->vcc;
 832                ASSERT(vcc);
 833
 834                /* notify tx completion */
 835                if (vcc->pop) {
 836                    vcc->pop(vcc, entry->skb);
 837                }
 838                else {
 839                    dev_kfree_skb_any(entry->skb);
 840                }
 841
 842                /* check error condition */
 843                if (*entry->status & STATUS_ERROR)
 844                    atomic_inc(&vcc->stats->tx_err);
 845                else
 846                    atomic_inc(&vcc->stats->tx);
 847            }
 848        }
 849
 850        *entry->status = STATUS_FREE;
 851
 852        fore200e->host_txq.txing--;
 853
 854        FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 855    }
 856}
 857
 858
 859#ifdef FORE200E_BSQ_DEBUG
 860int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 861{
 862    struct buffer* buffer;
 863    int count = 0;
 864
 865    buffer = bsq->freebuf;
 866    while (buffer) {
 867
 868        if (buffer->supplied) {
 869            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 870                   where, scheme, magn, buffer->index);
 871        }
 872
 873        if (buffer->magn != magn) {
 874            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 875                   where, scheme, magn, buffer->index, buffer->magn);
 876        }
 877
 878        if (buffer->scheme != scheme) {
 879            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 880                   where, scheme, magn, buffer->index, buffer->scheme);
 881        }
 882
 883        if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 884            printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 885                   where, scheme, magn, buffer->index);
 886        }
 887
 888        count++;
 889        buffer = buffer->next;
 890    }
 891
 892    if (count != bsq->freebuf_count) {
 893        printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 894               where, scheme, magn, count, bsq->freebuf_count);
 895    }
 896    return 0;
 897}
 898#endif
 899
 900
 901static void
 902fore200e_supply(struct fore200e* fore200e)
 903{
 904    int  scheme, magn, i;
 905
 906    struct host_bsq*       bsq;
 907    struct host_bsq_entry* entry;
 908    struct buffer*         buffer;
 909
 910    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 911        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 912
 913            bsq = &fore200e->host_bsq[ scheme ][ magn ];
 914
 915#ifdef FORE200E_BSQ_DEBUG
 916            bsq_audit(1, bsq, scheme, magn);
 917#endif
 918            while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 919
 920                DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 921                        RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 922
 923                entry = &bsq->host_entry[ bsq->head ];
 924
 925                for (i = 0; i < RBD_BLK_SIZE; i++) {
 926
 927                    /* take the first buffer in the free buffer list */
 928                    buffer = bsq->freebuf;
 929                    if (!buffer) {
 930                        printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 931                               scheme, magn, bsq->freebuf_count);
 932                        return;
 933                    }
 934                    bsq->freebuf = buffer->next;
 935                    
 936#ifdef FORE200E_BSQ_DEBUG
 937                    if (buffer->supplied)
 938                        printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 939                               scheme, magn, buffer->index);
 940                    buffer->supplied = 1;
 941#endif
 942                    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 943                    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 944                }
 945
 946                FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 947
 948                /* decrease accordingly the number of free rx buffers */
 949                bsq->freebuf_count -= RBD_BLK_SIZE;
 950
 951                *entry->status = STATUS_PENDING;
 952                fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 953            }
 954        }
 955    }
 956}
 957
 958
 959static int
 960fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 961{
 962    struct sk_buff*      skb;
 963    struct buffer*       buffer;
 964    struct fore200e_vcc* fore200e_vcc;
 965    int                  i, pdu_len = 0;
 966#ifdef FORE200E_52BYTE_AAL0_SDU
 967    u32                  cell_header = 0;
 968#endif
 969
 970    ASSERT(vcc);
 971    
 972    fore200e_vcc = FORE200E_VCC(vcc);
 973    ASSERT(fore200e_vcc);
 974
 975#ifdef FORE200E_52BYTE_AAL0_SDU
 976    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 977
 978        cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 979                      (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 980                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 981                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 982                       rpd->atm_header.clp;
 983        pdu_len = 4;
 984    }
 985#endif
 986    
 987    /* compute total PDU length */
 988    for (i = 0; i < rpd->nseg; i++)
 989        pdu_len += rpd->rsd[ i ].length;
 990    
 991    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 992    if (skb == NULL) {
 993        DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 994
 995        atomic_inc(&vcc->stats->rx_drop);
 996        return -ENOMEM;
 997    } 
 998
 999    __net_timestamp(skb);
1000    
1001#ifdef FORE200E_52BYTE_AAL0_SDU
1002    if (cell_header) {
1003        *((u32*)skb_put(skb, 4)) = cell_header;
1004    }
1005#endif
1006
1007    /* reassemble segments */
1008    for (i = 0; i < rpd->nseg; i++) {
1009        
1010        /* rebuild rx buffer address from rsd handle */
1011        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1012        
1013        /* Make device DMA transfer visible to CPU.  */
1014        dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1015                                rpd->rsd[i].length, DMA_FROM_DEVICE);
1016        
1017        skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1018
1019        /* Now let the device get at it again.  */
1020        dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1021                                   rpd->rsd[i].length, DMA_FROM_DEVICE);
1022    }
1023
1024    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1025    
1026    if (pdu_len < fore200e_vcc->rx_min_pdu)
1027        fore200e_vcc->rx_min_pdu = pdu_len;
1028    if (pdu_len > fore200e_vcc->rx_max_pdu)
1029        fore200e_vcc->rx_max_pdu = pdu_len;
1030    fore200e_vcc->rx_pdu++;
1031
1032    /* push PDU */
1033    if (atm_charge(vcc, skb->truesize) == 0) {
1034
1035        DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1036                vcc->itf, vcc->vpi, vcc->vci);
1037
1038        dev_kfree_skb_any(skb);
1039
1040        atomic_inc(&vcc->stats->rx_drop);
1041        return -ENOMEM;
1042    }
1043
1044    vcc->push(vcc, skb);
1045    atomic_inc(&vcc->stats->rx);
1046
1047    return 0;
1048}
1049
1050
1051static void
1052fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1053{
1054    struct host_bsq* bsq;
1055    struct buffer*   buffer;
1056    int              i;
1057    
1058    for (i = 0; i < rpd->nseg; i++) {
1059
1060        /* rebuild rx buffer address from rsd handle */
1061        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1062
1063        bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1064
1065#ifdef FORE200E_BSQ_DEBUG
1066        bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1067
1068        if (buffer->supplied == 0)
1069            printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1070                   buffer->scheme, buffer->magn, buffer->index);
1071        buffer->supplied = 0;
1072#endif
1073
1074        /* re-insert the buffer into the free buffer list */
1075        buffer->next = bsq->freebuf;
1076        bsq->freebuf = buffer;
1077
1078        /* then increment the number of free rx buffers */
1079        bsq->freebuf_count++;
1080    }
1081}
1082
1083
1084static void
1085fore200e_rx_irq(struct fore200e* fore200e)
1086{
1087    struct host_rxq*        rxq = &fore200e->host_rxq;
1088    struct host_rxq_entry*  entry;
1089    struct atm_vcc*         vcc;
1090    struct fore200e_vc_map* vc_map;
1091
1092    for (;;) {
1093        
1094        entry = &rxq->host_entry[ rxq->head ];
1095
1096        /* no more received PDUs */
1097        if ((*entry->status & STATUS_COMPLETE) == 0)
1098            break;
1099
1100        vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1101
1102        if ((vc_map->vcc == NULL) ||
1103            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1104
1105            DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1106                    fore200e->atm_dev->number,
1107                    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1108        }
1109        else {
1110            vcc = vc_map->vcc;
1111            ASSERT(vcc);
1112
1113            if ((*entry->status & STATUS_ERROR) == 0) {
1114
1115                fore200e_push_rpd(fore200e, vcc, entry->rpd);
1116            }
1117            else {
1118                DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1119                        fore200e->atm_dev->number,
1120                        entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1121                atomic_inc(&vcc->stats->rx_err);
1122            }
1123        }
1124
1125        FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1126
1127        fore200e_collect_rpd(fore200e, entry->rpd);
1128
1129        /* rewrite the rpd address to ack the received PDU */
1130        fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1131        *entry->status = STATUS_FREE;
1132
1133        fore200e_supply(fore200e);
1134    }
1135}
1136
1137
1138#ifndef FORE200E_USE_TASKLET
1139static void
1140fore200e_irq(struct fore200e* fore200e)
1141{
1142    unsigned long flags;
1143
1144    spin_lock_irqsave(&fore200e->q_lock, flags);
1145    fore200e_rx_irq(fore200e);
1146    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1147
1148    spin_lock_irqsave(&fore200e->q_lock, flags);
1149    fore200e_tx_irq(fore200e);
1150    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1151}
1152#endif
1153
1154
1155static irqreturn_t
1156fore200e_interrupt(int irq, void* dev)
1157{
1158    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1159
1160    if (fore200e->bus->irq_check(fore200e) == 0) {
1161        
1162        DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1163        return IRQ_NONE;
1164    }
1165    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1166
1167#ifdef FORE200E_USE_TASKLET
1168    tasklet_schedule(&fore200e->tx_tasklet);
1169    tasklet_schedule(&fore200e->rx_tasklet);
1170#else
1171    fore200e_irq(fore200e);
1172#endif
1173    
1174    fore200e->bus->irq_ack(fore200e);
1175    return IRQ_HANDLED;
1176}
1177
1178
1179#ifdef FORE200E_USE_TASKLET
1180static void
1181fore200e_tx_tasklet(unsigned long data)
1182{
1183    struct fore200e* fore200e = (struct fore200e*) data;
1184    unsigned long flags;
1185
1186    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1187
1188    spin_lock_irqsave(&fore200e->q_lock, flags);
1189    fore200e_tx_irq(fore200e);
1190    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1191}
1192
1193
1194static void
1195fore200e_rx_tasklet(unsigned long data)
1196{
1197    struct fore200e* fore200e = (struct fore200e*) data;
1198    unsigned long    flags;
1199
1200    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1201
1202    spin_lock_irqsave(&fore200e->q_lock, flags);
1203    fore200e_rx_irq((struct fore200e*) data);
1204    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1205}
1206#endif
1207
1208
1209static int
1210fore200e_select_scheme(struct atm_vcc* vcc)
1211{
1212    /* fairly balance the VCs over (identical) buffer schemes */
1213    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1214
1215    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1216            vcc->itf, vcc->vpi, vcc->vci, scheme);
1217
1218    return scheme;
1219}
1220
1221
1222static int 
1223fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1224{
1225    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1226    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1227    struct activate_opcode   activ_opcode;
1228    struct deactivate_opcode deactiv_opcode;
1229    struct vpvc              vpvc;
1230    int                      ok;
1231    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1232
1233    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1234    
1235    if (activate) {
1236        FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1237        
1238        activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1239        activ_opcode.aal    = aal;
1240        activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1241        activ_opcode.pad    = 0;
1242    }
1243    else {
1244        deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1245        deactiv_opcode.pad    = 0;
1246    }
1247
1248    vpvc.vci = vcc->vci;
1249    vpvc.vpi = vcc->vpi;
1250
1251    *entry->status = STATUS_PENDING;
1252
1253    if (activate) {
1254
1255#ifdef FORE200E_52BYTE_AAL0_SDU
1256        mtu = 48;
1257#endif
1258        /* the MTU is not used by the cp, except in the case of AAL0 */
1259        fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1260        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1261        fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1262    }
1263    else {
1264        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1265        fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1266    }
1267
1268    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1269
1270    *entry->status = STATUS_FREE;
1271
1272    if (ok == 0) {
1273        printk(FORE200E "unable to %s VC %d.%d.%d\n",
1274               activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1275        return -EIO;
1276    }
1277
1278    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1279            activate ? "open" : "clos");
1280
1281    return 0;
1282}
1283
1284
1285#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1286
1287static void
1288fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1289{
1290    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1291    
1292        /* compute the data cells to idle cells ratio from the tx PCR */
1293        rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1294        rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1295    }
1296    else {
1297        /* disable rate control */
1298        rate->data_cells = rate->idle_cells = 0;
1299    }
1300}
1301
1302
1303static int
1304fore200e_open(struct atm_vcc *vcc)
1305{
1306    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1307    struct fore200e_vcc*    fore200e_vcc;
1308    struct fore200e_vc_map* vc_map;
1309    unsigned long           flags;
1310    int                     vci = vcc->vci;
1311    short                   vpi = vcc->vpi;
1312
1313    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1314    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1315
1316    spin_lock_irqsave(&fore200e->q_lock, flags);
1317
1318    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1319    if (vc_map->vcc) {
1320
1321        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1322
1323        printk(FORE200E "VC %d.%d.%d already in use\n",
1324               fore200e->atm_dev->number, vpi, vci);
1325
1326        return -EINVAL;
1327    }
1328
1329    vc_map->vcc = vcc;
1330
1331    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1332
1333    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1334    if (fore200e_vcc == NULL) {
1335        vc_map->vcc = NULL;
1336        return -ENOMEM;
1337    }
1338
1339    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1340            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1341            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1342            fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1343            vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1344            fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1345            vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1346    
1347    /* pseudo-CBR bandwidth requested? */
1348    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1349        
1350        mutex_lock(&fore200e->rate_mtx);
1351        if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1352            mutex_unlock(&fore200e->rate_mtx);
1353
1354            kfree(fore200e_vcc);
1355            vc_map->vcc = NULL;
1356            return -EAGAIN;
1357        }
1358
1359        /* reserve bandwidth */
1360        fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1361        mutex_unlock(&fore200e->rate_mtx);
1362    }
1363    
1364    vcc->itf = vcc->dev->number;
1365
1366    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1367    set_bit(ATM_VF_ADDR, &vcc->flags);
1368
1369    vcc->dev_data = fore200e_vcc;
1370    
1371    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1372
1373        vc_map->vcc = NULL;
1374
1375        clear_bit(ATM_VF_ADDR, &vcc->flags);
1376        clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1377
1378        vcc->dev_data = NULL;
1379
1380        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1381
1382        kfree(fore200e_vcc);
1383        return -EINVAL;
1384    }
1385    
1386    /* compute rate control parameters */
1387    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1388        
1389        fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1390        set_bit(ATM_VF_HASQOS, &vcc->flags);
1391
1392        DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1393                vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1394                vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1395                fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1396    }
1397    
1398    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1399    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1400    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1401
1402    /* new incarnation of the vcc */
1403    vc_map->incarn = ++fore200e->incarn_count;
1404
1405    /* VC unusable before this flag is set */
1406    set_bit(ATM_VF_READY, &vcc->flags);
1407
1408    return 0;
1409}
1410
1411
1412static void
1413fore200e_close(struct atm_vcc* vcc)
1414{
1415    struct fore200e_vcc*    fore200e_vcc;
1416    struct fore200e*        fore200e;
1417    struct fore200e_vc_map* vc_map;
1418    unsigned long           flags;
1419
1420    ASSERT(vcc);
1421    fore200e = FORE200E_DEV(vcc->dev);
1422
1423    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1424    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1425
1426    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1427
1428    clear_bit(ATM_VF_READY, &vcc->flags);
1429
1430    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1431
1432    spin_lock_irqsave(&fore200e->q_lock, flags);
1433
1434    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1435
1436    /* the vc is no longer considered as "in use" by fore200e_open() */
1437    vc_map->vcc = NULL;
1438
1439    vcc->itf = vcc->vci = vcc->vpi = 0;
1440
1441    fore200e_vcc = FORE200E_VCC(vcc);
1442    vcc->dev_data = NULL;
1443
1444    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1445
1446    /* release reserved bandwidth, if any */
1447    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1448
1449        mutex_lock(&fore200e->rate_mtx);
1450        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1451        mutex_unlock(&fore200e->rate_mtx);
1452
1453        clear_bit(ATM_VF_HASQOS, &vcc->flags);
1454    }
1455
1456    clear_bit(ATM_VF_ADDR, &vcc->flags);
1457    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1458
1459    ASSERT(fore200e_vcc);
1460    kfree(fore200e_vcc);
1461}
1462
1463
1464static int
1465fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1466{
1467    struct fore200e*        fore200e;
1468    struct fore200e_vcc*    fore200e_vcc;
1469    struct fore200e_vc_map* vc_map;
1470    struct host_txq*        txq;
1471    struct host_txq_entry*  entry;
1472    struct tpd*             tpd;
1473    struct tpd_haddr        tpd_haddr;
1474    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1475    int                     tx_copy      = 0;
1476    int                     tx_len       = skb->len;
1477    u32*                    cell_header  = NULL;
1478    unsigned char*          skb_data;
1479    int                     skb_len;
1480    unsigned char*          data;
1481    unsigned long           flags;
1482
1483    if (!vcc)
1484        return -EINVAL;
1485
1486    fore200e = FORE200E_DEV(vcc->dev);
1487    fore200e_vcc = FORE200E_VCC(vcc);
1488
1489    if (!fore200e)
1490        return -EINVAL;
1491
1492    txq = &fore200e->host_txq;
1493    if (!fore200e_vcc)
1494        return -EINVAL;
1495
1496    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1497        DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1498        dev_kfree_skb_any(skb);
1499        return -EINVAL;
1500    }
1501
1502#ifdef FORE200E_52BYTE_AAL0_SDU
1503    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1504        cell_header = (u32*) skb->data;
1505        skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1506        skb_len     = tx_len = skb->len  - 4;
1507
1508        DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1509    }
1510    else 
1511#endif
1512    {
1513        skb_data = skb->data;
1514        skb_len  = skb->len;
1515    }
1516    
1517    if (((unsigned long)skb_data) & 0x3) {
1518
1519        DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1520        tx_copy = 1;
1521        tx_len  = skb_len;
1522    }
1523
1524    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1525
1526        /* this simply NUKES the PCA board */
1527        DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1528        tx_copy = 1;
1529        tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1530    }
1531    
1532    if (tx_copy) {
1533        data = kmalloc(tx_len, GFP_ATOMIC);
1534        if (data == NULL) {
1535            if (vcc->pop) {
1536                vcc->pop(vcc, skb);
1537            }
1538            else {
1539                dev_kfree_skb_any(skb);
1540            }
1541            return -ENOMEM;
1542        }
1543
1544        memcpy(data, skb_data, skb_len);
1545        if (skb_len < tx_len)
1546            memset(data + skb_len, 0x00, tx_len - skb_len);
1547    }
1548    else {
1549        data = skb_data;
1550    }
1551
1552    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1553    ASSERT(vc_map->vcc == vcc);
1554
1555  retry_here:
1556
1557    spin_lock_irqsave(&fore200e->q_lock, flags);
1558
1559    entry = &txq->host_entry[ txq->head ];
1560
1561    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1562
1563        /* try to free completed tx queue entries */
1564        fore200e_tx_irq(fore200e);
1565
1566        if (*entry->status != STATUS_FREE) {
1567
1568            spin_unlock_irqrestore(&fore200e->q_lock, flags);
1569
1570            /* retry once again? */
1571            if (--retry > 0) {
1572                udelay(50);
1573                goto retry_here;
1574            }
1575
1576            atomic_inc(&vcc->stats->tx_err);
1577
1578            fore200e->tx_sat++;
1579            DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1580                    fore200e->name, fore200e->cp_queues->heartbeat);
1581            if (vcc->pop) {
1582                vcc->pop(vcc, skb);
1583            }
1584            else {
1585                dev_kfree_skb_any(skb);
1586            }
1587
1588            if (tx_copy)
1589                kfree(data);
1590
1591            return -ENOBUFS;
1592        }
1593    }
1594
1595    entry->incarn = vc_map->incarn;
1596    entry->vc_map = vc_map;
1597    entry->skb    = skb;
1598    entry->data   = tx_copy ? data : NULL;
1599
1600    tpd = entry->tpd;
1601    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1602                                          DMA_TO_DEVICE);
1603    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1604        if (tx_copy)
1605            kfree(data);
1606        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1607        return -ENOMEM;
1608    }
1609    tpd->tsd[ 0 ].length = tx_len;
1610
1611    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1612    txq->txing++;
1613
1614    /* The dma_map call above implies a dma_sync so the device can use it,
1615     * thus no explicit dma_sync call is necessary here.
1616     */
1617    
1618    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1619            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1620            tpd->tsd[0].length, skb_len);
1621
1622    if (skb_len < fore200e_vcc->tx_min_pdu)
1623        fore200e_vcc->tx_min_pdu = skb_len;
1624    if (skb_len > fore200e_vcc->tx_max_pdu)
1625        fore200e_vcc->tx_max_pdu = skb_len;
1626    fore200e_vcc->tx_pdu++;
1627
1628    /* set tx rate control information */
1629    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1630    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1631
1632    if (cell_header) {
1633        tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1634        tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1635        tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1636        tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1637        tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1638    }
1639    else {
1640        /* set the ATM header, common to all cells conveying the PDU */
1641        tpd->atm_header.clp = 0;
1642        tpd->atm_header.plt = 0;
1643        tpd->atm_header.vci = vcc->vci;
1644        tpd->atm_header.vpi = vcc->vpi;
1645        tpd->atm_header.gfc = 0;
1646    }
1647
1648    tpd->spec.length = tx_len;
1649    tpd->spec.nseg   = 1;
1650    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1651    tpd->spec.intr   = 1;
1652
1653    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1654    tpd_haddr.pad   = 0;
1655    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1656
1657    *entry->status = STATUS_PENDING;
1658    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1659
1660    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661
1662    return 0;
1663}
1664
1665
1666static int
1667fore200e_getstats(struct fore200e* fore200e)
1668{
1669    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1670    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1671    struct stats_opcode     opcode;
1672    int                     ok;
1673    u32                     stats_dma_addr;
1674
1675    if (fore200e->stats == NULL) {
1676        fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1677        if (fore200e->stats == NULL)
1678            return -ENOMEM;
1679    }
1680    
1681    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1682                                    sizeof(struct stats), DMA_FROM_DEVICE);
1683    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1684        return -ENOMEM;
1685    
1686    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1687
1688    opcode.opcode = OPCODE_GET_STATS;
1689    opcode.pad    = 0;
1690
1691    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1692    
1693    *entry->status = STATUS_PENDING;
1694
1695    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1696
1697    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1698
1699    *entry->status = STATUS_FREE;
1700
1701    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1702    
1703    if (ok == 0) {
1704        printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1705        return -EIO;
1706    }
1707
1708    return 0;
1709}
1710
1711#if 0 /* currently unused */
1712static int
1713fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1714{
1715    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1716    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1717    struct oc3_opcode       opcode;
1718    int                     ok;
1719    u32                     oc3_regs_dma_addr;
1720
1721    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1722
1723    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1724
1725    opcode.opcode = OPCODE_GET_OC3;
1726    opcode.reg    = 0;
1727    opcode.value  = 0;
1728    opcode.mask   = 0;
1729
1730    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1731    
1732    *entry->status = STATUS_PENDING;
1733
1734    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1735
1736    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1737
1738    *entry->status = STATUS_FREE;
1739
1740    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1741    
1742    if (ok == 0) {
1743        printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1744        return -EIO;
1745    }
1746
1747    return 0;
1748}
1749#endif
1750
1751
1752static int
1753fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1754{
1755    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1756    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1757    struct oc3_opcode       opcode;
1758    int                     ok;
1759
1760    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1761
1762    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1763
1764    opcode.opcode = OPCODE_SET_OC3;
1765    opcode.reg    = reg;
1766    opcode.value  = value;
1767    opcode.mask   = mask;
1768
1769    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1770    
1771    *entry->status = STATUS_PENDING;
1772
1773    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1774
1775    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1776
1777    *entry->status = STATUS_FREE;
1778
1779    if (ok == 0) {
1780        printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1781        return -EIO;
1782    }
1783
1784    return 0;
1785}
1786
1787
1788static int
1789fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1790{
1791    u32 mct_value, mct_mask;
1792    int error;
1793
1794    if (!capable(CAP_NET_ADMIN))
1795        return -EPERM;
1796    
1797    switch (loop_mode) {
1798
1799    case ATM_LM_NONE:
1800        mct_value = 0; 
1801        mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1802        break;
1803        
1804    case ATM_LM_LOC_PHY:
1805        mct_value = mct_mask = SUNI_MCT_DLE;
1806        break;
1807
1808    case ATM_LM_RMT_PHY:
1809        mct_value = mct_mask = SUNI_MCT_LLE;
1810        break;
1811
1812    default:
1813        return -EINVAL;
1814    }
1815
1816    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1817    if (error == 0)
1818        fore200e->loop_mode = loop_mode;
1819
1820    return error;
1821}
1822
1823
1824static int
1825fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1826{
1827    struct sonet_stats tmp;
1828
1829    if (fore200e_getstats(fore200e) < 0)
1830        return -EIO;
1831
1832    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1833    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1834    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1835    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1836    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1837    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1838    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1839    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1840                      be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1841                      be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1842    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1843                      be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1844                      be32_to_cpu(fore200e->stats->aal5.cells_received);
1845
1846    if (arg)
1847        return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1848    
1849    return 0;
1850}
1851
1852
1853static int
1854fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1855{
1856    struct fore200e* fore200e = FORE200E_DEV(dev);
1857    
1858    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1859
1860    switch (cmd) {
1861
1862    case SONET_GETSTAT:
1863        return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1864
1865    case SONET_GETDIAG:
1866        return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1867
1868    case ATM_SETLOOP:
1869        return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1870
1871    case ATM_GETLOOP:
1872        return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1873
1874    case ATM_QUERYLOOP:
1875        return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1876    }
1877
1878    return -ENOSYS; /* not implemented */
1879}
1880
1881
1882static int
1883fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1884{
1885    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1886    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1887
1888    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1889        DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1890        return -EINVAL;
1891    }
1892
1893    DPRINTK(2, "change_qos %d.%d.%d, "
1894            "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1895            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1896            "available_cell_rate = %u",
1897            vcc->itf, vcc->vpi, vcc->vci,
1898            fore200e_traffic_class[ qos->txtp.traffic_class ],
1899            qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1900            fore200e_traffic_class[ qos->rxtp.traffic_class ],
1901            qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1902            flags, fore200e->available_cell_rate);
1903
1904    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1905
1906        mutex_lock(&fore200e->rate_mtx);
1907        if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1908            mutex_unlock(&fore200e->rate_mtx);
1909            return -EAGAIN;
1910        }
1911
1912        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1913        fore200e->available_cell_rate -= qos->txtp.max_pcr;
1914
1915        mutex_unlock(&fore200e->rate_mtx);
1916        
1917        memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1918        
1919        /* update rate control parameters */
1920        fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1921
1922        set_bit(ATM_VF_HASQOS, &vcc->flags);
1923
1924        return 0;
1925    }
1926    
1927    return -EINVAL;
1928}
1929    
1930
1931static int fore200e_irq_request(struct fore200e *fore200e)
1932{
1933    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1934
1935        printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1936               fore200e_irq_itoa(fore200e->irq), fore200e->name);
1937        return -EBUSY;
1938    }
1939
1940    printk(FORE200E "IRQ %s reserved for device %s\n",
1941           fore200e_irq_itoa(fore200e->irq), fore200e->name);
1942
1943#ifdef FORE200E_USE_TASKLET
1944    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1945    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1946#endif
1947
1948    fore200e->state = FORE200E_STATE_IRQ;
1949    return 0;
1950}
1951
1952
1953static int fore200e_get_esi(struct fore200e *fore200e)
1954{
1955    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1956    int ok, i;
1957
1958    if (!prom)
1959        return -ENOMEM;
1960
1961    ok = fore200e->bus->prom_read(fore200e, prom);
1962    if (ok < 0) {
1963        kfree(prom);
1964        return -EBUSY;
1965    }
1966        
1967    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1968           fore200e->name, 
1969           (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1970           prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1971        
1972    for (i = 0; i < ESI_LEN; i++) {
1973        fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1974    }
1975    
1976    kfree(prom);
1977
1978    return 0;
1979}
1980
1981
1982static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1983{
1984    int scheme, magn, nbr, size, i;
1985
1986    struct host_bsq* bsq;
1987    struct buffer*   buffer;
1988
1989    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1990        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1991
1992            bsq = &fore200e->host_bsq[ scheme ][ magn ];
1993
1994            nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1995            size = fore200e_rx_buf_size[ scheme ][ magn ];
1996
1997            DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1998
1999            /* allocate the array of receive buffers */
2000            buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2001                                           GFP_KERNEL);
2002
2003            if (buffer == NULL)
2004                return -ENOMEM;
2005
2006            bsq->freebuf = NULL;
2007
2008            for (i = 0; i < nbr; i++) {
2009
2010                buffer[ i ].scheme = scheme;
2011                buffer[ i ].magn   = magn;
2012#ifdef FORE200E_BSQ_DEBUG
2013                buffer[ i ].index  = i;
2014                buffer[ i ].supplied = 0;
2015#endif
2016
2017                /* allocate the receive buffer body */
2018                if (fore200e_chunk_alloc(fore200e,
2019                                         &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2020                                         DMA_FROM_DEVICE) < 0) {
2021                    
2022                    while (i > 0)
2023                        fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2024                    kfree(buffer);
2025                    
2026                    return -ENOMEM;
2027                }
2028
2029                /* insert the buffer into the free buffer list */
2030                buffer[ i ].next = bsq->freebuf;
2031                bsq->freebuf = &buffer[ i ];
2032            }
2033            /* all the buffers are free, initially */
2034            bsq->freebuf_count = nbr;
2035
2036#ifdef FORE200E_BSQ_DEBUG
2037            bsq_audit(3, bsq, scheme, magn);
2038#endif
2039        }
2040    }
2041
2042    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2043    return 0;
2044}
2045
2046
2047static int fore200e_init_bs_queue(struct fore200e *fore200e)
2048{
2049    int scheme, magn, i;
2050
2051    struct host_bsq*     bsq;
2052    struct cp_bsq_entry __iomem * cp_entry;
2053
2054    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2055        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2056
2057            DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2058
2059            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2060
2061            /* allocate and align the array of status words */
2062            if (fore200e_dma_chunk_alloc(fore200e,
2063                                               &bsq->status,
2064                                               sizeof(enum status), 
2065                                               QUEUE_SIZE_BS,
2066                                               fore200e->bus->status_alignment) < 0) {
2067                return -ENOMEM;
2068            }
2069
2070            /* allocate and align the array of receive buffer descriptors */
2071            if (fore200e_dma_chunk_alloc(fore200e,
2072                                               &bsq->rbd_block,
2073                                               sizeof(struct rbd_block),
2074                                               QUEUE_SIZE_BS,
2075                                               fore200e->bus->descr_alignment) < 0) {
2076                
2077                fore200e_dma_chunk_free(fore200e, &bsq->status);
2078                return -ENOMEM;
2079            }
2080            
2081            /* get the base address of the cp resident buffer supply queue entries */
2082            cp_entry = fore200e->virt_base + 
2083                       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2084            
2085            /* fill the host resident and cp resident buffer supply queue entries */
2086            for (i = 0; i < QUEUE_SIZE_BS; i++) {
2087                
2088                bsq->host_entry[ i ].status = 
2089                                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2090                bsq->host_entry[ i ].rbd_block =
2091                                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2092                bsq->host_entry[ i ].rbd_block_dma =
2093                                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2094                bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2095                
2096                *bsq->host_entry[ i ].status = STATUS_FREE;
2097                
2098                fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2099                                     &cp_entry[ i ].status_haddr);
2100            }
2101        }
2102    }
2103
2104    fore200e->state = FORE200E_STATE_INIT_BSQ;
2105    return 0;
2106}
2107
2108
2109static int fore200e_init_rx_queue(struct fore200e *fore200e)
2110{
2111    struct host_rxq*     rxq =  &fore200e->host_rxq;
2112    struct cp_rxq_entry __iomem * cp_entry;
2113    int i;
2114
2115    DPRINTK(2, "receive queue is being initialized\n");
2116
2117    /* allocate and align the array of status words */
2118    if (fore200e_dma_chunk_alloc(fore200e,
2119                                       &rxq->status,
2120                                       sizeof(enum status), 
2121                                       QUEUE_SIZE_RX,
2122                                       fore200e->bus->status_alignment) < 0) {
2123        return -ENOMEM;
2124    }
2125
2126    /* allocate and align the array of receive PDU descriptors */
2127    if (fore200e_dma_chunk_alloc(fore200e,
2128                                       &rxq->rpd,
2129                                       sizeof(struct rpd), 
2130                                       QUEUE_SIZE_RX,
2131                                       fore200e->bus->descr_alignment) < 0) {
2132        
2133        fore200e_dma_chunk_free(fore200e, &rxq->status);
2134        return -ENOMEM;
2135    }
2136
2137    /* get the base address of the cp resident rx queue entries */
2138    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2139
2140    /* fill the host resident and cp resident rx entries */
2141    for (i=0; i < QUEUE_SIZE_RX; i++) {
2142        
2143        rxq->host_entry[ i ].status = 
2144                             FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2145        rxq->host_entry[ i ].rpd = 
2146                             FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2147        rxq->host_entry[ i ].rpd_dma = 
2148                             FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2149        rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2150
2151        *rxq->host_entry[ i ].status = STATUS_FREE;
2152
2153        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2154                             &cp_entry[ i ].status_haddr);
2155
2156        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2157                             &cp_entry[ i ].rpd_haddr);
2158    }
2159
2160    /* set the head entry of the queue */
2161    rxq->head = 0;
2162
2163    fore200e->state = FORE200E_STATE_INIT_RXQ;
2164    return 0;
2165}
2166
2167
2168static int fore200e_init_tx_queue(struct fore200e *fore200e)
2169{
2170    struct host_txq*     txq =  &fore200e->host_txq;
2171    struct cp_txq_entry __iomem * cp_entry;
2172    int i;
2173
2174    DPRINTK(2, "transmit queue is being initialized\n");
2175
2176    /* allocate and align the array of status words */
2177    if (fore200e_dma_chunk_alloc(fore200e,
2178                                       &txq->status,
2179                                       sizeof(enum status), 
2180                                       QUEUE_SIZE_TX,
2181                                       fore200e->bus->status_alignment) < 0) {
2182        return -ENOMEM;
2183    }
2184
2185    /* allocate and align the array of transmit PDU descriptors */
2186    if (fore200e_dma_chunk_alloc(fore200e,
2187                                       &txq->tpd,
2188                                       sizeof(struct tpd), 
2189                                       QUEUE_SIZE_TX,
2190                                       fore200e->bus->descr_alignment) < 0) {
2191        
2192        fore200e_dma_chunk_free(fore200e, &txq->status);
2193        return -ENOMEM;
2194    }
2195
2196    /* get the base address of the cp resident tx queue entries */
2197    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2198
2199    /* fill the host resident and cp resident tx entries */
2200    for (i=0; i < QUEUE_SIZE_TX; i++) {
2201        
2202        txq->host_entry[ i ].status = 
2203                             FORE200E_INDEX(txq->status.align_addr, enum status, i);
2204        txq->host_entry[ i ].tpd = 
2205                             FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2206        txq->host_entry[ i ].tpd_dma  = 
2207                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2208        txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2209
2210        *txq->host_entry[ i ].status = STATUS_FREE;
2211        
2212        fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2213                             &cp_entry[ i ].status_haddr);
2214        
2215        /* although there is a one-to-one mapping of tx queue entries and tpds,
2216           we do not write here the DMA (physical) base address of each tpd into
2217           the related cp resident entry, because the cp relies on this write
2218           operation to detect that a new pdu has been submitted for tx */
2219    }
2220
2221    /* set the head and tail entries of the queue */
2222    txq->head = 0;
2223    txq->tail = 0;
2224
2225    fore200e->state = FORE200E_STATE_INIT_TXQ;
2226    return 0;
2227}
2228
2229
2230static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2231{
2232    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2233    struct cp_cmdq_entry __iomem * cp_entry;
2234    int i;
2235
2236    DPRINTK(2, "command queue is being initialized\n");
2237
2238    /* allocate and align the array of status words */
2239    if (fore200e_dma_chunk_alloc(fore200e,
2240                                       &cmdq->status,
2241                                       sizeof(enum status), 
2242                                       QUEUE_SIZE_CMD,
2243                                       fore200e->bus->status_alignment) < 0) {
2244        return -ENOMEM;
2245    }
2246    
2247    /* get the base address of the cp resident cmd queue entries */
2248    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2249
2250    /* fill the host resident and cp resident cmd entries */
2251    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2252        
2253        cmdq->host_entry[ i ].status   = 
2254                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2255        cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2256
2257        *cmdq->host_entry[ i ].status = STATUS_FREE;
2258
2259        fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2260                             &cp_entry[ i ].status_haddr);
2261    }
2262
2263    /* set the head entry of the queue */
2264    cmdq->head = 0;
2265
2266    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2267    return 0;
2268}
2269
2270
2271static void fore200e_param_bs_queue(struct fore200e *fore200e,
2272                                    enum buffer_scheme scheme,
2273                                    enum buffer_magn magn, int queue_length,
2274                                    int pool_size, int supply_blksize)
2275{
2276    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2277
2278    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2279    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2280    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2281    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2282}
2283
2284
2285static int fore200e_initialize(struct fore200e *fore200e)
2286{
2287    struct cp_queues __iomem * cpq;
2288    int               ok, scheme, magn;
2289
2290    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2291
2292    mutex_init(&fore200e->rate_mtx);
2293    spin_lock_init(&fore200e->q_lock);
2294
2295    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2296
2297    /* enable cp to host interrupts */
2298    fore200e->bus->write(1, &cpq->imask);
2299
2300    if (fore200e->bus->irq_enable)
2301        fore200e->bus->irq_enable(fore200e);
2302    
2303    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2304
2305    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2306    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2307    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2308
2309    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2310    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2311
2312    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2313        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2314            fore200e_param_bs_queue(fore200e, scheme, magn,
2315                                    QUEUE_SIZE_BS, 
2316                                    fore200e_rx_buf_nbr[ scheme ][ magn ],
2317                                    RBD_BLK_SIZE);
2318
2319    /* issue the initialize command */
2320    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2321    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2322
2323    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2324    if (ok == 0) {
2325        printk(FORE200E "device %s initialization failed\n", fore200e->name);
2326        return -ENODEV;
2327    }
2328
2329    printk(FORE200E "device %s initialized\n", fore200e->name);
2330
2331    fore200e->state = FORE200E_STATE_INITIALIZE;
2332    return 0;
2333}
2334
2335
2336static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2337{
2338    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2339
2340#if 0
2341    printk("%c", c);
2342#endif
2343    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2344}
2345
2346
2347static int fore200e_monitor_getc(struct fore200e *fore200e)
2348{
2349    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2350    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2351    int                c;
2352
2353    while (time_before(jiffies, timeout)) {
2354
2355        c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2356
2357        if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2358
2359            fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2360#if 0
2361            printk("%c", c & 0xFF);
2362#endif
2363            return c & 0xFF;
2364        }
2365    }
2366
2367    return -1;
2368}
2369
2370
2371static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2372{
2373    while (*str) {
2374
2375        /* the i960 monitor doesn't accept any new character if it has something to say */
2376        while (fore200e_monitor_getc(fore200e) >= 0);
2377        
2378        fore200e_monitor_putc(fore200e, *str++);
2379    }
2380
2381    while (fore200e_monitor_getc(fore200e) >= 0);
2382}
2383
2384#ifdef __LITTLE_ENDIAN
2385#define FW_EXT ".bin"
2386#else
2387#define FW_EXT "_ecd.bin2"
2388#endif
2389
2390static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2391{
2392    const struct firmware *firmware;
2393    const struct fw_header *fw_header;
2394    const __le32 *fw_data;
2395    u32 fw_size;
2396    u32 __iomem *load_addr;
2397    char buf[48];
2398    int err;
2399
2400    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2401    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2402        printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2403        return err;
2404    }
2405
2406    fw_data = (const __le32 *)firmware->data;
2407    fw_size = firmware->size / sizeof(u32);
2408    fw_header = (const struct fw_header *)firmware->data;
2409    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2410
2411    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2412            fore200e->name, load_addr, fw_size);
2413
2414    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2415        printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2416        goto release;
2417    }
2418
2419    for (; fw_size--; fw_data++, load_addr++)
2420        fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2421
2422    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2423
2424#if defined(__sparc_v9__)
2425    /* reported to be required by SBA cards on some sparc64 hosts */
2426    fore200e_spin(100);
2427#endif
2428
2429    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2430    fore200e_monitor_puts(fore200e, buf);
2431
2432    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2433        printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2434        goto release;
2435    }
2436
2437    printk(FORE200E "device %s firmware started\n", fore200e->name);
2438
2439    fore200e->state = FORE200E_STATE_START_FW;
2440    err = 0;
2441
2442release:
2443    release_firmware(firmware);
2444    return err;
2445}
2446
2447
2448static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2449{
2450    struct atm_dev* atm_dev;
2451
2452    DPRINTK(2, "device %s being registered\n", fore200e->name);
2453
2454    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2455                               -1, NULL);
2456    if (atm_dev == NULL) {
2457        printk(FORE200E "unable to register device %s\n", fore200e->name);
2458        return -ENODEV;
2459    }
2460
2461    atm_dev->dev_data = fore200e;
2462    fore200e->atm_dev = atm_dev;
2463
2464    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2465    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2466
2467    fore200e->available_cell_rate = ATM_OC3_PCR;
2468
2469    fore200e->state = FORE200E_STATE_REGISTER;
2470    return 0;
2471}
2472
2473
2474static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2475{
2476    if (fore200e_register(fore200e, parent) < 0)
2477        return -ENODEV;
2478    
2479    if (fore200e->bus->configure(fore200e) < 0)
2480        return -ENODEV;
2481
2482    if (fore200e->bus->map(fore200e) < 0)
2483        return -ENODEV;
2484
2485    if (fore200e_reset(fore200e, 1) < 0)
2486        return -ENODEV;
2487
2488    if (fore200e_load_and_start_fw(fore200e) < 0)
2489        return -ENODEV;
2490
2491    if (fore200e_initialize(fore200e) < 0)
2492        return -ENODEV;
2493
2494    if (fore200e_init_cmd_queue(fore200e) < 0)
2495        return -ENOMEM;
2496
2497    if (fore200e_init_tx_queue(fore200e) < 0)
2498        return -ENOMEM;
2499
2500    if (fore200e_init_rx_queue(fore200e) < 0)
2501        return -ENOMEM;
2502
2503    if (fore200e_init_bs_queue(fore200e) < 0)
2504        return -ENOMEM;
2505
2506    if (fore200e_alloc_rx_buf(fore200e) < 0)
2507        return -ENOMEM;
2508
2509    if (fore200e_get_esi(fore200e) < 0)
2510        return -EIO;
2511
2512    if (fore200e_irq_request(fore200e) < 0)
2513        return -EBUSY;
2514
2515    fore200e_supply(fore200e);
2516
2517    /* all done, board initialization is now complete */
2518    fore200e->state = FORE200E_STATE_COMPLETE;
2519    return 0;
2520}
2521
2522#ifdef CONFIG_SBUS
2523static const struct of_device_id fore200e_sba_match[];
2524static int fore200e_sba_probe(struct platform_device *op)
2525{
2526        const struct of_device_id *match;
2527        struct fore200e *fore200e;
2528        static int index = 0;
2529        int err;
2530
2531        match = of_match_device(fore200e_sba_match, &op->dev);
2532        if (!match)
2533                return -EINVAL;
2534
2535        fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2536        if (!fore200e)
2537                return -ENOMEM;
2538
2539        fore200e->bus = &fore200e_sbus_ops;
2540        fore200e->dev = &op->dev;
2541        fore200e->irq = op->archdata.irqs[0];
2542        fore200e->phys_base = op->resource[0].start;
2543
2544        sprintf(fore200e->name, "SBA-200E-%d", index);
2545
2546        err = fore200e_init(fore200e, &op->dev);
2547        if (err < 0) {
2548                fore200e_shutdown(fore200e);
2549                kfree(fore200e);
2550                return err;
2551        }
2552
2553        index++;
2554        dev_set_drvdata(&op->dev, fore200e);
2555
2556        return 0;
2557}
2558
2559static int fore200e_sba_remove(struct platform_device *op)
2560{
2561        struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2562
2563        fore200e_shutdown(fore200e);
2564        kfree(fore200e);
2565
2566        return 0;
2567}
2568
2569static const struct of_device_id fore200e_sba_match[] = {
2570        {
2571                .name = SBA200E_PROM_NAME,
2572        },
2573        {},
2574};
2575MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2576
2577static struct platform_driver fore200e_sba_driver = {
2578        .driver = {
2579                .name = "fore_200e",
2580                .of_match_table = fore200e_sba_match,
2581        },
2582        .probe          = fore200e_sba_probe,
2583        .remove         = fore200e_sba_remove,
2584};
2585#endif
2586
2587#ifdef CONFIG_PCI
2588static int fore200e_pca_detect(struct pci_dev *pci_dev,
2589                               const struct pci_device_id *pci_ent)
2590{
2591    struct fore200e* fore200e;
2592    int err = 0;
2593    static int index = 0;
2594
2595    if (pci_enable_device(pci_dev)) {
2596        err = -EINVAL;
2597        goto out;
2598    }
2599
2600    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2601        err = -EINVAL;
2602        goto out;
2603    }
2604    
2605    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2606    if (fore200e == NULL) {
2607        err = -ENOMEM;
2608        goto out_disable;
2609    }
2610
2611    fore200e->bus       = &fore200e_pci_ops;
2612    fore200e->dev       = &pci_dev->dev;
2613    fore200e->irq       = pci_dev->irq;
2614    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2615
2616    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2617
2618    pci_set_master(pci_dev);
2619
2620    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2621           fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2622
2623    sprintf(fore200e->name, "PCA-200E-%d", index);
2624
2625    err = fore200e_init(fore200e, &pci_dev->dev);
2626    if (err < 0) {
2627        fore200e_shutdown(fore200e);
2628        goto out_free;
2629    }
2630
2631    ++index;
2632    pci_set_drvdata(pci_dev, fore200e);
2633
2634out:
2635    return err;
2636
2637out_free:
2638    kfree(fore200e);
2639out_disable:
2640    pci_disable_device(pci_dev);
2641    goto out;
2642}
2643
2644
2645static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2646{
2647    struct fore200e *fore200e;
2648
2649    fore200e = pci_get_drvdata(pci_dev);
2650
2651    fore200e_shutdown(fore200e);
2652    kfree(fore200e);
2653    pci_disable_device(pci_dev);
2654}
2655
2656
2657static const struct pci_device_id fore200e_pca_tbl[] = {
2658    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2659    { 0, }
2660};
2661
2662MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2663
2664static struct pci_driver fore200e_pca_driver = {
2665    .name =     "fore_200e",
2666    .probe =    fore200e_pca_detect,
2667    .remove =   fore200e_pca_remove_one,
2668    .id_table = fore200e_pca_tbl,
2669};
2670#endif
2671
2672static int __init fore200e_module_init(void)
2673{
2674        int err = 0;
2675
2676        printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2677
2678#ifdef CONFIG_SBUS
2679        err = platform_driver_register(&fore200e_sba_driver);
2680        if (err)
2681                return err;
2682#endif
2683
2684#ifdef CONFIG_PCI
2685        err = pci_register_driver(&fore200e_pca_driver);
2686#endif
2687
2688#ifdef CONFIG_SBUS
2689        if (err)
2690                platform_driver_unregister(&fore200e_sba_driver);
2691#endif
2692
2693        return err;
2694}
2695
2696static void __exit fore200e_module_cleanup(void)
2697{
2698#ifdef CONFIG_PCI
2699        pci_unregister_driver(&fore200e_pca_driver);
2700#endif
2701#ifdef CONFIG_SBUS
2702        platform_driver_unregister(&fore200e_sba_driver);
2703#endif
2704}
2705
2706static int
2707fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2708{
2709    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2710    struct fore200e_vcc* fore200e_vcc;
2711    struct atm_vcc*      vcc;
2712    int                  i, len, left = *pos;
2713    unsigned long        flags;
2714
2715    if (!left--) {
2716
2717        if (fore200e_getstats(fore200e) < 0)
2718            return -EIO;
2719
2720        len = sprintf(page,"\n"
2721                       " device:\n"
2722                       "   internal name:\t\t%s\n", fore200e->name);
2723
2724        /* print bus-specific information */
2725        if (fore200e->bus->proc_read)
2726            len += fore200e->bus->proc_read(fore200e, page + len);
2727        
2728        len += sprintf(page + len,
2729                "   interrupt line:\t\t%s\n"
2730                "   physical base address:\t0x%p\n"
2731                "   virtual base address:\t0x%p\n"
2732                "   factory address (ESI):\t%pM\n"
2733                "   board serial number:\t\t%d\n\n",
2734                fore200e_irq_itoa(fore200e->irq),
2735                (void*)fore200e->phys_base,
2736                fore200e->virt_base,
2737                fore200e->esi,
2738                fore200e->esi[4] * 256 + fore200e->esi[5]);
2739
2740        return len;
2741    }
2742
2743    if (!left--)
2744        return sprintf(page,
2745                       "   free small bufs, scheme 1:\t%d\n"
2746                       "   free large bufs, scheme 1:\t%d\n"
2747                       "   free small bufs, scheme 2:\t%d\n"
2748                       "   free large bufs, scheme 2:\t%d\n",
2749                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2750                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2751                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2753
2754    if (!left--) {
2755        u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2756
2757        len = sprintf(page,"\n\n"
2758                      " cell processor:\n"
2759                      "   heartbeat state:\t\t");
2760        
2761        if (hb >> 16 != 0xDEAD)
2762            len += sprintf(page + len, "0x%08x\n", hb);
2763        else
2764            len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2765
2766        return len;
2767    }
2768
2769    if (!left--) {
2770        static const char* media_name[] = {
2771            "unshielded twisted pair",
2772            "multimode optical fiber ST",
2773            "multimode optical fiber SC",
2774            "single-mode optical fiber ST",
2775            "single-mode optical fiber SC",
2776            "unknown"
2777        };
2778
2779        static const char* oc3_mode[] = {
2780            "normal operation",
2781            "diagnostic loopback",
2782            "line loopback",
2783            "unknown"
2784        };
2785
2786        u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2787        u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2788        u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2789        u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2790        u32 oc3_index;
2791
2792        if (media_index > 4)
2793                media_index = 5;
2794        
2795        switch (fore200e->loop_mode) {
2796            case ATM_LM_NONE:    oc3_index = 0;
2797                                 break;
2798            case ATM_LM_LOC_PHY: oc3_index = 1;
2799                                 break;
2800            case ATM_LM_RMT_PHY: oc3_index = 2;
2801                                 break;
2802            default:             oc3_index = 3;
2803        }
2804
2805        return sprintf(page,
2806                       "   firmware release:\t\t%d.%d.%d\n"
2807                       "   monitor release:\t\t%d.%d\n"
2808                       "   media type:\t\t\t%s\n"
2809                       "   OC-3 revision:\t\t0x%x\n"
2810                       "   OC-3 mode:\t\t\t%s",
2811                       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2812                       mon960_release >> 16, mon960_release << 16 >> 16,
2813                       media_name[ media_index ],
2814                       oc3_revision,
2815                       oc3_mode[ oc3_index ]);
2816    }
2817
2818    if (!left--) {
2819        struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2820
2821        return sprintf(page,
2822                       "\n\n"
2823                       " monitor:\n"
2824                       "   version number:\t\t%d\n"
2825                       "   boot status word:\t\t0x%08x\n",
2826                       fore200e->bus->read(&cp_monitor->mon_version),
2827                       fore200e->bus->read(&cp_monitor->bstat));
2828    }
2829
2830    if (!left--)
2831        return sprintf(page,
2832                       "\n"
2833                       " device statistics:\n"
2834                       "  4b5b:\n"
2835                       "     crc_header_errors:\t\t%10u\n"
2836                       "     framing_errors:\t\t%10u\n",
2837                       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2838                       be32_to_cpu(fore200e->stats->phy.framing_errors));
2839    
2840    if (!left--)
2841        return sprintf(page, "\n"
2842                       "  OC-3:\n"
2843                       "     section_bip8_errors:\t%10u\n"
2844                       "     path_bip8_errors:\t\t%10u\n"
2845                       "     line_bip24_errors:\t\t%10u\n"
2846                       "     line_febe_errors:\t\t%10u\n"
2847                       "     path_febe_errors:\t\t%10u\n"
2848                       "     corr_hcs_errors:\t\t%10u\n"
2849                       "     ucorr_hcs_errors:\t\t%10u\n",
2850                       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2851                       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2852                       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2853                       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2854                       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2855                       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2856                       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2857
2858    if (!left--)
2859        return sprintf(page,"\n"
2860                       "   ATM:\t\t\t\t     cells\n"
2861                       "     TX:\t\t\t%10u\n"
2862                       "     RX:\t\t\t%10u\n"
2863                       "     vpi out of range:\t\t%10u\n"
2864                       "     vpi no conn:\t\t%10u\n"
2865                       "     vci out of range:\t\t%10u\n"
2866                       "     vci no conn:\t\t%10u\n",
2867                       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2868                       be32_to_cpu(fore200e->stats->atm.cells_received),
2869                       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2870                       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2871                       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2872                       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2873    
2874    if (!left--)
2875        return sprintf(page,"\n"
2876                       "   AAL0:\t\t\t     cells\n"
2877                       "     TX:\t\t\t%10u\n"
2878                       "     RX:\t\t\t%10u\n"
2879                       "     dropped:\t\t\t%10u\n",
2880                       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2881                       be32_to_cpu(fore200e->stats->aal0.cells_received),
2882                       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2883    
2884    if (!left--)
2885        return sprintf(page,"\n"
2886                       "   AAL3/4:\n"
2887                       "     SAR sublayer:\t\t     cells\n"
2888                       "       TX:\t\t\t%10u\n"
2889                       "       RX:\t\t\t%10u\n"
2890                       "       dropped:\t\t\t%10u\n"
2891                       "       CRC errors:\t\t%10u\n"
2892                       "       protocol errors:\t\t%10u\n\n"
2893                       "     CS  sublayer:\t\t      PDUs\n"
2894                       "       TX:\t\t\t%10u\n"
2895                       "       RX:\t\t\t%10u\n"
2896                       "       dropped:\t\t\t%10u\n"
2897                       "       protocol errors:\t\t%10u\n",
2898                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2899                       be32_to_cpu(fore200e->stats->aal34.cells_received),
2900                       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2901                       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2902                       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2903                       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2904                       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2905                       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2906                       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2907    
2908    if (!left--)
2909        return sprintf(page,"\n"
2910                       "   AAL5:\n"
2911                       "     SAR sublayer:\t\t     cells\n"
2912                       "       TX:\t\t\t%10u\n"
2913                       "       RX:\t\t\t%10u\n"
2914                       "       dropped:\t\t\t%10u\n"
2915                       "       congestions:\t\t%10u\n\n"
2916                       "     CS  sublayer:\t\t      PDUs\n"
2917                       "       TX:\t\t\t%10u\n"
2918                       "       RX:\t\t\t%10u\n"
2919                       "       dropped:\t\t\t%10u\n"
2920                       "       CRC errors:\t\t%10u\n"
2921                       "       protocol errors:\t\t%10u\n",
2922                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2923                       be32_to_cpu(fore200e->stats->aal5.cells_received),
2924                       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2925                       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2926                       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2927                       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2928                       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2929                       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2930                       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2931    
2932    if (!left--)
2933        return sprintf(page,"\n"
2934                       "   AUX:\t\t       allocation failures\n"
2935                       "     small b1:\t\t\t%10u\n"
2936                       "     large b1:\t\t\t%10u\n"
2937                       "     small b2:\t\t\t%10u\n"
2938                       "     large b2:\t\t\t%10u\n"
2939                       "     RX PDUs:\t\t\t%10u\n"
2940                       "     TX PDUs:\t\t\t%10lu\n",
2941                       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2942                       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2943                       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2944                       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2945                       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2946                       fore200e->tx_sat);
2947    
2948    if (!left--)
2949        return sprintf(page,"\n"
2950                       " receive carrier:\t\t\t%s\n",
2951                       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2952    
2953    if (!left--) {
2954        return sprintf(page,"\n"
2955                       " VCCs:\n  address   VPI VCI   AAL "
2956                       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2957    }
2958
2959    for (i = 0; i < NBR_CONNECT; i++) {
2960
2961        vcc = fore200e->vc_map[i].vcc;
2962
2963        if (vcc == NULL)
2964            continue;
2965
2966        spin_lock_irqsave(&fore200e->q_lock, flags);
2967
2968        if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2969
2970            fore200e_vcc = FORE200E_VCC(vcc);
2971            ASSERT(fore200e_vcc);
2972
2973            len = sprintf(page,
2974                          "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2975                          vcc,
2976                          vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2977                          fore200e_vcc->tx_pdu,
2978                          fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2979                          fore200e_vcc->tx_max_pdu,
2980                          fore200e_vcc->rx_pdu,
2981                          fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2982                          fore200e_vcc->rx_max_pdu);
2983
2984            spin_unlock_irqrestore(&fore200e->q_lock, flags);
2985            return len;
2986        }
2987
2988        spin_unlock_irqrestore(&fore200e->q_lock, flags);
2989    }
2990    
2991    return 0;
2992}
2993
2994module_init(fore200e_module_init);
2995module_exit(fore200e_module_cleanup);
2996
2997
2998static const struct atmdev_ops fore200e_ops = {
2999        .open       = fore200e_open,
3000        .close      = fore200e_close,
3001        .ioctl      = fore200e_ioctl,
3002        .send       = fore200e_send,
3003        .change_qos = fore200e_change_qos,
3004        .proc_read  = fore200e_proc_read,
3005        .owner      = THIS_MODULE
3006};
3007
3008MODULE_LICENSE("GPL");
3009#ifdef CONFIG_PCI
3010#ifdef __LITTLE_ENDIAN__
3011MODULE_FIRMWARE("pca200e.bin");
3012#else
3013MODULE_FIRMWARE("pca200e_ecd.bin2");
3014#endif
3015#endif /* CONFIG_PCI */
3016#ifdef CONFIG_SBUS
3017MODULE_FIRMWARE("sba200e_ecd.bin2");
3018#endif
3019