linux/drivers/auxdisplay/panel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Front panel driver for Linux
   4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   5 * Copyright (C) 2016-2017 Glider bvba
   6 *
   7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
   8 * connected to a parallel printer port.
   9 *
  10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  11 * serial module compatible with Samsung's KS0074. The pins may be connected in
  12 * any combination, everything is programmable.
  13 *
  14 * The keypad consists in a matrix of push buttons connecting input pins to
  15 * data output pins or to the ground. The combinations have to be hard-coded
  16 * in the driver, though several profiles exist and adding new ones is easy.
  17 *
  18 * Several profiles are provided for commonly found LCD+keypad modules on the
  19 * market, such as those found in Nexcom's appliances.
  20 *
  21 * FIXME:
  22 *      - the initialization/deinitialization process is very dirty and should
  23 *        be rewritten. It may even be buggy.
  24 *
  25 * TODO:
  26 *      - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  27 *      - make the LCD a part of a virtual screen of Vx*Vy
  28 *      - make the inputs list smp-safe
  29 *      - change the keyboard to a double mapping : signals -> key_id -> values
  30 *        so that applications can change values without knowing signals
  31 *
  32 */
  33
  34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  35
  36#include <linux/module.h>
  37
  38#include <linux/types.h>
  39#include <linux/errno.h>
  40#include <linux/signal.h>
  41#include <linux/sched.h>
  42#include <linux/spinlock.h>
  43#include <linux/interrupt.h>
  44#include <linux/miscdevice.h>
  45#include <linux/slab.h>
  46#include <linux/ioport.h>
  47#include <linux/fcntl.h>
  48#include <linux/init.h>
  49#include <linux/delay.h>
  50#include <linux/kernel.h>
  51#include <linux/ctype.h>
  52#include <linux/parport.h>
  53#include <linux/list.h>
  54
  55#include <linux/io.h>
  56#include <linux/uaccess.h>
  57
  58#include "charlcd.h"
  59#include "hd44780_common.h"
  60
  61#define LCD_MAXBYTES            256     /* max burst write */
  62
  63#define KEYPAD_BUFFER           64
  64
  65/* poll the keyboard this every second */
  66#define INPUT_POLL_TIME         (HZ / 50)
  67/* a key starts to repeat after this times INPUT_POLL_TIME */
  68#define KEYPAD_REP_START        (10)
  69/* a key repeats this times INPUT_POLL_TIME */
  70#define KEYPAD_REP_DELAY        (2)
  71
  72/* converts an r_str() input to an active high, bits string : 000BAOSE */
  73#define PNL_PINPUT(a)           ((((unsigned char)(a)) ^ 0x7F) >> 3)
  74
  75#define PNL_PBUSY               0x80    /* inverted input, active low */
  76#define PNL_PACK                0x40    /* direct input, active low */
  77#define PNL_POUTPA              0x20    /* direct input, active high */
  78#define PNL_PSELECD             0x10    /* direct input, active high */
  79#define PNL_PERRORP             0x08    /* direct input, active low */
  80
  81#define PNL_PBIDIR              0x20    /* bi-directional ports */
  82/* high to read data in or-ed with data out */
  83#define PNL_PINTEN              0x10
  84#define PNL_PSELECP             0x08    /* inverted output, active low */
  85#define PNL_PINITP              0x04    /* direct output, active low */
  86#define PNL_PAUTOLF             0x02    /* inverted output, active low */
  87#define PNL_PSTROBE             0x01    /* inverted output */
  88
  89#define PNL_PD0                 0x01
  90#define PNL_PD1                 0x02
  91#define PNL_PD2                 0x04
  92#define PNL_PD3                 0x08
  93#define PNL_PD4                 0x10
  94#define PNL_PD5                 0x20
  95#define PNL_PD6                 0x40
  96#define PNL_PD7                 0x80
  97
  98#define PIN_NONE                0
  99#define PIN_STROBE              1
 100#define PIN_D0                  2
 101#define PIN_D1                  3
 102#define PIN_D2                  4
 103#define PIN_D3                  5
 104#define PIN_D4                  6
 105#define PIN_D5                  7
 106#define PIN_D6                  8
 107#define PIN_D7                  9
 108#define PIN_AUTOLF              14
 109#define PIN_INITP               16
 110#define PIN_SELECP              17
 111#define PIN_NOT_SET             127
 112
 113#define NOT_SET                 -1
 114
 115/* macros to simplify use of the parallel port */
 116#define r_ctr(x)        (parport_read_control((x)->port))
 117#define r_dtr(x)        (parport_read_data((x)->port))
 118#define r_str(x)        (parport_read_status((x)->port))
 119#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 120#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 121
 122/* this defines which bits are to be used and which ones to be ignored */
 123/* logical or of the output bits involved in the scan matrix */
 124static __u8 scan_mask_o;
 125/* logical or of the input bits involved in the scan matrix */
 126static __u8 scan_mask_i;
 127
 128enum input_type {
 129        INPUT_TYPE_STD,
 130        INPUT_TYPE_KBD,
 131};
 132
 133enum input_state {
 134        INPUT_ST_LOW,
 135        INPUT_ST_RISING,
 136        INPUT_ST_HIGH,
 137        INPUT_ST_FALLING,
 138};
 139
 140struct logical_input {
 141        struct list_head list;
 142        __u64 mask;
 143        __u64 value;
 144        enum input_type type;
 145        enum input_state state;
 146        __u8 rise_time, fall_time;
 147        __u8 rise_timer, fall_timer, high_timer;
 148
 149        union {
 150                struct {        /* valid when type == INPUT_TYPE_STD */
 151                        void (*press_fct)(int);
 152                        void (*release_fct)(int);
 153                        int press_data;
 154                        int release_data;
 155                } std;
 156                struct {        /* valid when type == INPUT_TYPE_KBD */
 157                        char press_str[sizeof(void *) + sizeof(int)] __nonstring;
 158                        char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
 159                        char release_str[sizeof(void *) + sizeof(int)] __nonstring;
 160                } kbd;
 161        } u;
 162};
 163
 164static LIST_HEAD(logical_inputs);       /* list of all defined logical inputs */
 165
 166/* physical contacts history
 167 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 168 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 169 * corresponds to the ground.
 170 * Within each group, bits are stored in the same order as read on the port :
 171 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 172 * So, each __u64 is represented like this :
 173 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 174 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 175 */
 176
 177/* what has just been read from the I/O ports */
 178static __u64 phys_read;
 179/* previous phys_read */
 180static __u64 phys_read_prev;
 181/* stabilized phys_read (phys_read|phys_read_prev) */
 182static __u64 phys_curr;
 183/* previous phys_curr */
 184static __u64 phys_prev;
 185/* 0 means that at least one logical signal needs be computed */
 186static char inputs_stable;
 187
 188/* these variables are specific to the keypad */
 189static struct {
 190        bool enabled;
 191} keypad;
 192
 193static char keypad_buffer[KEYPAD_BUFFER];
 194static int keypad_buflen;
 195static int keypad_start;
 196static char keypressed;
 197static wait_queue_head_t keypad_read_wait;
 198
 199/* lcd-specific variables */
 200static struct {
 201        bool enabled;
 202        bool initialized;
 203
 204        int charset;
 205        int proto;
 206
 207        /* TODO: use union here? */
 208        struct {
 209                int e;
 210                int rs;
 211                int rw;
 212                int cl;
 213                int da;
 214                int bl;
 215        } pins;
 216
 217        struct charlcd *charlcd;
 218} lcd;
 219
 220/* Needed only for init */
 221static int selected_lcd_type = NOT_SET;
 222
 223/*
 224 * Bit masks to convert LCD signals to parallel port outputs.
 225 * _d_ are values for data port, _c_ are for control port.
 226 * [0] = signal OFF, [1] = signal ON, [2] = mask
 227 */
 228#define BIT_CLR         0
 229#define BIT_SET         1
 230#define BIT_MSK         2
 231#define BIT_STATES      3
 232/*
 233 * one entry for each bit on the LCD
 234 */
 235#define LCD_BIT_E       0
 236#define LCD_BIT_RS      1
 237#define LCD_BIT_RW      2
 238#define LCD_BIT_BL      3
 239#define LCD_BIT_CL      4
 240#define LCD_BIT_DA      5
 241#define LCD_BITS        6
 242
 243/*
 244 * each bit can be either connected to a DATA or CTRL port
 245 */
 246#define LCD_PORT_C      0
 247#define LCD_PORT_D      1
 248#define LCD_PORTS       2
 249
 250static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 251
 252/*
 253 * LCD protocols
 254 */
 255#define LCD_PROTO_PARALLEL      0
 256#define LCD_PROTO_SERIAL        1
 257#define LCD_PROTO_TI_DA8XX_LCD  2
 258
 259/*
 260 * LCD character sets
 261 */
 262#define LCD_CHARSET_NORMAL      0
 263#define LCD_CHARSET_KS0074      1
 264
 265/*
 266 * LCD types
 267 */
 268#define LCD_TYPE_NONE           0
 269#define LCD_TYPE_CUSTOM         1
 270#define LCD_TYPE_OLD            2
 271#define LCD_TYPE_KS0074         3
 272#define LCD_TYPE_HANTRONIX      4
 273#define LCD_TYPE_NEXCOM         5
 274
 275/*
 276 * keypad types
 277 */
 278#define KEYPAD_TYPE_NONE        0
 279#define KEYPAD_TYPE_OLD         1
 280#define KEYPAD_TYPE_NEW         2
 281#define KEYPAD_TYPE_NEXCOM      3
 282
 283/*
 284 * panel profiles
 285 */
 286#define PANEL_PROFILE_CUSTOM    0
 287#define PANEL_PROFILE_OLD       1
 288#define PANEL_PROFILE_NEW       2
 289#define PANEL_PROFILE_HANTRONIX 3
 290#define PANEL_PROFILE_NEXCOM    4
 291#define PANEL_PROFILE_LARGE     5
 292
 293/*
 294 * Construct custom config from the kernel's configuration
 295 */
 296#define DEFAULT_PARPORT         0
 297#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 298#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
 299#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
 300#define DEFAULT_LCD_HEIGHT      2
 301#define DEFAULT_LCD_WIDTH       40
 302#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 303#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 304
 305#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 306#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 307#define DEFAULT_LCD_PIN_RW      PIN_INITP
 308#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 309#define DEFAULT_LCD_PIN_SDA     PIN_D0
 310#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 311
 312#ifdef CONFIG_PANEL_PARPORT
 313#undef DEFAULT_PARPORT
 314#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 315#endif
 316
 317#ifdef CONFIG_PANEL_PROFILE
 318#undef DEFAULT_PROFILE
 319#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 320#endif
 321
 322#if DEFAULT_PROFILE == 0        /* custom */
 323#ifdef CONFIG_PANEL_KEYPAD
 324#undef DEFAULT_KEYPAD_TYPE
 325#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
 326#endif
 327
 328#ifdef CONFIG_PANEL_LCD
 329#undef DEFAULT_LCD_TYPE
 330#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
 331#endif
 332
 333#ifdef CONFIG_PANEL_LCD_HEIGHT
 334#undef DEFAULT_LCD_HEIGHT
 335#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 336#endif
 337
 338#ifdef CONFIG_PANEL_LCD_WIDTH
 339#undef DEFAULT_LCD_WIDTH
 340#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 341#endif
 342
 343#ifdef CONFIG_PANEL_LCD_BWIDTH
 344#undef DEFAULT_LCD_BWIDTH
 345#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 346#endif
 347
 348#ifdef CONFIG_PANEL_LCD_HWIDTH
 349#undef DEFAULT_LCD_HWIDTH
 350#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 351#endif
 352
 353#ifdef CONFIG_PANEL_LCD_CHARSET
 354#undef DEFAULT_LCD_CHARSET
 355#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 356#endif
 357
 358#ifdef CONFIG_PANEL_LCD_PROTO
 359#undef DEFAULT_LCD_PROTO
 360#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 361#endif
 362
 363#ifdef CONFIG_PANEL_LCD_PIN_E
 364#undef DEFAULT_LCD_PIN_E
 365#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 366#endif
 367
 368#ifdef CONFIG_PANEL_LCD_PIN_RS
 369#undef DEFAULT_LCD_PIN_RS
 370#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 371#endif
 372
 373#ifdef CONFIG_PANEL_LCD_PIN_RW
 374#undef DEFAULT_LCD_PIN_RW
 375#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 376#endif
 377
 378#ifdef CONFIG_PANEL_LCD_PIN_SCL
 379#undef DEFAULT_LCD_PIN_SCL
 380#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 381#endif
 382
 383#ifdef CONFIG_PANEL_LCD_PIN_SDA
 384#undef DEFAULT_LCD_PIN_SDA
 385#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 386#endif
 387
 388#ifdef CONFIG_PANEL_LCD_PIN_BL
 389#undef DEFAULT_LCD_PIN_BL
 390#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 391#endif
 392
 393#endif /* DEFAULT_PROFILE == 0 */
 394
 395/* global variables */
 396
 397/* Device single-open policy control */
 398static atomic_t keypad_available = ATOMIC_INIT(1);
 399
 400static struct pardevice *pprt;
 401
 402static int keypad_initialized;
 403
 404static DEFINE_SPINLOCK(pprt_lock);
 405static struct timer_list scan_timer;
 406
 407MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 408
 409static int parport = DEFAULT_PARPORT;
 410module_param(parport, int, 0000);
 411MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 412
 413static int profile = DEFAULT_PROFILE;
 414module_param(profile, int, 0000);
 415MODULE_PARM_DESC(profile,
 416                 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 417                 "4=16x2 nexcom; default=40x2, old kp");
 418
 419static int keypad_type = NOT_SET;
 420module_param(keypad_type, int, 0000);
 421MODULE_PARM_DESC(keypad_type,
 422                 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 423
 424static int lcd_type = NOT_SET;
 425module_param(lcd_type, int, 0000);
 426MODULE_PARM_DESC(lcd_type,
 427                 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
 428
 429static int lcd_height = NOT_SET;
 430module_param(lcd_height, int, 0000);
 431MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 432
 433static int lcd_width = NOT_SET;
 434module_param(lcd_width, int, 0000);
 435MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 436
 437static int lcd_bwidth = NOT_SET;        /* internal buffer width (usually 40) */
 438module_param(lcd_bwidth, int, 0000);
 439MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 440
 441static int lcd_hwidth = NOT_SET;        /* hardware buffer width (usually 64) */
 442module_param(lcd_hwidth, int, 0000);
 443MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 444
 445static int lcd_charset = NOT_SET;
 446module_param(lcd_charset, int, 0000);
 447MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 448
 449static int lcd_proto = NOT_SET;
 450module_param(lcd_proto, int, 0000);
 451MODULE_PARM_DESC(lcd_proto,
 452                 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 453
 454/*
 455 * These are the parallel port pins the LCD control signals are connected to.
 456 * Set this to 0 if the signal is not used. Set it to its opposite value
 457 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 458 * pin has not been explicitly specified.
 459 *
 460 * WARNING! no check will be performed about collisions with keypad !
 461 */
 462
 463static int lcd_e_pin  = PIN_NOT_SET;
 464module_param(lcd_e_pin, int, 0000);
 465MODULE_PARM_DESC(lcd_e_pin,
 466                 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 467
 468static int lcd_rs_pin = PIN_NOT_SET;
 469module_param(lcd_rs_pin, int, 0000);
 470MODULE_PARM_DESC(lcd_rs_pin,
 471                 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 472
 473static int lcd_rw_pin = PIN_NOT_SET;
 474module_param(lcd_rw_pin, int, 0000);
 475MODULE_PARM_DESC(lcd_rw_pin,
 476                 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 477
 478static int lcd_cl_pin = PIN_NOT_SET;
 479module_param(lcd_cl_pin, int, 0000);
 480MODULE_PARM_DESC(lcd_cl_pin,
 481                 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 482
 483static int lcd_da_pin = PIN_NOT_SET;
 484module_param(lcd_da_pin, int, 0000);
 485MODULE_PARM_DESC(lcd_da_pin,
 486                 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 487
 488static int lcd_bl_pin = PIN_NOT_SET;
 489module_param(lcd_bl_pin, int, 0000);
 490MODULE_PARM_DESC(lcd_bl_pin,
 491                 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 492
 493/* Deprecated module parameters - consider not using them anymore */
 494
 495static int lcd_enabled = NOT_SET;
 496module_param(lcd_enabled, int, 0000);
 497MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 498
 499static int keypad_enabled = NOT_SET;
 500module_param(keypad_enabled, int, 0000);
 501MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 502
 503/* for some LCD drivers (ks0074) we need a charset conversion table. */
 504static const unsigned char lcd_char_conv_ks0074[256] = {
 505        /*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 506        /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 507        /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 508        /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 509        /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 510        /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 511        /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 512        /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 513        /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 514        /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 515        /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 516        /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 517        /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 518        /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 519        /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 520        /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 521        /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 522        /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 523        /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 524        /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 525        /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 526        /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 527        /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 528        /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 529        /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 530        /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 531        /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 532        /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 533        /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 534        /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 535        /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 536        /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 537        /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 538};
 539
 540static const char old_keypad_profile[][4][9] = {
 541        {"S0", "Left\n", "Left\n", ""},
 542        {"S1", "Down\n", "Down\n", ""},
 543        {"S2", "Up\n", "Up\n", ""},
 544        {"S3", "Right\n", "Right\n", ""},
 545        {"S4", "Esc\n", "Esc\n", ""},
 546        {"S5", "Ret\n", "Ret\n", ""},
 547        {"", "", "", ""}
 548};
 549
 550/* signals, press, repeat, release */
 551static const char new_keypad_profile[][4][9] = {
 552        {"S0", "Left\n", "Left\n", ""},
 553        {"S1", "Down\n", "Down\n", ""},
 554        {"S2", "Up\n", "Up\n", ""},
 555        {"S3", "Right\n", "Right\n", ""},
 556        {"S4s5", "", "Esc\n", "Esc\n"},
 557        {"s4S5", "", "Ret\n", "Ret\n"},
 558        {"S4S5", "Help\n", "", ""},
 559        /* add new signals above this line */
 560        {"", "", "", ""}
 561};
 562
 563/* signals, press, repeat, release */
 564static const char nexcom_keypad_profile[][4][9] = {
 565        {"a-p-e-", "Down\n", "Down\n", ""},
 566        {"a-p-E-", "Ret\n", "Ret\n", ""},
 567        {"a-P-E-", "Esc\n", "Esc\n", ""},
 568        {"a-P-e-", "Up\n", "Up\n", ""},
 569        /* add new signals above this line */
 570        {"", "", "", ""}
 571};
 572
 573static const char (*keypad_profile)[4][9] = old_keypad_profile;
 574
 575static DECLARE_BITMAP(bits, LCD_BITS);
 576
 577static void lcd_get_bits(unsigned int port, int *val)
 578{
 579        unsigned int bit, state;
 580
 581        for (bit = 0; bit < LCD_BITS; bit++) {
 582                state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
 583                *val &= lcd_bits[port][bit][BIT_MSK];
 584                *val |= lcd_bits[port][bit][state];
 585        }
 586}
 587
 588/* sets data port bits according to current signals values */
 589static int set_data_bits(void)
 590{
 591        int val;
 592
 593        val = r_dtr(pprt);
 594        lcd_get_bits(LCD_PORT_D, &val);
 595        w_dtr(pprt, val);
 596        return val;
 597}
 598
 599/* sets ctrl port bits according to current signals values */
 600static int set_ctrl_bits(void)
 601{
 602        int val;
 603
 604        val = r_ctr(pprt);
 605        lcd_get_bits(LCD_PORT_C, &val);
 606        w_ctr(pprt, val);
 607        return val;
 608}
 609
 610/* sets ctrl & data port bits according to current signals values */
 611static void panel_set_bits(void)
 612{
 613        set_data_bits();
 614        set_ctrl_bits();
 615}
 616
 617/*
 618 * Converts a parallel port pin (from -25 to 25) to data and control ports
 619 * masks, and data and control port bits. The signal will be considered
 620 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 621 *
 622 * Result will be used this way :
 623 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 624 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 625 */
 626static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 627{
 628        int d_bit, c_bit, inv;
 629
 630        d_val[0] = 0;
 631        c_val[0] = 0;
 632        d_val[1] = 0;
 633        c_val[1] = 0;
 634        d_val[2] = 0xFF;
 635        c_val[2] = 0xFF;
 636
 637        if (pin == 0)
 638                return;
 639
 640        inv = (pin < 0);
 641        if (inv)
 642                pin = -pin;
 643
 644        d_bit = 0;
 645        c_bit = 0;
 646
 647        switch (pin) {
 648        case PIN_STROBE:        /* strobe, inverted */
 649                c_bit = PNL_PSTROBE;
 650                inv = !inv;
 651                break;
 652        case PIN_D0...PIN_D7:   /* D0 - D7 = 2 - 9 */
 653                d_bit = 1 << (pin - 2);
 654                break;
 655        case PIN_AUTOLF:        /* autofeed, inverted */
 656                c_bit = PNL_PAUTOLF;
 657                inv = !inv;
 658                break;
 659        case PIN_INITP:         /* init, direct */
 660                c_bit = PNL_PINITP;
 661                break;
 662        case PIN_SELECP:        /* select_in, inverted */
 663                c_bit = PNL_PSELECP;
 664                inv = !inv;
 665                break;
 666        default:                /* unknown pin, ignore */
 667                break;
 668        }
 669
 670        if (c_bit) {
 671                c_val[2] &= ~c_bit;
 672                c_val[!inv] = c_bit;
 673        } else if (d_bit) {
 674                d_val[2] &= ~d_bit;
 675                d_val[!inv] = d_bit;
 676        }
 677}
 678
 679/*
 680 * send a serial byte to the LCD panel. The caller is responsible for locking
 681 * if needed.
 682 */
 683static void lcd_send_serial(int byte)
 684{
 685        int bit;
 686
 687        /*
 688         * the data bit is set on D0, and the clock on STROBE.
 689         * LCD reads D0 on STROBE's rising edge.
 690         */
 691        for (bit = 0; bit < 8; bit++) {
 692                clear_bit(LCD_BIT_CL, bits);    /* CLK low */
 693                panel_set_bits();
 694                if (byte & 1) {
 695                        set_bit(LCD_BIT_DA, bits);
 696                } else {
 697                        clear_bit(LCD_BIT_DA, bits);
 698                }
 699
 700                panel_set_bits();
 701                udelay(2);  /* maintain the data during 2 us before CLK up */
 702                set_bit(LCD_BIT_CL, bits);      /* CLK high */
 703                panel_set_bits();
 704                udelay(1);  /* maintain the strobe during 1 us */
 705                byte >>= 1;
 706        }
 707}
 708
 709/* turn the backlight on or off */
 710static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on)
 711{
 712        if (lcd.pins.bl == PIN_NONE)
 713                return;
 714
 715        /* The backlight is activated by setting the AUTOFEED line to +5V  */
 716        spin_lock_irq(&pprt_lock);
 717        if (on)
 718                set_bit(LCD_BIT_BL, bits);
 719        else
 720                clear_bit(LCD_BIT_BL, bits);
 721        panel_set_bits();
 722        spin_unlock_irq(&pprt_lock);
 723}
 724
 725/* send a command to the LCD panel in serial mode */
 726static void lcd_write_cmd_s(struct hd44780_common *hdc, int cmd)
 727{
 728        spin_lock_irq(&pprt_lock);
 729        lcd_send_serial(0x1F);  /* R/W=W, RS=0 */
 730        lcd_send_serial(cmd & 0x0F);
 731        lcd_send_serial((cmd >> 4) & 0x0F);
 732        udelay(40);             /* the shortest command takes at least 40 us */
 733        spin_unlock_irq(&pprt_lock);
 734}
 735
 736/* send data to the LCD panel in serial mode */
 737static void lcd_write_data_s(struct hd44780_common *hdc, int data)
 738{
 739        spin_lock_irq(&pprt_lock);
 740        lcd_send_serial(0x5F);  /* R/W=W, RS=1 */
 741        lcd_send_serial(data & 0x0F);
 742        lcd_send_serial((data >> 4) & 0x0F);
 743        udelay(40);             /* the shortest data takes at least 40 us */
 744        spin_unlock_irq(&pprt_lock);
 745}
 746
 747/* send a command to the LCD panel in 8 bits parallel mode */
 748static void lcd_write_cmd_p8(struct hd44780_common *hdc, int cmd)
 749{
 750        spin_lock_irq(&pprt_lock);
 751        /* present the data to the data port */
 752        w_dtr(pprt, cmd);
 753        udelay(20);     /* maintain the data during 20 us before the strobe */
 754
 755        set_bit(LCD_BIT_E, bits);
 756        clear_bit(LCD_BIT_RS, bits);
 757        clear_bit(LCD_BIT_RW, bits);
 758        set_ctrl_bits();
 759
 760        udelay(40);     /* maintain the strobe during 40 us */
 761
 762        clear_bit(LCD_BIT_E, bits);
 763        set_ctrl_bits();
 764
 765        udelay(120);    /* the shortest command takes at least 120 us */
 766        spin_unlock_irq(&pprt_lock);
 767}
 768
 769/* send data to the LCD panel in 8 bits parallel mode */
 770static void lcd_write_data_p8(struct hd44780_common *hdc, int data)
 771{
 772        spin_lock_irq(&pprt_lock);
 773        /* present the data to the data port */
 774        w_dtr(pprt, data);
 775        udelay(20);     /* maintain the data during 20 us before the strobe */
 776
 777        set_bit(LCD_BIT_E, bits);
 778        set_bit(LCD_BIT_RS, bits);
 779        clear_bit(LCD_BIT_RW, bits);
 780        set_ctrl_bits();
 781
 782        udelay(40);     /* maintain the strobe during 40 us */
 783
 784        clear_bit(LCD_BIT_E, bits);
 785        set_ctrl_bits();
 786
 787        udelay(45);     /* the shortest data takes at least 45 us */
 788        spin_unlock_irq(&pprt_lock);
 789}
 790
 791/* send a command to the TI LCD panel */
 792static void lcd_write_cmd_tilcd(struct hd44780_common *hdc, int cmd)
 793{
 794        spin_lock_irq(&pprt_lock);
 795        /* present the data to the control port */
 796        w_ctr(pprt, cmd);
 797        udelay(60);
 798        spin_unlock_irq(&pprt_lock);
 799}
 800
 801/* send data to the TI LCD panel */
 802static void lcd_write_data_tilcd(struct hd44780_common *hdc, int data)
 803{
 804        spin_lock_irq(&pprt_lock);
 805        /* present the data to the data port */
 806        w_dtr(pprt, data);
 807        udelay(60);
 808        spin_unlock_irq(&pprt_lock);
 809}
 810
 811static const struct charlcd_ops charlcd_ops = {
 812        .backlight      = lcd_backlight,
 813        .print          = hd44780_common_print,
 814        .gotoxy         = hd44780_common_gotoxy,
 815        .home           = hd44780_common_home,
 816        .clear_display  = hd44780_common_clear_display,
 817        .init_display   = hd44780_common_init_display,
 818        .shift_cursor   = hd44780_common_shift_cursor,
 819        .shift_display  = hd44780_common_shift_display,
 820        .display        = hd44780_common_display,
 821        .cursor         = hd44780_common_cursor,
 822        .blink          = hd44780_common_blink,
 823        .fontsize       = hd44780_common_fontsize,
 824        .lines          = hd44780_common_lines,
 825        .redefine_char  = hd44780_common_redefine_char,
 826};
 827
 828/* initialize the LCD driver */
 829static void lcd_init(void)
 830{
 831        struct charlcd *charlcd;
 832        struct hd44780_common *hdc;
 833
 834        hdc = hd44780_common_alloc();
 835        if (!hdc)
 836                return;
 837
 838        charlcd = charlcd_alloc();
 839        if (!charlcd) {
 840                kfree(hdc);
 841                return;
 842        }
 843
 844        hdc->hd44780 = &lcd;
 845        charlcd->drvdata = hdc;
 846
 847        /*
 848         * Init lcd struct with load-time values to preserve exact
 849         * current functionality (at least for now).
 850         */
 851        charlcd->height = lcd_height;
 852        charlcd->width = lcd_width;
 853        hdc->bwidth = lcd_bwidth;
 854        hdc->hwidth = lcd_hwidth;
 855
 856        switch (selected_lcd_type) {
 857        case LCD_TYPE_OLD:
 858                /* parallel mode, 8 bits */
 859                lcd.proto = LCD_PROTO_PARALLEL;
 860                lcd.charset = LCD_CHARSET_NORMAL;
 861                lcd.pins.e = PIN_STROBE;
 862                lcd.pins.rs = PIN_AUTOLF;
 863
 864                charlcd->width = 40;
 865                hdc->bwidth = 40;
 866                hdc->hwidth = 64;
 867                charlcd->height = 2;
 868                break;
 869        case LCD_TYPE_KS0074:
 870                /* serial mode, ks0074 */
 871                lcd.proto = LCD_PROTO_SERIAL;
 872                lcd.charset = LCD_CHARSET_KS0074;
 873                lcd.pins.bl = PIN_AUTOLF;
 874                lcd.pins.cl = PIN_STROBE;
 875                lcd.pins.da = PIN_D0;
 876
 877                charlcd->width = 16;
 878                hdc->bwidth = 40;
 879                hdc->hwidth = 16;
 880                charlcd->height = 2;
 881                break;
 882        case LCD_TYPE_NEXCOM:
 883                /* parallel mode, 8 bits, generic */
 884                lcd.proto = LCD_PROTO_PARALLEL;
 885                lcd.charset = LCD_CHARSET_NORMAL;
 886                lcd.pins.e = PIN_AUTOLF;
 887                lcd.pins.rs = PIN_SELECP;
 888                lcd.pins.rw = PIN_INITP;
 889
 890                charlcd->width = 16;
 891                hdc->bwidth = 40;
 892                hdc->hwidth = 64;
 893                charlcd->height = 2;
 894                break;
 895        case LCD_TYPE_CUSTOM:
 896                /* customer-defined */
 897                lcd.proto = DEFAULT_LCD_PROTO;
 898                lcd.charset = DEFAULT_LCD_CHARSET;
 899                /* default geometry will be set later */
 900                break;
 901        case LCD_TYPE_HANTRONIX:
 902                /* parallel mode, 8 bits, hantronix-like */
 903        default:
 904                lcd.proto = LCD_PROTO_PARALLEL;
 905                lcd.charset = LCD_CHARSET_NORMAL;
 906                lcd.pins.e = PIN_STROBE;
 907                lcd.pins.rs = PIN_SELECP;
 908
 909                charlcd->width = 16;
 910                hdc->bwidth = 40;
 911                hdc->hwidth = 64;
 912                charlcd->height = 2;
 913                break;
 914        }
 915
 916        /* Overwrite with module params set on loading */
 917        if (lcd_height != NOT_SET)
 918                charlcd->height = lcd_height;
 919        if (lcd_width != NOT_SET)
 920                charlcd->width = lcd_width;
 921        if (lcd_bwidth != NOT_SET)
 922                hdc->bwidth = lcd_bwidth;
 923        if (lcd_hwidth != NOT_SET)
 924                hdc->hwidth = lcd_hwidth;
 925        if (lcd_charset != NOT_SET)
 926                lcd.charset = lcd_charset;
 927        if (lcd_proto != NOT_SET)
 928                lcd.proto = lcd_proto;
 929        if (lcd_e_pin != PIN_NOT_SET)
 930                lcd.pins.e = lcd_e_pin;
 931        if (lcd_rs_pin != PIN_NOT_SET)
 932                lcd.pins.rs = lcd_rs_pin;
 933        if (lcd_rw_pin != PIN_NOT_SET)
 934                lcd.pins.rw = lcd_rw_pin;
 935        if (lcd_cl_pin != PIN_NOT_SET)
 936                lcd.pins.cl = lcd_cl_pin;
 937        if (lcd_da_pin != PIN_NOT_SET)
 938                lcd.pins.da = lcd_da_pin;
 939        if (lcd_bl_pin != PIN_NOT_SET)
 940                lcd.pins.bl = lcd_bl_pin;
 941
 942        /* this is used to catch wrong and default values */
 943        if (charlcd->width <= 0)
 944                charlcd->width = DEFAULT_LCD_WIDTH;
 945        if (hdc->bwidth <= 0)
 946                hdc->bwidth = DEFAULT_LCD_BWIDTH;
 947        if (hdc->hwidth <= 0)
 948                hdc->hwidth = DEFAULT_LCD_HWIDTH;
 949        if (charlcd->height <= 0)
 950                charlcd->height = DEFAULT_LCD_HEIGHT;
 951
 952        if (lcd.proto == LCD_PROTO_SERIAL) {    /* SERIAL */
 953                charlcd->ops = &charlcd_ops;
 954                hdc->write_data = lcd_write_data_s;
 955                hdc->write_cmd = lcd_write_cmd_s;
 956
 957                if (lcd.pins.cl == PIN_NOT_SET)
 958                        lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
 959                if (lcd.pins.da == PIN_NOT_SET)
 960                        lcd.pins.da = DEFAULT_LCD_PIN_SDA;
 961
 962        } else if (lcd.proto == LCD_PROTO_PARALLEL) {   /* PARALLEL */
 963                charlcd->ops = &charlcd_ops;
 964                hdc->write_data = lcd_write_data_p8;
 965                hdc->write_cmd = lcd_write_cmd_p8;
 966
 967                if (lcd.pins.e == PIN_NOT_SET)
 968                        lcd.pins.e = DEFAULT_LCD_PIN_E;
 969                if (lcd.pins.rs == PIN_NOT_SET)
 970                        lcd.pins.rs = DEFAULT_LCD_PIN_RS;
 971                if (lcd.pins.rw == PIN_NOT_SET)
 972                        lcd.pins.rw = DEFAULT_LCD_PIN_RW;
 973        } else {
 974                charlcd->ops = &charlcd_ops;
 975                hdc->write_data = lcd_write_data_tilcd;
 976                hdc->write_cmd = lcd_write_cmd_tilcd;
 977        }
 978
 979        if (lcd.pins.bl == PIN_NOT_SET)
 980                lcd.pins.bl = DEFAULT_LCD_PIN_BL;
 981
 982        if (lcd.pins.e == PIN_NOT_SET)
 983                lcd.pins.e = PIN_NONE;
 984        if (lcd.pins.rs == PIN_NOT_SET)
 985                lcd.pins.rs = PIN_NONE;
 986        if (lcd.pins.rw == PIN_NOT_SET)
 987                lcd.pins.rw = PIN_NONE;
 988        if (lcd.pins.bl == PIN_NOT_SET)
 989                lcd.pins.bl = PIN_NONE;
 990        if (lcd.pins.cl == PIN_NOT_SET)
 991                lcd.pins.cl = PIN_NONE;
 992        if (lcd.pins.da == PIN_NOT_SET)
 993                lcd.pins.da = PIN_NONE;
 994
 995        if (lcd.charset == NOT_SET)
 996                lcd.charset = DEFAULT_LCD_CHARSET;
 997
 998        if (lcd.charset == LCD_CHARSET_KS0074)
 999                charlcd->char_conv = lcd_char_conv_ks0074;
1000        else
1001                charlcd->char_conv = NULL;
1002
1003        pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1004                    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1005        pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1006                    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1007        pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1008                    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1009        pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1010                    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1011        pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1012                    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1013        pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1014                    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1015
1016        lcd.charlcd = charlcd;
1017        lcd.initialized = true;
1018}
1019
1020/*
1021 * These are the file operation function for user access to /dev/keypad
1022 */
1023
1024static ssize_t keypad_read(struct file *file,
1025                           char __user *buf, size_t count, loff_t *ppos)
1026{
1027        unsigned i = *ppos;
1028        char __user *tmp = buf;
1029
1030        if (keypad_buflen == 0) {
1031                if (file->f_flags & O_NONBLOCK)
1032                        return -EAGAIN;
1033
1034                if (wait_event_interruptible(keypad_read_wait,
1035                                             keypad_buflen != 0))
1036                        return -EINTR;
1037        }
1038
1039        for (; count-- > 0 && (keypad_buflen > 0);
1040             ++i, ++tmp, --keypad_buflen) {
1041                put_user(keypad_buffer[keypad_start], tmp);
1042                keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1043        }
1044        *ppos = i;
1045
1046        return tmp - buf;
1047}
1048
1049static int keypad_open(struct inode *inode, struct file *file)
1050{
1051        int ret;
1052
1053        ret = -EBUSY;
1054        if (!atomic_dec_and_test(&keypad_available))
1055                goto fail;      /* open only once at a time */
1056
1057        ret = -EPERM;
1058        if (file->f_mode & FMODE_WRITE) /* device is read-only */
1059                goto fail;
1060
1061        keypad_buflen = 0;      /* flush the buffer on opening */
1062        return 0;
1063 fail:
1064        atomic_inc(&keypad_available);
1065        return ret;
1066}
1067
1068static int keypad_release(struct inode *inode, struct file *file)
1069{
1070        atomic_inc(&keypad_available);
1071        return 0;
1072}
1073
1074static const struct file_operations keypad_fops = {
1075        .read    = keypad_read,         /* read */
1076        .open    = keypad_open,         /* open */
1077        .release = keypad_release,      /* close */
1078        .llseek  = default_llseek,
1079};
1080
1081static struct miscdevice keypad_dev = {
1082        .minor  = KEYPAD_MINOR,
1083        .name   = "keypad",
1084        .fops   = &keypad_fops,
1085};
1086
1087static void keypad_send_key(const char *string, int max_len)
1088{
1089        /* send the key to the device only if a process is attached to it. */
1090        if (!atomic_read(&keypad_available)) {
1091                while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1092                        keypad_buffer[(keypad_start + keypad_buflen++) %
1093                                      KEYPAD_BUFFER] = *string++;
1094                }
1095                wake_up_interruptible(&keypad_read_wait);
1096        }
1097}
1098
1099/* this function scans all the bits involving at least one logical signal,
1100 * and puts the results in the bitfield "phys_read" (one bit per established
1101 * contact), and sets "phys_read_prev" to "phys_read".
1102 *
1103 * Note: to debounce input signals, we will only consider as switched a signal
1104 * which is stable across 2 measures. Signals which are different between two
1105 * reads will be kept as they previously were in their logical form (phys_prev).
1106 * A signal which has just switched will have a 1 in
1107 * (phys_read ^ phys_read_prev).
1108 */
1109static void phys_scan_contacts(void)
1110{
1111        int bit, bitval;
1112        char oldval;
1113        char bitmask;
1114        char gndmask;
1115
1116        phys_prev = phys_curr;
1117        phys_read_prev = phys_read;
1118        phys_read = 0;          /* flush all signals */
1119
1120        /* keep track of old value, with all outputs disabled */
1121        oldval = r_dtr(pprt) | scan_mask_o;
1122        /* activate all keyboard outputs (active low) */
1123        w_dtr(pprt, oldval & ~scan_mask_o);
1124
1125        /* will have a 1 for each bit set to gnd */
1126        bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1127        /* disable all matrix signals */
1128        w_dtr(pprt, oldval);
1129
1130        /* now that all outputs are cleared, the only active input bits are
1131         * directly connected to the ground
1132         */
1133
1134        /* 1 for each grounded input */
1135        gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1136
1137        /* grounded inputs are signals 40-44 */
1138        phys_read |= (__u64)gndmask << 40;
1139
1140        if (bitmask != gndmask) {
1141                /*
1142                 * since clearing the outputs changed some inputs, we know
1143                 * that some input signals are currently tied to some outputs.
1144                 * So we'll scan them.
1145                 */
1146                for (bit = 0; bit < 8; bit++) {
1147                        bitval = BIT(bit);
1148
1149                        if (!(scan_mask_o & bitval))    /* skip unused bits */
1150                                continue;
1151
1152                        w_dtr(pprt, oldval & ~bitval);  /* enable this output */
1153                        bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1154                        phys_read |= (__u64)bitmask << (5 * bit);
1155                }
1156                w_dtr(pprt, oldval);    /* disable all outputs */
1157        }
1158        /*
1159         * this is easy: use old bits when they are flapping,
1160         * use new ones when stable
1161         */
1162        phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1163                    (phys_read & ~(phys_read ^ phys_read_prev));
1164}
1165
1166static inline int input_state_high(struct logical_input *input)
1167{
1168#if 0
1169        /* FIXME:
1170         * this is an invalid test. It tries to catch
1171         * transitions from single-key to multiple-key, but
1172         * doesn't take into account the contacts polarity.
1173         * The only solution to the problem is to parse keys
1174         * from the most complex to the simplest combinations,
1175         * and mark them as 'caught' once a combination
1176         * matches, then unmatch it for all other ones.
1177         */
1178
1179        /* try to catch dangerous transitions cases :
1180         * someone adds a bit, so this signal was a false
1181         * positive resulting from a transition. We should
1182         * invalidate the signal immediately and not call the
1183         * release function.
1184         * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1185         */
1186        if (((phys_prev & input->mask) == input->value) &&
1187            ((phys_curr & input->mask) >  input->value)) {
1188                input->state = INPUT_ST_LOW; /* invalidate */
1189                return 1;
1190        }
1191#endif
1192
1193        if ((phys_curr & input->mask) == input->value) {
1194                if ((input->type == INPUT_TYPE_STD) &&
1195                    (input->high_timer == 0)) {
1196                        input->high_timer++;
1197                        if (input->u.std.press_fct)
1198                                input->u.std.press_fct(input->u.std.press_data);
1199                } else if (input->type == INPUT_TYPE_KBD) {
1200                        /* will turn on the light */
1201                        keypressed = 1;
1202
1203                        if (input->high_timer == 0) {
1204                                char *press_str = input->u.kbd.press_str;
1205
1206                                if (press_str[0]) {
1207                                        int s = sizeof(input->u.kbd.press_str);
1208
1209                                        keypad_send_key(press_str, s);
1210                                }
1211                        }
1212
1213                        if (input->u.kbd.repeat_str[0]) {
1214                                char *repeat_str = input->u.kbd.repeat_str;
1215
1216                                if (input->high_timer >= KEYPAD_REP_START) {
1217                                        int s = sizeof(input->u.kbd.repeat_str);
1218
1219                                        input->high_timer -= KEYPAD_REP_DELAY;
1220                                        keypad_send_key(repeat_str, s);
1221                                }
1222                                /* we will need to come back here soon */
1223                                inputs_stable = 0;
1224                        }
1225
1226                        if (input->high_timer < 255)
1227                                input->high_timer++;
1228                }
1229                return 1;
1230        }
1231
1232        /* else signal falling down. Let's fall through. */
1233        input->state = INPUT_ST_FALLING;
1234        input->fall_timer = 0;
1235
1236        return 0;
1237}
1238
1239static inline void input_state_falling(struct logical_input *input)
1240{
1241#if 0
1242        /* FIXME !!! same comment as in input_state_high */
1243        if (((phys_prev & input->mask) == input->value) &&
1244            ((phys_curr & input->mask) >  input->value)) {
1245                input->state = INPUT_ST_LOW;    /* invalidate */
1246                return;
1247        }
1248#endif
1249
1250        if ((phys_curr & input->mask) == input->value) {
1251                if (input->type == INPUT_TYPE_KBD) {
1252                        /* will turn on the light */
1253                        keypressed = 1;
1254
1255                        if (input->u.kbd.repeat_str[0]) {
1256                                char *repeat_str = input->u.kbd.repeat_str;
1257
1258                                if (input->high_timer >= KEYPAD_REP_START) {
1259                                        int s = sizeof(input->u.kbd.repeat_str);
1260
1261                                        input->high_timer -= KEYPAD_REP_DELAY;
1262                                        keypad_send_key(repeat_str, s);
1263                                }
1264                                /* we will need to come back here soon */
1265                                inputs_stable = 0;
1266                        }
1267
1268                        if (input->high_timer < 255)
1269                                input->high_timer++;
1270                }
1271                input->state = INPUT_ST_HIGH;
1272        } else if (input->fall_timer >= input->fall_time) {
1273                /* call release event */
1274                if (input->type == INPUT_TYPE_STD) {
1275                        void (*release_fct)(int) = input->u.std.release_fct;
1276
1277                        if (release_fct)
1278                                release_fct(input->u.std.release_data);
1279                } else if (input->type == INPUT_TYPE_KBD) {
1280                        char *release_str = input->u.kbd.release_str;
1281
1282                        if (release_str[0]) {
1283                                int s = sizeof(input->u.kbd.release_str);
1284
1285                                keypad_send_key(release_str, s);
1286                        }
1287                }
1288
1289                input->state = INPUT_ST_LOW;
1290        } else {
1291                input->fall_timer++;
1292                inputs_stable = 0;
1293        }
1294}
1295
1296static void panel_process_inputs(void)
1297{
1298        struct logical_input *input;
1299
1300        keypressed = 0;
1301        inputs_stable = 1;
1302        list_for_each_entry(input, &logical_inputs, list) {
1303                switch (input->state) {
1304                case INPUT_ST_LOW:
1305                        if ((phys_curr & input->mask) != input->value)
1306                                break;
1307                        /* if all needed ones were already set previously,
1308                         * this means that this logical signal has been
1309                         * activated by the releasing of another combined
1310                         * signal, so we don't want to match.
1311                         * eg: AB -(release B)-> A -(release A)-> 0 :
1312                         *     don't match A.
1313                         */
1314                        if ((phys_prev & input->mask) == input->value)
1315                                break;
1316                        input->rise_timer = 0;
1317                        input->state = INPUT_ST_RISING;
1318                        fallthrough;
1319                case INPUT_ST_RISING:
1320                        if ((phys_curr & input->mask) != input->value) {
1321                                input->state = INPUT_ST_LOW;
1322                                break;
1323                        }
1324                        if (input->rise_timer < input->rise_time) {
1325                                inputs_stable = 0;
1326                                input->rise_timer++;
1327                                break;
1328                        }
1329                        input->high_timer = 0;
1330                        input->state = INPUT_ST_HIGH;
1331                        fallthrough;
1332                case INPUT_ST_HIGH:
1333                        if (input_state_high(input))
1334                                break;
1335                        fallthrough;
1336                case INPUT_ST_FALLING:
1337                        input_state_falling(input);
1338                }
1339        }
1340}
1341
1342static void panel_scan_timer(struct timer_list *unused)
1343{
1344        if (keypad.enabled && keypad_initialized) {
1345                if (spin_trylock_irq(&pprt_lock)) {
1346                        phys_scan_contacts();
1347
1348                        /* no need for the parport anymore */
1349                        spin_unlock_irq(&pprt_lock);
1350                }
1351
1352                if (!inputs_stable || phys_curr != phys_prev)
1353                        panel_process_inputs();
1354        }
1355
1356        if (keypressed && lcd.enabled && lcd.initialized)
1357                charlcd_poke(lcd.charlcd);
1358
1359        mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1360}
1361
1362static void init_scan_timer(void)
1363{
1364        if (scan_timer.function)
1365                return;         /* already started */
1366
1367        timer_setup(&scan_timer, panel_scan_timer, 0);
1368        scan_timer.expires = jiffies + INPUT_POLL_TIME;
1369        add_timer(&scan_timer);
1370}
1371
1372/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1373 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1374 * corresponding to out and in bits respectively.
1375 * returns 1 if ok, 0 if error (in which case, nothing is written).
1376 */
1377static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1378                          u8 *imask, u8 *omask)
1379{
1380        const char sigtab[] = "EeSsPpAaBb";
1381        u8 im, om;
1382        __u64 m, v;
1383
1384        om = 0;
1385        im = 0;
1386        m = 0ULL;
1387        v = 0ULL;
1388        while (*name) {
1389                int in, out, bit, neg;
1390                const char *idx;
1391
1392                idx = strchr(sigtab, *name);
1393                if (!idx)
1394                        return 0;       /* input name not found */
1395
1396                in = idx - sigtab;
1397                neg = (in & 1); /* odd (lower) names are negated */
1398                in >>= 1;
1399                im |= BIT(in);
1400
1401                name++;
1402                if (*name >= '0' && *name <= '7') {
1403                        out = *name - '0';
1404                        om |= BIT(out);
1405                } else if (*name == '-') {
1406                        out = 8;
1407                } else {
1408                        return 0;       /* unknown bit name */
1409                }
1410
1411                bit = (out * 5) + in;
1412
1413                m |= 1ULL << bit;
1414                if (!neg)
1415                        v |= 1ULL << bit;
1416                name++;
1417        }
1418        *mask = m;
1419        *value = v;
1420        if (imask)
1421                *imask |= im;
1422        if (omask)
1423                *omask |= om;
1424        return 1;
1425}
1426
1427/* tries to bind a key to the signal name <name>. The key will send the
1428 * strings <press>, <repeat>, <release> for these respective events.
1429 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1430 */
1431static struct logical_input *panel_bind_key(const char *name, const char *press,
1432                                            const char *repeat,
1433                                            const char *release)
1434{
1435        struct logical_input *key;
1436
1437        key = kzalloc(sizeof(*key), GFP_KERNEL);
1438        if (!key)
1439                return NULL;
1440
1441        if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1442                             &scan_mask_o)) {
1443                kfree(key);
1444                return NULL;
1445        }
1446
1447        key->type = INPUT_TYPE_KBD;
1448        key->state = INPUT_ST_LOW;
1449        key->rise_time = 1;
1450        key->fall_time = 1;
1451
1452        strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1453        strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1454        strncpy(key->u.kbd.release_str, release,
1455                sizeof(key->u.kbd.release_str));
1456        list_add(&key->list, &logical_inputs);
1457        return key;
1458}
1459
1460#if 0
1461/* tries to bind a callback function to the signal name <name>. The function
1462 * <press_fct> will be called with the <press_data> arg when the signal is
1463 * activated, and so on for <release_fct>/<release_data>
1464 * Returns the pointer to the new signal if ok, NULL if the signal could not
1465 * be bound.
1466 */
1467static struct logical_input *panel_bind_callback(char *name,
1468                                                 void (*press_fct)(int),
1469                                                 int press_data,
1470                                                 void (*release_fct)(int),
1471                                                 int release_data)
1472{
1473        struct logical_input *callback;
1474
1475        callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1476        if (!callback)
1477                return NULL;
1478
1479        memset(callback, 0, sizeof(struct logical_input));
1480        if (!input_name2mask(name, &callback->mask, &callback->value,
1481                             &scan_mask_i, &scan_mask_o))
1482                return NULL;
1483
1484        callback->type = INPUT_TYPE_STD;
1485        callback->state = INPUT_ST_LOW;
1486        callback->rise_time = 1;
1487        callback->fall_time = 1;
1488        callback->u.std.press_fct = press_fct;
1489        callback->u.std.press_data = press_data;
1490        callback->u.std.release_fct = release_fct;
1491        callback->u.std.release_data = release_data;
1492        list_add(&callback->list, &logical_inputs);
1493        return callback;
1494}
1495#endif
1496
1497static void keypad_init(void)
1498{
1499        int keynum;
1500
1501        init_waitqueue_head(&keypad_read_wait);
1502        keypad_buflen = 0;      /* flushes any eventual noisy keystroke */
1503
1504        /* Let's create all known keys */
1505
1506        for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1507                panel_bind_key(keypad_profile[keynum][0],
1508                               keypad_profile[keynum][1],
1509                               keypad_profile[keynum][2],
1510                               keypad_profile[keynum][3]);
1511        }
1512
1513        init_scan_timer();
1514        keypad_initialized = 1;
1515}
1516
1517/**************************************************/
1518/* device initialization                          */
1519/**************************************************/
1520
1521static void panel_attach(struct parport *port)
1522{
1523        struct pardev_cb panel_cb;
1524
1525        if (port->number != parport)
1526                return;
1527
1528        if (pprt) {
1529                pr_err("%s: port->number=%d parport=%d, already registered!\n",
1530                       __func__, port->number, parport);
1531                return;
1532        }
1533
1534        memset(&panel_cb, 0, sizeof(panel_cb));
1535        panel_cb.private = &pprt;
1536        /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1537
1538        pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1539        if (!pprt) {
1540                pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1541                       __func__, port->number, parport);
1542                return;
1543        }
1544
1545        if (parport_claim(pprt)) {
1546                pr_err("could not claim access to parport%d. Aborting.\n",
1547                       parport);
1548                goto err_unreg_device;
1549        }
1550
1551        /* must init LCD first, just in case an IRQ from the keypad is
1552         * generated at keypad init
1553         */
1554        if (lcd.enabled) {
1555                lcd_init();
1556                if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1557                        goto err_unreg_device;
1558        }
1559
1560        if (keypad.enabled) {
1561                keypad_init();
1562                if (misc_register(&keypad_dev))
1563                        goto err_lcd_unreg;
1564        }
1565        return;
1566
1567err_lcd_unreg:
1568        if (scan_timer.function)
1569                del_timer_sync(&scan_timer);
1570        if (lcd.enabled)
1571                charlcd_unregister(lcd.charlcd);
1572err_unreg_device:
1573        kfree(lcd.charlcd);
1574        lcd.charlcd = NULL;
1575        parport_unregister_device(pprt);
1576        pprt = NULL;
1577}
1578
1579static void panel_detach(struct parport *port)
1580{
1581        if (port->number != parport)
1582                return;
1583
1584        if (!pprt) {
1585                pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1586                       __func__, port->number, parport);
1587                return;
1588        }
1589        if (scan_timer.function)
1590                del_timer_sync(&scan_timer);
1591
1592        if (keypad.enabled) {
1593                misc_deregister(&keypad_dev);
1594                keypad_initialized = 0;
1595        }
1596
1597        if (lcd.enabled) {
1598                charlcd_unregister(lcd.charlcd);
1599                lcd.initialized = false;
1600                kfree(lcd.charlcd->drvdata);
1601                kfree(lcd.charlcd);
1602                lcd.charlcd = NULL;
1603        }
1604
1605        /* TODO: free all input signals */
1606        parport_release(pprt);
1607        parport_unregister_device(pprt);
1608        pprt = NULL;
1609}
1610
1611static struct parport_driver panel_driver = {
1612        .name = "panel",
1613        .match_port = panel_attach,
1614        .detach = panel_detach,
1615        .devmodel = true,
1616};
1617
1618/* init function */
1619static int __init panel_init_module(void)
1620{
1621        int selected_keypad_type = NOT_SET, err;
1622
1623        /* take care of an eventual profile */
1624        switch (profile) {
1625        case PANEL_PROFILE_CUSTOM:
1626                /* custom profile */
1627                selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1628                selected_lcd_type = DEFAULT_LCD_TYPE;
1629                break;
1630        case PANEL_PROFILE_OLD:
1631                /* 8 bits, 2*16, old keypad */
1632                selected_keypad_type = KEYPAD_TYPE_OLD;
1633                selected_lcd_type = LCD_TYPE_OLD;
1634
1635                /* TODO: This two are a little hacky, sort it out later */
1636                if (lcd_width == NOT_SET)
1637                        lcd_width = 16;
1638                if (lcd_hwidth == NOT_SET)
1639                        lcd_hwidth = 16;
1640                break;
1641        case PANEL_PROFILE_NEW:
1642                /* serial, 2*16, new keypad */
1643                selected_keypad_type = KEYPAD_TYPE_NEW;
1644                selected_lcd_type = LCD_TYPE_KS0074;
1645                break;
1646        case PANEL_PROFILE_HANTRONIX:
1647                /* 8 bits, 2*16 hantronix-like, no keypad */
1648                selected_keypad_type = KEYPAD_TYPE_NONE;
1649                selected_lcd_type = LCD_TYPE_HANTRONIX;
1650                break;
1651        case PANEL_PROFILE_NEXCOM:
1652                /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1653                selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1654                selected_lcd_type = LCD_TYPE_NEXCOM;
1655                break;
1656        case PANEL_PROFILE_LARGE:
1657                /* 8 bits, 2*40, old keypad */
1658                selected_keypad_type = KEYPAD_TYPE_OLD;
1659                selected_lcd_type = LCD_TYPE_OLD;
1660                break;
1661        }
1662
1663        /*
1664         * Overwrite selection with module param values (both keypad and lcd),
1665         * where the deprecated params have lower prio.
1666         */
1667        if (keypad_enabled != NOT_SET)
1668                selected_keypad_type = keypad_enabled;
1669        if (keypad_type != NOT_SET)
1670                selected_keypad_type = keypad_type;
1671
1672        keypad.enabled = (selected_keypad_type > 0);
1673
1674        if (lcd_enabled != NOT_SET)
1675                selected_lcd_type = lcd_enabled;
1676        if (lcd_type != NOT_SET)
1677                selected_lcd_type = lcd_type;
1678
1679        lcd.enabled = (selected_lcd_type > 0);
1680
1681        if (lcd.enabled) {
1682                /*
1683                 * Init lcd struct with load-time values to preserve exact
1684                 * current functionality (at least for now).
1685                 */
1686                lcd.charset = lcd_charset;
1687                lcd.proto = lcd_proto;
1688                lcd.pins.e = lcd_e_pin;
1689                lcd.pins.rs = lcd_rs_pin;
1690                lcd.pins.rw = lcd_rw_pin;
1691                lcd.pins.cl = lcd_cl_pin;
1692                lcd.pins.da = lcd_da_pin;
1693                lcd.pins.bl = lcd_bl_pin;
1694        }
1695
1696        switch (selected_keypad_type) {
1697        case KEYPAD_TYPE_OLD:
1698                keypad_profile = old_keypad_profile;
1699                break;
1700        case KEYPAD_TYPE_NEW:
1701                keypad_profile = new_keypad_profile;
1702                break;
1703        case KEYPAD_TYPE_NEXCOM:
1704                keypad_profile = nexcom_keypad_profile;
1705                break;
1706        default:
1707                keypad_profile = NULL;
1708                break;
1709        }
1710
1711        if (!lcd.enabled && !keypad.enabled) {
1712                /* no device enabled, let's exit */
1713                pr_err("panel driver disabled.\n");
1714                return -ENODEV;
1715        }
1716
1717        err = parport_register_driver(&panel_driver);
1718        if (err) {
1719                pr_err("could not register with parport. Aborting.\n");
1720                return err;
1721        }
1722
1723        if (pprt)
1724                pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1725                        parport, pprt->port->base);
1726        else
1727                pr_info("panel driver not yet registered\n");
1728        return 0;
1729}
1730
1731static void __exit panel_cleanup_module(void)
1732{
1733        parport_unregister_driver(&panel_driver);
1734}
1735
1736module_init(panel_init_module);
1737module_exit(panel_cleanup_module);
1738MODULE_AUTHOR("Willy Tarreau");
1739MODULE_LICENSE("GPL");
1740