linux/drivers/base/regmap/regmap-irq.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// regmap based irq_chip
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/export.h>
  11#include <linux/interrupt.h>
  12#include <linux/irq.h>
  13#include <linux/irqdomain.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/regmap.h>
  16#include <linux/slab.h>
  17
  18#include "internal.h"
  19
  20struct regmap_irq_chip_data {
  21        struct mutex lock;
  22        struct irq_chip irq_chip;
  23
  24        struct regmap *map;
  25        const struct regmap_irq_chip *chip;
  26
  27        int irq_base;
  28        struct irq_domain *domain;
  29
  30        int irq;
  31        int wake_count;
  32
  33        void *status_reg_buf;
  34        unsigned int *main_status_buf;
  35        unsigned int *status_buf;
  36        unsigned int *mask_buf;
  37        unsigned int *mask_buf_def;
  38        unsigned int *wake_buf;
  39        unsigned int *type_buf;
  40        unsigned int *type_buf_def;
  41        unsigned int **virt_buf;
  42
  43        unsigned int irq_reg_stride;
  44        unsigned int type_reg_stride;
  45
  46        bool clear_status:1;
  47};
  48
  49static int sub_irq_reg(struct regmap_irq_chip_data *data,
  50                       unsigned int base_reg, int i)
  51{
  52        const struct regmap_irq_chip *chip = data->chip;
  53        struct regmap *map = data->map;
  54        struct regmap_irq_sub_irq_map *subreg;
  55        unsigned int offset;
  56        int reg = 0;
  57
  58        if (!chip->sub_reg_offsets || !chip->not_fixed_stride) {
  59                /* Assume linear mapping */
  60                reg = base_reg + (i * map->reg_stride * data->irq_reg_stride);
  61        } else {
  62                subreg = &chip->sub_reg_offsets[i];
  63                offset = subreg->offset[0];
  64                reg = base_reg + offset;
  65        }
  66
  67        return reg;
  68}
  69
  70static inline const
  71struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
  72                                     int irq)
  73{
  74        return &data->chip->irqs[irq];
  75}
  76
  77static void regmap_irq_lock(struct irq_data *data)
  78{
  79        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  80
  81        mutex_lock(&d->lock);
  82}
  83
  84static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
  85                                  unsigned int reg, unsigned int mask,
  86                                  unsigned int val)
  87{
  88        if (d->chip->mask_writeonly)
  89                return regmap_write_bits(d->map, reg, mask, val);
  90        else
  91                return regmap_update_bits(d->map, reg, mask, val);
  92}
  93
  94static void regmap_irq_sync_unlock(struct irq_data *data)
  95{
  96        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
  97        struct regmap *map = d->map;
  98        int i, j, ret;
  99        u32 reg;
 100        u32 unmask_offset;
 101        u32 val;
 102
 103        if (d->chip->runtime_pm) {
 104                ret = pm_runtime_get_sync(map->dev);
 105                if (ret < 0)
 106                        dev_err(map->dev, "IRQ sync failed to resume: %d\n",
 107                                ret);
 108        }
 109
 110        if (d->clear_status) {
 111                for (i = 0; i < d->chip->num_regs; i++) {
 112                        reg = sub_irq_reg(d, d->chip->status_base, i);
 113
 114                        ret = regmap_read(map, reg, &val);
 115                        if (ret)
 116                                dev_err(d->map->dev,
 117                                        "Failed to clear the interrupt status bits\n");
 118                }
 119
 120                d->clear_status = false;
 121        }
 122
 123        /*
 124         * If there's been a change in the mask write it back to the
 125         * hardware.  We rely on the use of the regmap core cache to
 126         * suppress pointless writes.
 127         */
 128        for (i = 0; i < d->chip->num_regs; i++) {
 129                if (!d->chip->mask_base)
 130                        continue;
 131
 132                reg = sub_irq_reg(d, d->chip->mask_base, i);
 133                if (d->chip->mask_invert) {
 134                        ret = regmap_irq_update_bits(d, reg,
 135                                         d->mask_buf_def[i], ~d->mask_buf[i]);
 136                } else if (d->chip->unmask_base) {
 137                        /* set mask with mask_base register */
 138                        ret = regmap_irq_update_bits(d, reg,
 139                                        d->mask_buf_def[i], ~d->mask_buf[i]);
 140                        if (ret < 0)
 141                                dev_err(d->map->dev,
 142                                        "Failed to sync unmasks in %x\n",
 143                                        reg);
 144                        unmask_offset = d->chip->unmask_base -
 145                                                        d->chip->mask_base;
 146                        /* clear mask with unmask_base register */
 147                        ret = regmap_irq_update_bits(d,
 148                                        reg + unmask_offset,
 149                                        d->mask_buf_def[i],
 150                                        d->mask_buf[i]);
 151                } else {
 152                        ret = regmap_irq_update_bits(d, reg,
 153                                         d->mask_buf_def[i], d->mask_buf[i]);
 154                }
 155                if (ret != 0)
 156                        dev_err(d->map->dev, "Failed to sync masks in %x\n",
 157                                reg);
 158
 159                reg = sub_irq_reg(d, d->chip->wake_base, i);
 160                if (d->wake_buf) {
 161                        if (d->chip->wake_invert)
 162                                ret = regmap_irq_update_bits(d, reg,
 163                                                         d->mask_buf_def[i],
 164                                                         ~d->wake_buf[i]);
 165                        else
 166                                ret = regmap_irq_update_bits(d, reg,
 167                                                         d->mask_buf_def[i],
 168                                                         d->wake_buf[i]);
 169                        if (ret != 0)
 170                                dev_err(d->map->dev,
 171                                        "Failed to sync wakes in %x: %d\n",
 172                                        reg, ret);
 173                }
 174
 175                if (!d->chip->init_ack_masked)
 176                        continue;
 177                /*
 178                 * Ack all the masked interrupts unconditionally,
 179                 * OR if there is masked interrupt which hasn't been Acked,
 180                 * it'll be ignored in irq handler, then may introduce irq storm
 181                 */
 182                if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
 183                        reg = sub_irq_reg(d, d->chip->ack_base, i);
 184
 185                        /* some chips ack by write 0 */
 186                        if (d->chip->ack_invert)
 187                                ret = regmap_write(map, reg, ~d->mask_buf[i]);
 188                        else
 189                                ret = regmap_write(map, reg, d->mask_buf[i]);
 190                        if (d->chip->clear_ack) {
 191                                if (d->chip->ack_invert && !ret)
 192                                        ret = regmap_write(map, reg,
 193                                                           d->mask_buf[i]);
 194                                else if (!ret)
 195                                        ret = regmap_write(map, reg,
 196                                                           ~d->mask_buf[i]);
 197                        }
 198                        if (ret != 0)
 199                                dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
 200                                        reg, ret);
 201                }
 202        }
 203
 204        /* Don't update the type bits if we're using mask bits for irq type. */
 205        if (!d->chip->type_in_mask) {
 206                for (i = 0; i < d->chip->num_type_reg; i++) {
 207                        if (!d->type_buf_def[i])
 208                                continue;
 209                        reg = sub_irq_reg(d, d->chip->type_base, i);
 210                        if (d->chip->type_invert)
 211                                ret = regmap_irq_update_bits(d, reg,
 212                                        d->type_buf_def[i], ~d->type_buf[i]);
 213                        else
 214                                ret = regmap_irq_update_bits(d, reg,
 215                                        d->type_buf_def[i], d->type_buf[i]);
 216                        if (ret != 0)
 217                                dev_err(d->map->dev, "Failed to sync type in %x\n",
 218                                        reg);
 219                }
 220        }
 221
 222        if (d->chip->num_virt_regs) {
 223                for (i = 0; i < d->chip->num_virt_regs; i++) {
 224                        for (j = 0; j < d->chip->num_regs; j++) {
 225                                reg = sub_irq_reg(d, d->chip->virt_reg_base[i],
 226                                                  j);
 227                                ret = regmap_write(map, reg, d->virt_buf[i][j]);
 228                                if (ret != 0)
 229                                        dev_err(d->map->dev,
 230                                                "Failed to write virt 0x%x: %d\n",
 231                                                reg, ret);
 232                        }
 233                }
 234        }
 235
 236        if (d->chip->runtime_pm)
 237                pm_runtime_put(map->dev);
 238
 239        /* If we've changed our wakeup count propagate it to the parent */
 240        if (d->wake_count < 0)
 241                for (i = d->wake_count; i < 0; i++)
 242                        irq_set_irq_wake(d->irq, 0);
 243        else if (d->wake_count > 0)
 244                for (i = 0; i < d->wake_count; i++)
 245                        irq_set_irq_wake(d->irq, 1);
 246
 247        d->wake_count = 0;
 248
 249        mutex_unlock(&d->lock);
 250}
 251
 252static void regmap_irq_enable(struct irq_data *data)
 253{
 254        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 255        struct regmap *map = d->map;
 256        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 257        unsigned int mask, type;
 258
 259        type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
 260
 261        /*
 262         * The type_in_mask flag means that the underlying hardware uses
 263         * separate mask bits for rising and falling edge interrupts, but
 264         * we want to make them into a single virtual interrupt with
 265         * configurable edge.
 266         *
 267         * If the interrupt we're enabling defines the falling or rising
 268         * masks then instead of using the regular mask bits for this
 269         * interrupt, use the value previously written to the type buffer
 270         * at the corresponding offset in regmap_irq_set_type().
 271         */
 272        if (d->chip->type_in_mask && type)
 273                mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
 274        else
 275                mask = irq_data->mask;
 276
 277        if (d->chip->clear_on_unmask)
 278                d->clear_status = true;
 279
 280        d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
 281}
 282
 283static void regmap_irq_disable(struct irq_data *data)
 284{
 285        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 286        struct regmap *map = d->map;
 287        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 288
 289        d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
 290}
 291
 292static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
 293{
 294        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 295        struct regmap *map = d->map;
 296        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 297        int reg;
 298        const struct regmap_irq_type *t = &irq_data->type;
 299
 300        if ((t->types_supported & type) != type)
 301                return 0;
 302
 303        reg = t->type_reg_offset / map->reg_stride;
 304
 305        if (t->type_reg_mask)
 306                d->type_buf[reg] &= ~t->type_reg_mask;
 307        else
 308                d->type_buf[reg] &= ~(t->type_falling_val |
 309                                      t->type_rising_val |
 310                                      t->type_level_low_val |
 311                                      t->type_level_high_val);
 312        switch (type) {
 313        case IRQ_TYPE_EDGE_FALLING:
 314                d->type_buf[reg] |= t->type_falling_val;
 315                break;
 316
 317        case IRQ_TYPE_EDGE_RISING:
 318                d->type_buf[reg] |= t->type_rising_val;
 319                break;
 320
 321        case IRQ_TYPE_EDGE_BOTH:
 322                d->type_buf[reg] |= (t->type_falling_val |
 323                                        t->type_rising_val);
 324                break;
 325
 326        case IRQ_TYPE_LEVEL_HIGH:
 327                d->type_buf[reg] |= t->type_level_high_val;
 328                break;
 329
 330        case IRQ_TYPE_LEVEL_LOW:
 331                d->type_buf[reg] |= t->type_level_low_val;
 332                break;
 333        default:
 334                return -EINVAL;
 335        }
 336
 337        if (d->chip->set_type_virt)
 338                return d->chip->set_type_virt(d->virt_buf, type, data->hwirq,
 339                                              reg);
 340
 341        return 0;
 342}
 343
 344static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
 345{
 346        struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
 347        struct regmap *map = d->map;
 348        const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
 349
 350        if (on) {
 351                if (d->wake_buf)
 352                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 353                                &= ~irq_data->mask;
 354                d->wake_count++;
 355        } else {
 356                if (d->wake_buf)
 357                        d->wake_buf[irq_data->reg_offset / map->reg_stride]
 358                                |= irq_data->mask;
 359                d->wake_count--;
 360        }
 361
 362        return 0;
 363}
 364
 365static const struct irq_chip regmap_irq_chip = {
 366        .irq_bus_lock           = regmap_irq_lock,
 367        .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
 368        .irq_disable            = regmap_irq_disable,
 369        .irq_enable             = regmap_irq_enable,
 370        .irq_set_type           = regmap_irq_set_type,
 371        .irq_set_wake           = regmap_irq_set_wake,
 372};
 373
 374static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
 375                                           unsigned int b)
 376{
 377        const struct regmap_irq_chip *chip = data->chip;
 378        struct regmap *map = data->map;
 379        struct regmap_irq_sub_irq_map *subreg;
 380        int i, ret = 0;
 381
 382        if (!chip->sub_reg_offsets) {
 383                /* Assume linear mapping */
 384                ret = regmap_read(map, chip->status_base +
 385                                  (b * map->reg_stride * data->irq_reg_stride),
 386                                   &data->status_buf[b]);
 387        } else {
 388                subreg = &chip->sub_reg_offsets[b];
 389                for (i = 0; i < subreg->num_regs; i++) {
 390                        unsigned int offset = subreg->offset[i];
 391
 392                        if (chip->not_fixed_stride)
 393                                ret = regmap_read(map,
 394                                                chip->status_base + offset,
 395                                                &data->status_buf[b]);
 396                        else
 397                                ret = regmap_read(map,
 398                                                chip->status_base + offset,
 399                                                &data->status_buf[offset]);
 400
 401                        if (ret)
 402                                break;
 403                }
 404        }
 405        return ret;
 406}
 407
 408static irqreturn_t regmap_irq_thread(int irq, void *d)
 409{
 410        struct regmap_irq_chip_data *data = d;
 411        const struct regmap_irq_chip *chip = data->chip;
 412        struct regmap *map = data->map;
 413        int ret, i;
 414        bool handled = false;
 415        u32 reg;
 416
 417        if (chip->handle_pre_irq)
 418                chip->handle_pre_irq(chip->irq_drv_data);
 419
 420        if (chip->runtime_pm) {
 421                ret = pm_runtime_get_sync(map->dev);
 422                if (ret < 0) {
 423                        dev_err(map->dev, "IRQ thread failed to resume: %d\n",
 424                                ret);
 425                        goto exit;
 426                }
 427        }
 428
 429        /*
 430         * Read only registers with active IRQs if the chip has 'main status
 431         * register'. Else read in the statuses, using a single bulk read if
 432         * possible in order to reduce the I/O overheads.
 433         */
 434
 435        if (chip->num_main_regs) {
 436                unsigned int max_main_bits;
 437                unsigned long size;
 438
 439                size = chip->num_regs * sizeof(unsigned int);
 440
 441                max_main_bits = (chip->num_main_status_bits) ?
 442                                 chip->num_main_status_bits : chip->num_regs;
 443                /* Clear the status buf as we don't read all status regs */
 444                memset(data->status_buf, 0, size);
 445
 446                /* We could support bulk read for main status registers
 447                 * but I don't expect to see devices with really many main
 448                 * status registers so let's only support single reads for the
 449                 * sake of simplicity. and add bulk reads only if needed
 450                 */
 451                for (i = 0; i < chip->num_main_regs; i++) {
 452                        ret = regmap_read(map, chip->main_status +
 453                                  (i * map->reg_stride
 454                                   * data->irq_reg_stride),
 455                                  &data->main_status_buf[i]);
 456                        if (ret) {
 457                                dev_err(map->dev,
 458                                        "Failed to read IRQ status %d\n",
 459                                        ret);
 460                                goto exit;
 461                        }
 462                }
 463
 464                /* Read sub registers with active IRQs */
 465                for (i = 0; i < chip->num_main_regs; i++) {
 466                        unsigned int b;
 467                        const unsigned long mreg = data->main_status_buf[i];
 468
 469                        for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
 470                                if (i * map->format.val_bytes * 8 + b >
 471                                    max_main_bits)
 472                                        break;
 473                                ret = read_sub_irq_data(data, b);
 474
 475                                if (ret != 0) {
 476                                        dev_err(map->dev,
 477                                                "Failed to read IRQ status %d\n",
 478                                                ret);
 479                                        goto exit;
 480                                }
 481                        }
 482
 483                }
 484        } else if (!map->use_single_read && map->reg_stride == 1 &&
 485                   data->irq_reg_stride == 1) {
 486
 487                u8 *buf8 = data->status_reg_buf;
 488                u16 *buf16 = data->status_reg_buf;
 489                u32 *buf32 = data->status_reg_buf;
 490
 491                BUG_ON(!data->status_reg_buf);
 492
 493                ret = regmap_bulk_read(map, chip->status_base,
 494                                       data->status_reg_buf,
 495                                       chip->num_regs);
 496                if (ret != 0) {
 497                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 498                                ret);
 499                        goto exit;
 500                }
 501
 502                for (i = 0; i < data->chip->num_regs; i++) {
 503                        switch (map->format.val_bytes) {
 504                        case 1:
 505                                data->status_buf[i] = buf8[i];
 506                                break;
 507                        case 2:
 508                                data->status_buf[i] = buf16[i];
 509                                break;
 510                        case 4:
 511                                data->status_buf[i] = buf32[i];
 512                                break;
 513                        default:
 514                                BUG();
 515                                goto exit;
 516                        }
 517                }
 518
 519        } else {
 520                for (i = 0; i < data->chip->num_regs; i++) {
 521                        unsigned int reg = sub_irq_reg(data,
 522                                        data->chip->status_base, i);
 523                        ret = regmap_read(map, reg, &data->status_buf[i]);
 524
 525                        if (ret != 0) {
 526                                dev_err(map->dev,
 527                                        "Failed to read IRQ status: %d\n",
 528                                        ret);
 529                                goto exit;
 530                        }
 531                }
 532        }
 533
 534        if (chip->status_invert)
 535                for (i = 0; i < data->chip->num_regs; i++)
 536                        data->status_buf[i] = ~data->status_buf[i];
 537
 538        /*
 539         * Ignore masked IRQs and ack if we need to; we ack early so
 540         * there is no race between handling and acknowleding the
 541         * interrupt.  We assume that typically few of the interrupts
 542         * will fire simultaneously so don't worry about overhead from
 543         * doing a write per register.
 544         */
 545        for (i = 0; i < data->chip->num_regs; i++) {
 546                data->status_buf[i] &= ~data->mask_buf[i];
 547
 548                if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 549                        reg = sub_irq_reg(data, data->chip->ack_base, i);
 550
 551                        if (chip->ack_invert)
 552                                ret = regmap_write(map, reg,
 553                                                ~data->status_buf[i]);
 554                        else
 555                                ret = regmap_write(map, reg,
 556                                                data->status_buf[i]);
 557                        if (chip->clear_ack) {
 558                                if (chip->ack_invert && !ret)
 559                                        ret = regmap_write(map, reg,
 560                                                        data->status_buf[i]);
 561                                else if (!ret)
 562                                        ret = regmap_write(map, reg,
 563                                                        ~data->status_buf[i]);
 564                        }
 565                        if (ret != 0)
 566                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 567                                        reg, ret);
 568                }
 569        }
 570
 571        for (i = 0; i < chip->num_irqs; i++) {
 572                if (data->status_buf[chip->irqs[i].reg_offset /
 573                                     map->reg_stride] & chip->irqs[i].mask) {
 574                        handle_nested_irq(irq_find_mapping(data->domain, i));
 575                        handled = true;
 576                }
 577        }
 578
 579exit:
 580        if (chip->runtime_pm)
 581                pm_runtime_put(map->dev);
 582
 583        if (chip->handle_post_irq)
 584                chip->handle_post_irq(chip->irq_drv_data);
 585
 586        if (handled)
 587                return IRQ_HANDLED;
 588        else
 589                return IRQ_NONE;
 590}
 591
 592static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
 593                          irq_hw_number_t hw)
 594{
 595        struct regmap_irq_chip_data *data = h->host_data;
 596
 597        irq_set_chip_data(virq, data);
 598        irq_set_chip(virq, &data->irq_chip);
 599        irq_set_nested_thread(virq, 1);
 600        irq_set_parent(virq, data->irq);
 601        irq_set_noprobe(virq);
 602
 603        return 0;
 604}
 605
 606static const struct irq_domain_ops regmap_domain_ops = {
 607        .map    = regmap_irq_map,
 608        .xlate  = irq_domain_xlate_onetwocell,
 609};
 610
 611/**
 612 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
 613 *
 614 * @fwnode: The firmware node where the IRQ domain should be added to.
 615 * @map: The regmap for the device.
 616 * @irq: The IRQ the device uses to signal interrupts.
 617 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 618 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 619 * @chip: Configuration for the interrupt controller.
 620 * @data: Runtime data structure for the controller, allocated on success.
 621 *
 622 * Returns 0 on success or an errno on failure.
 623 *
 624 * In order for this to be efficient the chip really should use a
 625 * register cache.  The chip driver is responsible for restoring the
 626 * register values used by the IRQ controller over suspend and resume.
 627 */
 628int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
 629                               struct regmap *map, int irq,
 630                               int irq_flags, int irq_base,
 631                               const struct regmap_irq_chip *chip,
 632                               struct regmap_irq_chip_data **data)
 633{
 634        struct regmap_irq_chip_data *d;
 635        int i;
 636        int ret = -ENOMEM;
 637        int num_type_reg;
 638        u32 reg;
 639        u32 unmask_offset;
 640
 641        if (chip->num_regs <= 0)
 642                return -EINVAL;
 643
 644        if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
 645                return -EINVAL;
 646
 647        for (i = 0; i < chip->num_irqs; i++) {
 648                if (chip->irqs[i].reg_offset % map->reg_stride)
 649                        return -EINVAL;
 650                if (chip->irqs[i].reg_offset / map->reg_stride >=
 651                    chip->num_regs)
 652                        return -EINVAL;
 653        }
 654
 655        if (chip->not_fixed_stride) {
 656                for (i = 0; i < chip->num_regs; i++)
 657                        if (chip->sub_reg_offsets[i].num_regs != 1)
 658                                return -EINVAL;
 659        }
 660
 661        if (irq_base) {
 662                irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
 663                if (irq_base < 0) {
 664                        dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
 665                                 irq_base);
 666                        return irq_base;
 667                }
 668        }
 669
 670        d = kzalloc(sizeof(*d), GFP_KERNEL);
 671        if (!d)
 672                return -ENOMEM;
 673
 674        if (chip->num_main_regs) {
 675                d->main_status_buf = kcalloc(chip->num_main_regs,
 676                                             sizeof(unsigned int),
 677                                             GFP_KERNEL);
 678
 679                if (!d->main_status_buf)
 680                        goto err_alloc;
 681        }
 682
 683        d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 684                                GFP_KERNEL);
 685        if (!d->status_buf)
 686                goto err_alloc;
 687
 688        d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 689                              GFP_KERNEL);
 690        if (!d->mask_buf)
 691                goto err_alloc;
 692
 693        d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
 694                                  GFP_KERNEL);
 695        if (!d->mask_buf_def)
 696                goto err_alloc;
 697
 698        if (chip->wake_base) {
 699                d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
 700                                      GFP_KERNEL);
 701                if (!d->wake_buf)
 702                        goto err_alloc;
 703        }
 704
 705        num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
 706        if (num_type_reg) {
 707                d->type_buf_def = kcalloc(num_type_reg,
 708                                          sizeof(unsigned int), GFP_KERNEL);
 709                if (!d->type_buf_def)
 710                        goto err_alloc;
 711
 712                d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
 713                                      GFP_KERNEL);
 714                if (!d->type_buf)
 715                        goto err_alloc;
 716        }
 717
 718        if (chip->num_virt_regs) {
 719                /*
 720                 * Create virt_buf[chip->num_extra_config_regs][chip->num_regs]
 721                 */
 722                d->virt_buf = kcalloc(chip->num_virt_regs, sizeof(*d->virt_buf),
 723                                      GFP_KERNEL);
 724                if (!d->virt_buf)
 725                        goto err_alloc;
 726
 727                for (i = 0; i < chip->num_virt_regs; i++) {
 728                        d->virt_buf[i] = kcalloc(chip->num_regs,
 729                                                 sizeof(unsigned int),
 730                                                 GFP_KERNEL);
 731                        if (!d->virt_buf[i])
 732                                goto err_alloc;
 733                }
 734        }
 735
 736        d->irq_chip = regmap_irq_chip;
 737        d->irq_chip.name = chip->name;
 738        d->irq = irq;
 739        d->map = map;
 740        d->chip = chip;
 741        d->irq_base = irq_base;
 742
 743        if (chip->irq_reg_stride)
 744                d->irq_reg_stride = chip->irq_reg_stride;
 745        else
 746                d->irq_reg_stride = 1;
 747
 748        if (chip->type_reg_stride)
 749                d->type_reg_stride = chip->type_reg_stride;
 750        else
 751                d->type_reg_stride = 1;
 752
 753        if (!map->use_single_read && map->reg_stride == 1 &&
 754            d->irq_reg_stride == 1) {
 755                d->status_reg_buf = kmalloc_array(chip->num_regs,
 756                                                  map->format.val_bytes,
 757                                                  GFP_KERNEL);
 758                if (!d->status_reg_buf)
 759                        goto err_alloc;
 760        }
 761
 762        mutex_init(&d->lock);
 763
 764        for (i = 0; i < chip->num_irqs; i++)
 765                d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
 766                        |= chip->irqs[i].mask;
 767
 768        /* Mask all the interrupts by default */
 769        for (i = 0; i < chip->num_regs; i++) {
 770                d->mask_buf[i] = d->mask_buf_def[i];
 771                if (!chip->mask_base)
 772                        continue;
 773
 774                reg = sub_irq_reg(d, d->chip->mask_base, i);
 775
 776                if (chip->mask_invert)
 777                        ret = regmap_irq_update_bits(d, reg,
 778                                         d->mask_buf[i], ~d->mask_buf[i]);
 779                else if (d->chip->unmask_base) {
 780                        unmask_offset = d->chip->unmask_base -
 781                                        d->chip->mask_base;
 782                        ret = regmap_irq_update_bits(d,
 783                                        reg + unmask_offset,
 784                                        d->mask_buf[i],
 785                                        d->mask_buf[i]);
 786                } else
 787                        ret = regmap_irq_update_bits(d, reg,
 788                                         d->mask_buf[i], d->mask_buf[i]);
 789                if (ret != 0) {
 790                        dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 791                                reg, ret);
 792                        goto err_alloc;
 793                }
 794
 795                if (!chip->init_ack_masked)
 796                        continue;
 797
 798                /* Ack masked but set interrupts */
 799                reg = sub_irq_reg(d, d->chip->status_base, i);
 800                ret = regmap_read(map, reg, &d->status_buf[i]);
 801                if (ret != 0) {
 802                        dev_err(map->dev, "Failed to read IRQ status: %d\n",
 803                                ret);
 804                        goto err_alloc;
 805                }
 806
 807                if (chip->status_invert)
 808                        d->status_buf[i] = ~d->status_buf[i];
 809
 810                if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
 811                        reg = sub_irq_reg(d, d->chip->ack_base, i);
 812                        if (chip->ack_invert)
 813                                ret = regmap_write(map, reg,
 814                                        ~(d->status_buf[i] & d->mask_buf[i]));
 815                        else
 816                                ret = regmap_write(map, reg,
 817                                        d->status_buf[i] & d->mask_buf[i]);
 818                        if (chip->clear_ack) {
 819                                if (chip->ack_invert && !ret)
 820                                        ret = regmap_write(map, reg,
 821                                                (d->status_buf[i] &
 822                                                 d->mask_buf[i]));
 823                                else if (!ret)
 824                                        ret = regmap_write(map, reg,
 825                                                ~(d->status_buf[i] &
 826                                                  d->mask_buf[i]));
 827                        }
 828                        if (ret != 0) {
 829                                dev_err(map->dev, "Failed to ack 0x%x: %d\n",
 830                                        reg, ret);
 831                                goto err_alloc;
 832                        }
 833                }
 834        }
 835
 836        /* Wake is disabled by default */
 837        if (d->wake_buf) {
 838                for (i = 0; i < chip->num_regs; i++) {
 839                        d->wake_buf[i] = d->mask_buf_def[i];
 840                        reg = sub_irq_reg(d, d->chip->wake_base, i);
 841
 842                        if (chip->wake_invert)
 843                                ret = regmap_irq_update_bits(d, reg,
 844                                                         d->mask_buf_def[i],
 845                                                         0);
 846                        else
 847                                ret = regmap_irq_update_bits(d, reg,
 848                                                         d->mask_buf_def[i],
 849                                                         d->wake_buf[i]);
 850                        if (ret != 0) {
 851                                dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
 852                                        reg, ret);
 853                                goto err_alloc;
 854                        }
 855                }
 856        }
 857
 858        if (chip->num_type_reg && !chip->type_in_mask) {
 859                for (i = 0; i < chip->num_type_reg; ++i) {
 860                        reg = sub_irq_reg(d, d->chip->type_base, i);
 861
 862                        ret = regmap_read(map, reg, &d->type_buf_def[i]);
 863
 864                        if (d->chip->type_invert)
 865                                d->type_buf_def[i] = ~d->type_buf_def[i];
 866
 867                        if (ret) {
 868                                dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
 869                                        reg, ret);
 870                                goto err_alloc;
 871                        }
 872                }
 873        }
 874
 875        if (irq_base)
 876                d->domain = irq_domain_create_legacy(fwnode, chip->num_irqs,
 877                                                     irq_base, 0,
 878                                                     &regmap_domain_ops, d);
 879        else
 880                d->domain = irq_domain_create_linear(fwnode, chip->num_irqs,
 881                                                     &regmap_domain_ops, d);
 882        if (!d->domain) {
 883                dev_err(map->dev, "Failed to create IRQ domain\n");
 884                ret = -ENOMEM;
 885                goto err_alloc;
 886        }
 887
 888        ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
 889                                   irq_flags | IRQF_ONESHOT,
 890                                   chip->name, d);
 891        if (ret != 0) {
 892                dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
 893                        irq, chip->name, ret);
 894                goto err_domain;
 895        }
 896
 897        *data = d;
 898
 899        return 0;
 900
 901err_domain:
 902        /* Should really dispose of the domain but... */
 903err_alloc:
 904        kfree(d->type_buf);
 905        kfree(d->type_buf_def);
 906        kfree(d->wake_buf);
 907        kfree(d->mask_buf_def);
 908        kfree(d->mask_buf);
 909        kfree(d->status_buf);
 910        kfree(d->status_reg_buf);
 911        if (d->virt_buf) {
 912                for (i = 0; i < chip->num_virt_regs; i++)
 913                        kfree(d->virt_buf[i]);
 914                kfree(d->virt_buf);
 915        }
 916        kfree(d);
 917        return ret;
 918}
 919EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
 920
 921/**
 922 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
 923 *
 924 * @map: The regmap for the device.
 925 * @irq: The IRQ the device uses to signal interrupts.
 926 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
 927 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
 928 * @chip: Configuration for the interrupt controller.
 929 * @data: Runtime data structure for the controller, allocated on success.
 930 *
 931 * Returns 0 on success or an errno on failure.
 932 *
 933 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
 934 * node of the regmap is used.
 935 */
 936int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
 937                        int irq_base, const struct regmap_irq_chip *chip,
 938                        struct regmap_irq_chip_data **data)
 939{
 940        return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
 941                                          irq_flags, irq_base, chip, data);
 942}
 943EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
 944
 945/**
 946 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
 947 *
 948 * @irq: Primary IRQ for the device
 949 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
 950 *
 951 * This function also disposes of all mapped IRQs on the chip.
 952 */
 953void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
 954{
 955        unsigned int virq;
 956        int hwirq;
 957
 958        if (!d)
 959                return;
 960
 961        free_irq(irq, d);
 962
 963        /* Dispose all virtual irq from irq domain before removing it */
 964        for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
 965                /* Ignore hwirq if holes in the IRQ list */
 966                if (!d->chip->irqs[hwirq].mask)
 967                        continue;
 968
 969                /*
 970                 * Find the virtual irq of hwirq on chip and if it is
 971                 * there then dispose it
 972                 */
 973                virq = irq_find_mapping(d->domain, hwirq);
 974                if (virq)
 975                        irq_dispose_mapping(virq);
 976        }
 977
 978        irq_domain_remove(d->domain);
 979        kfree(d->type_buf);
 980        kfree(d->type_buf_def);
 981        kfree(d->wake_buf);
 982        kfree(d->mask_buf_def);
 983        kfree(d->mask_buf);
 984        kfree(d->status_reg_buf);
 985        kfree(d->status_buf);
 986        kfree(d);
 987}
 988EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
 989
 990static void devm_regmap_irq_chip_release(struct device *dev, void *res)
 991{
 992        struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
 993
 994        regmap_del_irq_chip(d->irq, d);
 995}
 996
 997static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
 998
 999{
1000        struct regmap_irq_chip_data **r = res;
1001
1002        if (!r || !*r) {
1003                WARN_ON(!r || !*r);
1004                return 0;
1005        }
1006        return *r == data;
1007}
1008
1009/**
1010 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1011 *
1012 * @dev: The device pointer on which irq_chip belongs to.
1013 * @fwnode: The firmware node where the IRQ domain should be added to.
1014 * @map: The regmap for the device.
1015 * @irq: The IRQ the device uses to signal interrupts
1016 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1017 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1018 * @chip: Configuration for the interrupt controller.
1019 * @data: Runtime data structure for the controller, allocated on success
1020 *
1021 * Returns 0 on success or an errno on failure.
1022 *
1023 * The &regmap_irq_chip_data will be automatically released when the device is
1024 * unbound.
1025 */
1026int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1027                                    struct fwnode_handle *fwnode,
1028                                    struct regmap *map, int irq,
1029                                    int irq_flags, int irq_base,
1030                                    const struct regmap_irq_chip *chip,
1031                                    struct regmap_irq_chip_data **data)
1032{
1033        struct regmap_irq_chip_data **ptr, *d;
1034        int ret;
1035
1036        ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1037                           GFP_KERNEL);
1038        if (!ptr)
1039                return -ENOMEM;
1040
1041        ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1042                                         chip, &d);
1043        if (ret < 0) {
1044                devres_free(ptr);
1045                return ret;
1046        }
1047
1048        *ptr = d;
1049        devres_add(dev, ptr);
1050        *data = d;
1051        return 0;
1052}
1053EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1054
1055/**
1056 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
1057 *
1058 * @dev: The device pointer on which irq_chip belongs to.
1059 * @map: The regmap for the device.
1060 * @irq: The IRQ the device uses to signal interrupts
1061 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1062 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1063 * @chip: Configuration for the interrupt controller.
1064 * @data: Runtime data structure for the controller, allocated on success
1065 *
1066 * Returns 0 on success or an errno on failure.
1067 *
1068 * The &regmap_irq_chip_data will be automatically released when the device is
1069 * unbound.
1070 */
1071int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1072                             int irq_flags, int irq_base,
1073                             const struct regmap_irq_chip *chip,
1074                             struct regmap_irq_chip_data **data)
1075{
1076        return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1077                                               irq, irq_flags, irq_base, chip,
1078                                               data);
1079}
1080EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1081
1082/**
1083 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1084 *
1085 * @dev: Device for which which resource was allocated.
1086 * @irq: Primary IRQ for the device.
1087 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1088 *
1089 * A resource managed version of regmap_del_irq_chip().
1090 */
1091void devm_regmap_del_irq_chip(struct device *dev, int irq,
1092                              struct regmap_irq_chip_data *data)
1093{
1094        int rc;
1095
1096        WARN_ON(irq != data->irq);
1097        rc = devres_release(dev, devm_regmap_irq_chip_release,
1098                            devm_regmap_irq_chip_match, data);
1099
1100        if (rc != 0)
1101                WARN_ON(rc);
1102}
1103EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1104
1105/**
1106 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1107 *
1108 * @data: regmap irq controller to operate on.
1109 *
1110 * Useful for drivers to request their own IRQs.
1111 */
1112int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1113{
1114        WARN_ON(!data->irq_base);
1115        return data->irq_base;
1116}
1117EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1118
1119/**
1120 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1121 *
1122 * @data: regmap irq controller to operate on.
1123 * @irq: index of the interrupt requested in the chip IRQs.
1124 *
1125 * Useful for drivers to request their own IRQs.
1126 */
1127int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1128{
1129        /* Handle holes in the IRQ list */
1130        if (!data->chip->irqs[irq].mask)
1131                return -EINVAL;
1132
1133        return irq_create_mapping(data->domain, irq);
1134}
1135EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1136
1137/**
1138 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1139 *
1140 * @data: regmap_irq controller to operate on.
1141 *
1142 * Useful for drivers to request their own IRQs and for integration
1143 * with subsystems.  For ease of integration NULL is accepted as a
1144 * domain, allowing devices to just call this even if no domain is
1145 * allocated.
1146 */
1147struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1148{
1149        if (data)
1150                return data->domain;
1151        else
1152                return NULL;
1153}
1154EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1155