linux/drivers/block/drbd/drbd_vli.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3-*- linux-c -*-
   4   drbd_receiver.c
   5   This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
   6
   7   Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
   8   Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
   9   Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
  10
  11 */
  12
  13#ifndef _DRBD_VLI_H
  14#define _DRBD_VLI_H
  15
  16/*
  17 * At a granularity of 4KiB storage represented per bit,
  18 * and stroage sizes of several TiB,
  19 * and possibly small-bandwidth replication,
  20 * the bitmap transfer time can take much too long,
  21 * if transmitted in plain text.
  22 *
  23 * We try to reduce the transferred bitmap information
  24 * by encoding runlengths of bit polarity.
  25 *
  26 * We never actually need to encode a "zero" (runlengths are positive).
  27 * But then we have to store the value of the first bit.
  28 * The first bit of information thus shall encode if the first runlength
  29 * gives the number of set or unset bits.
  30 *
  31 * We assume that large areas are either completely set or unset,
  32 * which gives good compression with any runlength method,
  33 * even when encoding the runlength as fixed size 32bit/64bit integers.
  34 *
  35 * Still, there may be areas where the polarity flips every few bits,
  36 * and encoding the runlength sequence of those areas with fix size
  37 * integers would be much worse than plaintext.
  38 *
  39 * We want to encode small runlength values with minimum code length,
  40 * while still being able to encode a Huge run of all zeros.
  41 *
  42 * Thus we need a Variable Length Integer encoding, VLI.
  43 *
  44 * For some cases, we produce more code bits than plaintext input.
  45 * We need to send incompressible chunks as plaintext, skip over them
  46 * and then see if the next chunk compresses better.
  47 *
  48 * We don't care too much about "excellent" compression ratio for large
  49 * runlengths (all set/all clear): whether we achieve a factor of 100
  50 * or 1000 is not that much of an issue.
  51 * We do not want to waste too much on short runlengths in the "noisy"
  52 * parts of the bitmap, though.
  53 *
  54 * There are endless variants of VLI, we experimented with:
  55 *  * simple byte-based
  56 *  * various bit based with different code word length.
  57 *
  58 * To avoid yet an other configuration parameter (choice of bitmap compression
  59 * algorithm) which was difficult to explain and tune, we just chose the one
  60 * variant that turned out best in all test cases.
  61 * Based on real world usage patterns, with device sizes ranging from a few GiB
  62 * to several TiB, file server/mailserver/webserver/mysql/postgress,
  63 * mostly idle to really busy, the all time winner (though sometimes only
  64 * marginally better) is:
  65 */
  66
  67/*
  68 * encoding is "visualised" as
  69 * __little endian__ bitstream, least significant bit first (left most)
  70 *
  71 * this particular encoding is chosen so that the prefix code
  72 * starts as unary encoding the level, then modified so that
  73 * 10 levels can be described in 8bit, with minimal overhead
  74 * for the smaller levels.
  75 *
  76 * Number of data bits follow fibonacci sequence, with the exception of the
  77 * last level (+1 data bit, so it makes 64bit total).  The only worse code when
  78 * encoding bit polarity runlength is 1 plain bits => 2 code bits.
  79prefix    data bits                                    max val  NÂș data bits
  800 x                                                         0x2            1
  8110 x                                                        0x4            1
  82110 xx                                                      0x8            2
  831110 xxx                                                   0x10            3
  8411110 xxx xx                                               0x30            5
  85111110 xx xxxxxx                                          0x130            8
  8611111100  xxxxxxxx xxxxx                                 0x2130           13
  8711111110  xxxxxxxx xxxxxxxx xxxxx                      0x202130           21
  8811111101  xxxxxxxx xxxxxxxx xxxxxxxx  xxxxxxxx xx   0x400202130           34
  8911111111  xxxxxxxx xxxxxxxx xxxxxxxx  xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 56
  90 * maximum encodable value: 0x100000400202130 == 2**56 + some */
  91
  92/* compression "table":
  93 transmitted   x                                0.29
  94 as plaintext x                                  ........................
  95             x                                   ........................
  96            x                                    ........................
  97           x    0.59                         0.21........................
  98          x      ........................................................
  99         x       .. c ...................................................
 100        x    0.44.. o ...................................................
 101       x .......... d ...................................................
 102      x  .......... e ...................................................
 103     X.............   ...................................................
 104    x.............. b ...................................................
 1052.0x............... i ...................................................
 106 #X................ t ...................................................
 107 #................. s ...........................  plain bits  ..........
 108-+-----------------------------------------------------------------------
 109 1             16              32                              64
 110*/
 111
 112/* LEVEL: (total bits, prefix bits, prefix value),
 113 * sorted ascending by number of total bits.
 114 * The rest of the code table is calculated at compiletime from this. */
 115
 116/* fibonacci data 1, 1, ... */
 117#define VLI_L_1_1() do { \
 118        LEVEL( 2, 1, 0x00); \
 119        LEVEL( 3, 2, 0x01); \
 120        LEVEL( 5, 3, 0x03); \
 121        LEVEL( 7, 4, 0x07); \
 122        LEVEL(10, 5, 0x0f); \
 123        LEVEL(14, 6, 0x1f); \
 124        LEVEL(21, 8, 0x3f); \
 125        LEVEL(29, 8, 0x7f); \
 126        LEVEL(42, 8, 0xbf); \
 127        LEVEL(64, 8, 0xff); \
 128        } while (0)
 129
 130/* finds a suitable level to decode the least significant part of in.
 131 * returns number of bits consumed.
 132 *
 133 * BUG() for bad input, as that would mean a buggy code table. */
 134static inline int vli_decode_bits(u64 *out, const u64 in)
 135{
 136        u64 adj = 1;
 137
 138#define LEVEL(t,b,v)                                    \
 139        do {                                            \
 140                if ((in & ((1 << b) -1)) == v) {        \
 141                        *out = ((in & ((~0ULL) >> (64-t))) >> b) + adj; \
 142                        return t;                       \
 143                }                                       \
 144                adj += 1ULL << (t - b);                 \
 145        } while (0)
 146
 147        VLI_L_1_1();
 148
 149        /* NOT REACHED, if VLI_LEVELS code table is defined properly */
 150        BUG();
 151#undef LEVEL
 152}
 153
 154/* return number of code bits needed,
 155 * or negative error number */
 156static inline int __vli_encode_bits(u64 *out, const u64 in)
 157{
 158        u64 max = 0;
 159        u64 adj = 1;
 160
 161        if (in == 0)
 162                return -EINVAL;
 163
 164#define LEVEL(t,b,v) do {               \
 165                max += 1ULL << (t - b); \
 166                if (in <= max) {        \
 167                        if (out)        \
 168                                *out = ((in - adj) << b) | v;   \
 169                        return t;       \
 170                }                       \
 171                adj = max + 1;          \
 172        } while (0)
 173
 174        VLI_L_1_1();
 175
 176        return -EOVERFLOW;
 177#undef LEVEL
 178}
 179
 180#undef VLI_L_1_1
 181
 182/* code from here down is independend of actually used bit code */
 183
 184/*
 185 * Code length is determined by some unique (e.g. unary) prefix.
 186 * This encodes arbitrary bit length, not whole bytes: we have a bit-stream,
 187 * not a byte stream.
 188 */
 189
 190/* for the bitstream, we need a cursor */
 191struct bitstream_cursor {
 192        /* the current byte */
 193        u8 *b;
 194        /* the current bit within *b, nomalized: 0..7 */
 195        unsigned int bit;
 196};
 197
 198/* initialize cursor to point to first bit of stream */
 199static inline void bitstream_cursor_reset(struct bitstream_cursor *cur, void *s)
 200{
 201        cur->b = s;
 202        cur->bit = 0;
 203}
 204
 205/* advance cursor by that many bits; maximum expected input value: 64,
 206 * but depending on VLI implementation, it may be more. */
 207static inline void bitstream_cursor_advance(struct bitstream_cursor *cur, unsigned int bits)
 208{
 209        bits += cur->bit;
 210        cur->b = cur->b + (bits >> 3);
 211        cur->bit = bits & 7;
 212}
 213
 214/* the bitstream itself knows its length */
 215struct bitstream {
 216        struct bitstream_cursor cur;
 217        unsigned char *buf;
 218        size_t buf_len;         /* in bytes */
 219
 220        /* for input stream:
 221         * number of trailing 0 bits for padding
 222         * total number of valid bits in stream: buf_len * 8 - pad_bits */
 223        unsigned int pad_bits;
 224};
 225
 226static inline void bitstream_init(struct bitstream *bs, void *s, size_t len, unsigned int pad_bits)
 227{
 228        bs->buf = s;
 229        bs->buf_len = len;
 230        bs->pad_bits = pad_bits;
 231        bitstream_cursor_reset(&bs->cur, bs->buf);
 232}
 233
 234static inline void bitstream_rewind(struct bitstream *bs)
 235{
 236        bitstream_cursor_reset(&bs->cur, bs->buf);
 237        memset(bs->buf, 0, bs->buf_len);
 238}
 239
 240/* Put (at most 64) least significant bits of val into bitstream, and advance cursor.
 241 * Ignores "pad_bits".
 242 * Returns zero if bits == 0 (nothing to do).
 243 * Returns number of bits used if successful.
 244 *
 245 * If there is not enough room left in bitstream,
 246 * leaves bitstream unchanged and returns -ENOBUFS.
 247 */
 248static inline int bitstream_put_bits(struct bitstream *bs, u64 val, const unsigned int bits)
 249{
 250        unsigned char *b = bs->cur.b;
 251        unsigned int tmp;
 252
 253        if (bits == 0)
 254                return 0;
 255
 256        if ((bs->cur.b + ((bs->cur.bit + bits -1) >> 3)) - bs->buf >= bs->buf_len)
 257                return -ENOBUFS;
 258
 259        /* paranoia: strip off hi bits; they should not be set anyways. */
 260        if (bits < 64)
 261                val &= ~0ULL >> (64 - bits);
 262
 263        *b++ |= (val & 0xff) << bs->cur.bit;
 264
 265        for (tmp = 8 - bs->cur.bit; tmp < bits; tmp += 8)
 266                *b++ |= (val >> tmp) & 0xff;
 267
 268        bitstream_cursor_advance(&bs->cur, bits);
 269        return bits;
 270}
 271
 272/* Fetch (at most 64) bits from bitstream into *out, and advance cursor.
 273 *
 274 * If more than 64 bits are requested, returns -EINVAL and leave *out unchanged.
 275 *
 276 * If there are less than the requested number of valid bits left in the
 277 * bitstream, still fetches all available bits.
 278 *
 279 * Returns number of actually fetched bits.
 280 */
 281static inline int bitstream_get_bits(struct bitstream *bs, u64 *out, int bits)
 282{
 283        u64 val;
 284        unsigned int n;
 285
 286        if (bits > 64)
 287                return -EINVAL;
 288
 289        if (bs->cur.b + ((bs->cur.bit + bs->pad_bits + bits -1) >> 3) - bs->buf >= bs->buf_len)
 290                bits = ((bs->buf_len - (bs->cur.b - bs->buf)) << 3)
 291                        - bs->cur.bit - bs->pad_bits;
 292
 293        if (bits == 0) {
 294                *out = 0;
 295                return 0;
 296        }
 297
 298        /* get the high bits */
 299        val = 0;
 300        n = (bs->cur.bit + bits + 7) >> 3;
 301        /* n may be at most 9, if cur.bit + bits > 64 */
 302        /* which means this copies at most 8 byte */
 303        if (n) {
 304                memcpy(&val, bs->cur.b+1, n - 1);
 305                val = le64_to_cpu(val) << (8 - bs->cur.bit);
 306        }
 307
 308        /* we still need the low bits */
 309        val |= bs->cur.b[0] >> bs->cur.bit;
 310
 311        /* and mask out bits we don't want */
 312        val &= ~0ULL >> (64 - bits);
 313
 314        bitstream_cursor_advance(&bs->cur, bits);
 315        *out = val;
 316
 317        return bits;
 318}
 319
 320/* encodes @in as vli into @bs;
 321
 322 * return values
 323 *  > 0: number of bits successfully stored in bitstream
 324 * -ENOBUFS @bs is full
 325 * -EINVAL input zero (invalid)
 326 * -EOVERFLOW input too large for this vli code (invalid)
 327 */
 328static inline int vli_encode_bits(struct bitstream *bs, u64 in)
 329{
 330        u64 code = code;
 331        int bits = __vli_encode_bits(&code, in);
 332
 333        if (bits <= 0)
 334                return bits;
 335
 336        return bitstream_put_bits(bs, code, bits);
 337}
 338
 339#endif
 340