linux/drivers/clk/bcm/clk-bcm2835.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2010,2015 Broadcom
   4 * Copyright (C) 2012 Stephen Warren
   5 */
   6
   7/**
   8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
   9 *
  10 * The clock tree on the 2835 has several levels.  There's a root
  11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
  12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
  14 * produce up to 4 channels.  Finally, there is the level of clocks to
  15 * be consumed by other hardware components (like "H264" or "HDMI
  16 * state machine"), which divide off of some subset of the PLL
  17 * channels.
  18 *
  19 * All of the clocks in the tree are exposed in the DT, because the DT
  20 * may want to make assignments of the final layer of clocks to the
  21 * PLL channels, and some components of the hardware will actually
  22 * skip layers of the tree (for example, the pixel clock comes
  23 * directly from the PLLH PIX channel without using a CM_*CTL clock
  24 * generator).
  25 */
  26
  27#include <linux/clk-provider.h>
  28#include <linux/clkdev.h>
  29#include <linux/clk.h>
  30#include <linux/debugfs.h>
  31#include <linux/delay.h>
  32#include <linux/io.h>
  33#include <linux/module.h>
  34#include <linux/of_device.h>
  35#include <linux/platform_device.h>
  36#include <linux/slab.h>
  37#include <dt-bindings/clock/bcm2835.h>
  38
  39#define CM_PASSWORD             0x5a000000
  40
  41#define CM_GNRICCTL             0x000
  42#define CM_GNRICDIV             0x004
  43# define CM_DIV_FRAC_BITS       12
  44# define CM_DIV_FRAC_MASK       GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  45
  46#define CM_VPUCTL               0x008
  47#define CM_VPUDIV               0x00c
  48#define CM_SYSCTL               0x010
  49#define CM_SYSDIV               0x014
  50#define CM_PERIACTL             0x018
  51#define CM_PERIADIV             0x01c
  52#define CM_PERIICTL             0x020
  53#define CM_PERIIDIV             0x024
  54#define CM_H264CTL              0x028
  55#define CM_H264DIV              0x02c
  56#define CM_ISPCTL               0x030
  57#define CM_ISPDIV               0x034
  58#define CM_V3DCTL               0x038
  59#define CM_V3DDIV               0x03c
  60#define CM_CAM0CTL              0x040
  61#define CM_CAM0DIV              0x044
  62#define CM_CAM1CTL              0x048
  63#define CM_CAM1DIV              0x04c
  64#define CM_CCP2CTL              0x050
  65#define CM_CCP2DIV              0x054
  66#define CM_DSI0ECTL             0x058
  67#define CM_DSI0EDIV             0x05c
  68#define CM_DSI0PCTL             0x060
  69#define CM_DSI0PDIV             0x064
  70#define CM_DPICTL               0x068
  71#define CM_DPIDIV               0x06c
  72#define CM_GP0CTL               0x070
  73#define CM_GP0DIV               0x074
  74#define CM_GP1CTL               0x078
  75#define CM_GP1DIV               0x07c
  76#define CM_GP2CTL               0x080
  77#define CM_GP2DIV               0x084
  78#define CM_HSMCTL               0x088
  79#define CM_HSMDIV               0x08c
  80#define CM_OTPCTL               0x090
  81#define CM_OTPDIV               0x094
  82#define CM_PCMCTL               0x098
  83#define CM_PCMDIV               0x09c
  84#define CM_PWMCTL               0x0a0
  85#define CM_PWMDIV               0x0a4
  86#define CM_SLIMCTL              0x0a8
  87#define CM_SLIMDIV              0x0ac
  88#define CM_SMICTL               0x0b0
  89#define CM_SMIDIV               0x0b4
  90/* no definition for 0x0b8  and 0x0bc */
  91#define CM_TCNTCTL              0x0c0
  92# define CM_TCNT_SRC1_SHIFT             12
  93#define CM_TCNTCNT              0x0c4
  94#define CM_TECCTL               0x0c8
  95#define CM_TECDIV               0x0cc
  96#define CM_TD0CTL               0x0d0
  97#define CM_TD0DIV               0x0d4
  98#define CM_TD1CTL               0x0d8
  99#define CM_TD1DIV               0x0dc
 100#define CM_TSENSCTL             0x0e0
 101#define CM_TSENSDIV             0x0e4
 102#define CM_TIMERCTL             0x0e8
 103#define CM_TIMERDIV             0x0ec
 104#define CM_UARTCTL              0x0f0
 105#define CM_UARTDIV              0x0f4
 106#define CM_VECCTL               0x0f8
 107#define CM_VECDIV               0x0fc
 108#define CM_PULSECTL             0x190
 109#define CM_PULSEDIV             0x194
 110#define CM_SDCCTL               0x1a8
 111#define CM_SDCDIV               0x1ac
 112#define CM_ARMCTL               0x1b0
 113#define CM_AVEOCTL              0x1b8
 114#define CM_AVEODIV              0x1bc
 115#define CM_EMMCCTL              0x1c0
 116#define CM_EMMCDIV              0x1c4
 117#define CM_EMMC2CTL             0x1d0
 118#define CM_EMMC2DIV             0x1d4
 119
 120/* General bits for the CM_*CTL regs */
 121# define CM_ENABLE                      BIT(4)
 122# define CM_KILL                        BIT(5)
 123# define CM_GATE_BIT                    6
 124# define CM_GATE                        BIT(CM_GATE_BIT)
 125# define CM_BUSY                        BIT(7)
 126# define CM_BUSYD                       BIT(8)
 127# define CM_FRAC                        BIT(9)
 128# define CM_SRC_SHIFT                   0
 129# define CM_SRC_BITS                    4
 130# define CM_SRC_MASK                    0xf
 131# define CM_SRC_GND                     0
 132# define CM_SRC_OSC                     1
 133# define CM_SRC_TESTDEBUG0              2
 134# define CM_SRC_TESTDEBUG1              3
 135# define CM_SRC_PLLA_CORE               4
 136# define CM_SRC_PLLA_PER                4
 137# define CM_SRC_PLLC_CORE0              5
 138# define CM_SRC_PLLC_PER                5
 139# define CM_SRC_PLLC_CORE1              8
 140# define CM_SRC_PLLD_CORE               6
 141# define CM_SRC_PLLD_PER                6
 142# define CM_SRC_PLLH_AUX                7
 143# define CM_SRC_PLLC_CORE1              8
 144# define CM_SRC_PLLC_CORE2              9
 145
 146#define CM_OSCCOUNT             0x100
 147
 148#define CM_PLLA                 0x104
 149# define CM_PLL_ANARST                  BIT(8)
 150# define CM_PLLA_HOLDPER                BIT(7)
 151# define CM_PLLA_LOADPER                BIT(6)
 152# define CM_PLLA_HOLDCORE               BIT(5)
 153# define CM_PLLA_LOADCORE               BIT(4)
 154# define CM_PLLA_HOLDCCP2               BIT(3)
 155# define CM_PLLA_LOADCCP2               BIT(2)
 156# define CM_PLLA_HOLDDSI0               BIT(1)
 157# define CM_PLLA_LOADDSI0               BIT(0)
 158
 159#define CM_PLLC                 0x108
 160# define CM_PLLC_HOLDPER                BIT(7)
 161# define CM_PLLC_LOADPER                BIT(6)
 162# define CM_PLLC_HOLDCORE2              BIT(5)
 163# define CM_PLLC_LOADCORE2              BIT(4)
 164# define CM_PLLC_HOLDCORE1              BIT(3)
 165# define CM_PLLC_LOADCORE1              BIT(2)
 166# define CM_PLLC_HOLDCORE0              BIT(1)
 167# define CM_PLLC_LOADCORE0              BIT(0)
 168
 169#define CM_PLLD                 0x10c
 170# define CM_PLLD_HOLDPER                BIT(7)
 171# define CM_PLLD_LOADPER                BIT(6)
 172# define CM_PLLD_HOLDCORE               BIT(5)
 173# define CM_PLLD_LOADCORE               BIT(4)
 174# define CM_PLLD_HOLDDSI1               BIT(3)
 175# define CM_PLLD_LOADDSI1               BIT(2)
 176# define CM_PLLD_HOLDDSI0               BIT(1)
 177# define CM_PLLD_LOADDSI0               BIT(0)
 178
 179#define CM_PLLH                 0x110
 180# define CM_PLLH_LOADRCAL               BIT(2)
 181# define CM_PLLH_LOADAUX                BIT(1)
 182# define CM_PLLH_LOADPIX                BIT(0)
 183
 184#define CM_LOCK                 0x114
 185# define CM_LOCK_FLOCKH                 BIT(12)
 186# define CM_LOCK_FLOCKD                 BIT(11)
 187# define CM_LOCK_FLOCKC                 BIT(10)
 188# define CM_LOCK_FLOCKB                 BIT(9)
 189# define CM_LOCK_FLOCKA                 BIT(8)
 190
 191#define CM_EVENT                0x118
 192#define CM_DSI1ECTL             0x158
 193#define CM_DSI1EDIV             0x15c
 194#define CM_DSI1PCTL             0x160
 195#define CM_DSI1PDIV             0x164
 196#define CM_DFTCTL               0x168
 197#define CM_DFTDIV               0x16c
 198
 199#define CM_PLLB                 0x170
 200# define CM_PLLB_HOLDARM                BIT(1)
 201# define CM_PLLB_LOADARM                BIT(0)
 202
 203#define A2W_PLLA_CTRL           0x1100
 204#define A2W_PLLC_CTRL           0x1120
 205#define A2W_PLLD_CTRL           0x1140
 206#define A2W_PLLH_CTRL           0x1160
 207#define A2W_PLLB_CTRL           0x11e0
 208# define A2W_PLL_CTRL_PRST_DISABLE      BIT(17)
 209# define A2W_PLL_CTRL_PWRDN             BIT(16)
 210# define A2W_PLL_CTRL_PDIV_MASK         0x000007000
 211# define A2W_PLL_CTRL_PDIV_SHIFT        12
 212# define A2W_PLL_CTRL_NDIV_MASK         0x0000003ff
 213# define A2W_PLL_CTRL_NDIV_SHIFT        0
 214
 215#define A2W_PLLA_ANA0           0x1010
 216#define A2W_PLLC_ANA0           0x1030
 217#define A2W_PLLD_ANA0           0x1050
 218#define A2W_PLLH_ANA0           0x1070
 219#define A2W_PLLB_ANA0           0x10f0
 220
 221#define A2W_PLL_KA_SHIFT        7
 222#define A2W_PLL_KA_MASK         GENMASK(9, 7)
 223#define A2W_PLL_KI_SHIFT        19
 224#define A2W_PLL_KI_MASK         GENMASK(21, 19)
 225#define A2W_PLL_KP_SHIFT        15
 226#define A2W_PLL_KP_MASK         GENMASK(18, 15)
 227
 228#define A2W_PLLH_KA_SHIFT       19
 229#define A2W_PLLH_KA_MASK        GENMASK(21, 19)
 230#define A2W_PLLH_KI_LOW_SHIFT   22
 231#define A2W_PLLH_KI_LOW_MASK    GENMASK(23, 22)
 232#define A2W_PLLH_KI_HIGH_SHIFT  0
 233#define A2W_PLLH_KI_HIGH_MASK   GENMASK(0, 0)
 234#define A2W_PLLH_KP_SHIFT       1
 235#define A2W_PLLH_KP_MASK        GENMASK(4, 1)
 236
 237#define A2W_XOSC_CTRL           0x1190
 238# define A2W_XOSC_CTRL_PLLB_ENABLE      BIT(7)
 239# define A2W_XOSC_CTRL_PLLA_ENABLE      BIT(6)
 240# define A2W_XOSC_CTRL_PLLD_ENABLE      BIT(5)
 241# define A2W_XOSC_CTRL_DDR_ENABLE       BIT(4)
 242# define A2W_XOSC_CTRL_CPR1_ENABLE      BIT(3)
 243# define A2W_XOSC_CTRL_USB_ENABLE       BIT(2)
 244# define A2W_XOSC_CTRL_HDMI_ENABLE      BIT(1)
 245# define A2W_XOSC_CTRL_PLLC_ENABLE      BIT(0)
 246
 247#define A2W_PLLA_FRAC           0x1200
 248#define A2W_PLLC_FRAC           0x1220
 249#define A2W_PLLD_FRAC           0x1240
 250#define A2W_PLLH_FRAC           0x1260
 251#define A2W_PLLB_FRAC           0x12e0
 252# define A2W_PLL_FRAC_MASK              ((1 << A2W_PLL_FRAC_BITS) - 1)
 253# define A2W_PLL_FRAC_BITS              20
 254
 255#define A2W_PLL_CHANNEL_DISABLE         BIT(8)
 256#define A2W_PLL_DIV_BITS                8
 257#define A2W_PLL_DIV_SHIFT               0
 258
 259#define A2W_PLLA_DSI0           0x1300
 260#define A2W_PLLA_CORE           0x1400
 261#define A2W_PLLA_PER            0x1500
 262#define A2W_PLLA_CCP2           0x1600
 263
 264#define A2W_PLLC_CORE2          0x1320
 265#define A2W_PLLC_CORE1          0x1420
 266#define A2W_PLLC_PER            0x1520
 267#define A2W_PLLC_CORE0          0x1620
 268
 269#define A2W_PLLD_DSI0           0x1340
 270#define A2W_PLLD_CORE           0x1440
 271#define A2W_PLLD_PER            0x1540
 272#define A2W_PLLD_DSI1           0x1640
 273
 274#define A2W_PLLH_AUX            0x1360
 275#define A2W_PLLH_RCAL           0x1460
 276#define A2W_PLLH_PIX            0x1560
 277#define A2W_PLLH_STS            0x1660
 278
 279#define A2W_PLLH_CTRLR          0x1960
 280#define A2W_PLLH_FRACR          0x1a60
 281#define A2W_PLLH_AUXR           0x1b60
 282#define A2W_PLLH_RCALR          0x1c60
 283#define A2W_PLLH_PIXR           0x1d60
 284#define A2W_PLLH_STSR           0x1e60
 285
 286#define A2W_PLLB_ARM            0x13e0
 287#define A2W_PLLB_SP0            0x14e0
 288#define A2W_PLLB_SP1            0x15e0
 289#define A2W_PLLB_SP2            0x16e0
 290
 291#define LOCK_TIMEOUT_NS         100000000
 292#define BCM2835_MAX_FB_RATE     1750000000u
 293
 294#define SOC_BCM2835             BIT(0)
 295#define SOC_BCM2711             BIT(1)
 296#define SOC_ALL                 (SOC_BCM2835 | SOC_BCM2711)
 297
 298/*
 299 * Names of clocks used within the driver that need to be replaced
 300 * with an external parent's name.  This array is in the order that
 301 * the clocks node in the DT references external clocks.
 302 */
 303static const char *const cprman_parent_names[] = {
 304        "xosc",
 305        "dsi0_byte",
 306        "dsi0_ddr2",
 307        "dsi0_ddr",
 308        "dsi1_byte",
 309        "dsi1_ddr2",
 310        "dsi1_ddr",
 311};
 312
 313struct bcm2835_cprman {
 314        struct device *dev;
 315        void __iomem *regs;
 316        spinlock_t regs_lock; /* spinlock for all clocks */
 317        unsigned int soc;
 318
 319        /*
 320         * Real names of cprman clock parents looked up through
 321         * of_clk_get_parent_name(), which will be used in the
 322         * parent_names[] arrays for clock registration.
 323         */
 324        const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
 325
 326        /* Must be last */
 327        struct clk_hw_onecell_data onecell;
 328};
 329
 330struct cprman_plat_data {
 331        unsigned int soc;
 332};
 333
 334static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
 335{
 336        writel(CM_PASSWORD | val, cprman->regs + reg);
 337}
 338
 339static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
 340{
 341        return readl(cprman->regs + reg);
 342}
 343
 344/* Does a cycle of measuring a clock through the TCNT clock, which may
 345 * source from many other clocks in the system.
 346 */
 347static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
 348                                              u32 tcnt_mux)
 349{
 350        u32 osccount = 19200; /* 1ms */
 351        u32 count;
 352        ktime_t timeout;
 353
 354        spin_lock(&cprman->regs_lock);
 355
 356        cprman_write(cprman, CM_TCNTCTL, CM_KILL);
 357
 358        cprman_write(cprman, CM_TCNTCTL,
 359                     (tcnt_mux & CM_SRC_MASK) |
 360                     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
 361
 362        cprman_write(cprman, CM_OSCCOUNT, osccount);
 363
 364        /* do a kind delay at the start */
 365        mdelay(1);
 366
 367        /* Finish off whatever is left of OSCCOUNT */
 368        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 369        while (cprman_read(cprman, CM_OSCCOUNT)) {
 370                if (ktime_after(ktime_get(), timeout)) {
 371                        dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
 372                        count = 0;
 373                        goto out;
 374                }
 375                cpu_relax();
 376        }
 377
 378        /* Wait for BUSY to clear. */
 379        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 380        while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
 381                if (ktime_after(ktime_get(), timeout)) {
 382                        dev_err(cprman->dev, "timeout waiting for !BUSY\n");
 383                        count = 0;
 384                        goto out;
 385                }
 386                cpu_relax();
 387        }
 388
 389        count = cprman_read(cprman, CM_TCNTCNT);
 390
 391        cprman_write(cprman, CM_TCNTCTL, 0);
 392
 393out:
 394        spin_unlock(&cprman->regs_lock);
 395
 396        return count * 1000;
 397}
 398
 399static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
 400                                   const struct debugfs_reg32 *regs,
 401                                   size_t nregs, struct dentry *dentry)
 402{
 403        struct debugfs_regset32 *regset;
 404
 405        regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
 406        if (!regset)
 407                return;
 408
 409        regset->regs = regs;
 410        regset->nregs = nregs;
 411        regset->base = cprman->regs + base;
 412
 413        debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
 414}
 415
 416struct bcm2835_pll_data {
 417        const char *name;
 418        u32 cm_ctrl_reg;
 419        u32 a2w_ctrl_reg;
 420        u32 frac_reg;
 421        u32 ana_reg_base;
 422        u32 reference_enable_mask;
 423        /* Bit in CM_LOCK to indicate when the PLL has locked. */
 424        u32 lock_mask;
 425        u32 flags;
 426
 427        const struct bcm2835_pll_ana_bits *ana;
 428
 429        unsigned long min_rate;
 430        unsigned long max_rate;
 431        /*
 432         * Highest rate for the VCO before we have to use the
 433         * pre-divide-by-2.
 434         */
 435        unsigned long max_fb_rate;
 436};
 437
 438struct bcm2835_pll_ana_bits {
 439        u32 mask0;
 440        u32 set0;
 441        u32 mask1;
 442        u32 set1;
 443        u32 mask3;
 444        u32 set3;
 445        u32 fb_prediv_mask;
 446};
 447
 448static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
 449        .mask0 = 0,
 450        .set0 = 0,
 451        .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
 452        .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
 453        .mask3 = A2W_PLL_KA_MASK,
 454        .set3 = (2 << A2W_PLL_KA_SHIFT),
 455        .fb_prediv_mask = BIT(14),
 456};
 457
 458static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
 459        .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
 460        .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
 461        .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
 462        .set1 = (6 << A2W_PLLH_KP_SHIFT),
 463        .mask3 = 0,
 464        .set3 = 0,
 465        .fb_prediv_mask = BIT(11),
 466};
 467
 468struct bcm2835_pll_divider_data {
 469        const char *name;
 470        const char *source_pll;
 471
 472        u32 cm_reg;
 473        u32 a2w_reg;
 474
 475        u32 load_mask;
 476        u32 hold_mask;
 477        u32 fixed_divider;
 478        u32 flags;
 479};
 480
 481struct bcm2835_clock_data {
 482        const char *name;
 483
 484        const char *const *parents;
 485        int num_mux_parents;
 486
 487        /* Bitmap encoding which parents accept rate change propagation. */
 488        unsigned int set_rate_parent;
 489
 490        u32 ctl_reg;
 491        u32 div_reg;
 492
 493        /* Number of integer bits in the divider */
 494        u32 int_bits;
 495        /* Number of fractional bits in the divider */
 496        u32 frac_bits;
 497
 498        u32 flags;
 499
 500        bool is_vpu_clock;
 501        bool is_mash_clock;
 502        bool low_jitter;
 503
 504        u32 tcnt_mux;
 505};
 506
 507struct bcm2835_gate_data {
 508        const char *name;
 509        const char *parent;
 510
 511        u32 ctl_reg;
 512};
 513
 514struct bcm2835_pll {
 515        struct clk_hw hw;
 516        struct bcm2835_cprman *cprman;
 517        const struct bcm2835_pll_data *data;
 518};
 519
 520static int bcm2835_pll_is_on(struct clk_hw *hw)
 521{
 522        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 523        struct bcm2835_cprman *cprman = pll->cprman;
 524        const struct bcm2835_pll_data *data = pll->data;
 525
 526        return cprman_read(cprman, data->a2w_ctrl_reg) &
 527                A2W_PLL_CTRL_PRST_DISABLE;
 528}
 529
 530static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
 531                                       const struct bcm2835_pll_data *data)
 532{
 533        /*
 534         * On BCM2711 there isn't a pre-divisor available in the PLL feedback
 535         * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
 536         * for to for VCO RANGE bits.
 537         */
 538        if (cprman->soc & SOC_BCM2711)
 539                return 0;
 540
 541        return data->ana->fb_prediv_mask;
 542}
 543
 544static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
 545                                             unsigned long parent_rate,
 546                                             u32 *ndiv, u32 *fdiv)
 547{
 548        u64 div;
 549
 550        div = (u64)rate << A2W_PLL_FRAC_BITS;
 551        do_div(div, parent_rate);
 552
 553        *ndiv = div >> A2W_PLL_FRAC_BITS;
 554        *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
 555}
 556
 557static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
 558                                           u32 ndiv, u32 fdiv, u32 pdiv)
 559{
 560        u64 rate;
 561
 562        if (pdiv == 0)
 563                return 0;
 564
 565        rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
 566        do_div(rate, pdiv);
 567        return rate >> A2W_PLL_FRAC_BITS;
 568}
 569
 570static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 571                                   unsigned long *parent_rate)
 572{
 573        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 574        const struct bcm2835_pll_data *data = pll->data;
 575        u32 ndiv, fdiv;
 576
 577        rate = clamp(rate, data->min_rate, data->max_rate);
 578
 579        bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
 580
 581        return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
 582}
 583
 584static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
 585                                          unsigned long parent_rate)
 586{
 587        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 588        struct bcm2835_cprman *cprman = pll->cprman;
 589        const struct bcm2835_pll_data *data = pll->data;
 590        u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
 591        u32 ndiv, pdiv, fdiv;
 592        bool using_prediv;
 593
 594        if (parent_rate == 0)
 595                return 0;
 596
 597        fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
 598        ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
 599        pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
 600        using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
 601                       bcm2835_pll_get_prediv_mask(cprman, data);
 602
 603        if (using_prediv) {
 604                ndiv *= 2;
 605                fdiv *= 2;
 606        }
 607
 608        return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
 609}
 610
 611static void bcm2835_pll_off(struct clk_hw *hw)
 612{
 613        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 614        struct bcm2835_cprman *cprman = pll->cprman;
 615        const struct bcm2835_pll_data *data = pll->data;
 616
 617        spin_lock(&cprman->regs_lock);
 618        cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
 619        cprman_write(cprman, data->a2w_ctrl_reg,
 620                     cprman_read(cprman, data->a2w_ctrl_reg) |
 621                     A2W_PLL_CTRL_PWRDN);
 622        spin_unlock(&cprman->regs_lock);
 623}
 624
 625static int bcm2835_pll_on(struct clk_hw *hw)
 626{
 627        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 628        struct bcm2835_cprman *cprman = pll->cprman;
 629        const struct bcm2835_pll_data *data = pll->data;
 630        ktime_t timeout;
 631
 632        cprman_write(cprman, data->a2w_ctrl_reg,
 633                     cprman_read(cprman, data->a2w_ctrl_reg) &
 634                     ~A2W_PLL_CTRL_PWRDN);
 635
 636        /* Take the PLL out of reset. */
 637        spin_lock(&cprman->regs_lock);
 638        cprman_write(cprman, data->cm_ctrl_reg,
 639                     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
 640        spin_unlock(&cprman->regs_lock);
 641
 642        /* Wait for the PLL to lock. */
 643        timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 644        while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
 645                if (ktime_after(ktime_get(), timeout)) {
 646                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
 647                                clk_hw_get_name(hw));
 648                        return -ETIMEDOUT;
 649                }
 650
 651                cpu_relax();
 652        }
 653
 654        cprman_write(cprman, data->a2w_ctrl_reg,
 655                     cprman_read(cprman, data->a2w_ctrl_reg) |
 656                     A2W_PLL_CTRL_PRST_DISABLE);
 657
 658        return 0;
 659}
 660
 661static void
 662bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
 663{
 664        int i;
 665
 666        /*
 667         * ANA register setup is done as a series of writes to
 668         * ANA3-ANA0, in that order.  This lets us write all 4
 669         * registers as a single cycle of the serdes interface (taking
 670         * 100 xosc clocks), whereas if we were to update ana0, 1, and
 671         * 3 individually through their partial-write registers, each
 672         * would be their own serdes cycle.
 673         */
 674        for (i = 3; i >= 0; i--)
 675                cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
 676}
 677
 678static int bcm2835_pll_set_rate(struct clk_hw *hw,
 679                                unsigned long rate, unsigned long parent_rate)
 680{
 681        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 682        struct bcm2835_cprman *cprman = pll->cprman;
 683        const struct bcm2835_pll_data *data = pll->data;
 684        u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
 685        bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
 686        u32 ndiv, fdiv, a2w_ctl;
 687        u32 ana[4];
 688        int i;
 689
 690        if (rate > data->max_fb_rate) {
 691                use_fb_prediv = true;
 692                rate /= 2;
 693        } else {
 694                use_fb_prediv = false;
 695        }
 696
 697        bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
 698
 699        for (i = 3; i >= 0; i--)
 700                ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
 701
 702        was_using_prediv = ana[1] & prediv_mask;
 703
 704        ana[0] &= ~data->ana->mask0;
 705        ana[0] |= data->ana->set0;
 706        ana[1] &= ~data->ana->mask1;
 707        ana[1] |= data->ana->set1;
 708        ana[3] &= ~data->ana->mask3;
 709        ana[3] |= data->ana->set3;
 710
 711        if (was_using_prediv && !use_fb_prediv) {
 712                ana[1] &= ~prediv_mask;
 713                do_ana_setup_first = true;
 714        } else if (!was_using_prediv && use_fb_prediv) {
 715                ana[1] |= prediv_mask;
 716                do_ana_setup_first = false;
 717        } else {
 718                do_ana_setup_first = true;
 719        }
 720
 721        /* Unmask the reference clock from the oscillator. */
 722        spin_lock(&cprman->regs_lock);
 723        cprman_write(cprman, A2W_XOSC_CTRL,
 724                     cprman_read(cprman, A2W_XOSC_CTRL) |
 725                     data->reference_enable_mask);
 726        spin_unlock(&cprman->regs_lock);
 727
 728        if (do_ana_setup_first)
 729                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 730
 731        /* Set the PLL multiplier from the oscillator. */
 732        cprman_write(cprman, data->frac_reg, fdiv);
 733
 734        a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
 735        a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
 736        a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
 737        a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
 738        a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
 739        cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
 740
 741        if (!do_ana_setup_first)
 742                bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 743
 744        return 0;
 745}
 746
 747static void bcm2835_pll_debug_init(struct clk_hw *hw,
 748                                  struct dentry *dentry)
 749{
 750        struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 751        struct bcm2835_cprman *cprman = pll->cprman;
 752        const struct bcm2835_pll_data *data = pll->data;
 753        struct debugfs_reg32 *regs;
 754
 755        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 756        if (!regs)
 757                return;
 758
 759        regs[0].name = "cm_ctrl";
 760        regs[0].offset = data->cm_ctrl_reg;
 761        regs[1].name = "a2w_ctrl";
 762        regs[1].offset = data->a2w_ctrl_reg;
 763        regs[2].name = "frac";
 764        regs[2].offset = data->frac_reg;
 765        regs[3].name = "ana0";
 766        regs[3].offset = data->ana_reg_base + 0 * 4;
 767        regs[4].name = "ana1";
 768        regs[4].offset = data->ana_reg_base + 1 * 4;
 769        regs[5].name = "ana2";
 770        regs[5].offset = data->ana_reg_base + 2 * 4;
 771        regs[6].name = "ana3";
 772        regs[6].offset = data->ana_reg_base + 3 * 4;
 773
 774        bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
 775}
 776
 777static const struct clk_ops bcm2835_pll_clk_ops = {
 778        .is_prepared = bcm2835_pll_is_on,
 779        .prepare = bcm2835_pll_on,
 780        .unprepare = bcm2835_pll_off,
 781        .recalc_rate = bcm2835_pll_get_rate,
 782        .set_rate = bcm2835_pll_set_rate,
 783        .round_rate = bcm2835_pll_round_rate,
 784        .debug_init = bcm2835_pll_debug_init,
 785};
 786
 787struct bcm2835_pll_divider {
 788        struct clk_divider div;
 789        struct bcm2835_cprman *cprman;
 790        const struct bcm2835_pll_divider_data *data;
 791};
 792
 793static struct bcm2835_pll_divider *
 794bcm2835_pll_divider_from_hw(struct clk_hw *hw)
 795{
 796        return container_of(hw, struct bcm2835_pll_divider, div.hw);
 797}
 798
 799static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
 800{
 801        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 802        struct bcm2835_cprman *cprman = divider->cprman;
 803        const struct bcm2835_pll_divider_data *data = divider->data;
 804
 805        return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
 806}
 807
 808static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
 809                                              struct clk_rate_request *req)
 810{
 811        return clk_divider_ops.determine_rate(hw, req);
 812}
 813
 814static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
 815                                                  unsigned long parent_rate)
 816{
 817        return clk_divider_ops.recalc_rate(hw, parent_rate);
 818}
 819
 820static void bcm2835_pll_divider_off(struct clk_hw *hw)
 821{
 822        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 823        struct bcm2835_cprman *cprman = divider->cprman;
 824        const struct bcm2835_pll_divider_data *data = divider->data;
 825
 826        spin_lock(&cprman->regs_lock);
 827        cprman_write(cprman, data->cm_reg,
 828                     (cprman_read(cprman, data->cm_reg) &
 829                      ~data->load_mask) | data->hold_mask);
 830        cprman_write(cprman, data->a2w_reg,
 831                     cprman_read(cprman, data->a2w_reg) |
 832                     A2W_PLL_CHANNEL_DISABLE);
 833        spin_unlock(&cprman->regs_lock);
 834}
 835
 836static int bcm2835_pll_divider_on(struct clk_hw *hw)
 837{
 838        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 839        struct bcm2835_cprman *cprman = divider->cprman;
 840        const struct bcm2835_pll_divider_data *data = divider->data;
 841
 842        spin_lock(&cprman->regs_lock);
 843        cprman_write(cprman, data->a2w_reg,
 844                     cprman_read(cprman, data->a2w_reg) &
 845                     ~A2W_PLL_CHANNEL_DISABLE);
 846
 847        cprman_write(cprman, data->cm_reg,
 848                     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
 849        spin_unlock(&cprman->regs_lock);
 850
 851        return 0;
 852}
 853
 854static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
 855                                        unsigned long rate,
 856                                        unsigned long parent_rate)
 857{
 858        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 859        struct bcm2835_cprman *cprman = divider->cprman;
 860        const struct bcm2835_pll_divider_data *data = divider->data;
 861        u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
 862
 863        div = DIV_ROUND_UP_ULL(parent_rate, rate);
 864
 865        div = min(div, max_div);
 866        if (div == max_div)
 867                div = 0;
 868
 869        cprman_write(cprman, data->a2w_reg, div);
 870        cm = cprman_read(cprman, data->cm_reg);
 871        cprman_write(cprman, data->cm_reg, cm | data->load_mask);
 872        cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
 873
 874        return 0;
 875}
 876
 877static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
 878                                           struct dentry *dentry)
 879{
 880        struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 881        struct bcm2835_cprman *cprman = divider->cprman;
 882        const struct bcm2835_pll_divider_data *data = divider->data;
 883        struct debugfs_reg32 *regs;
 884
 885        regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 886        if (!regs)
 887                return;
 888
 889        regs[0].name = "cm";
 890        regs[0].offset = data->cm_reg;
 891        regs[1].name = "a2w";
 892        regs[1].offset = data->a2w_reg;
 893
 894        bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
 895}
 896
 897static const struct clk_ops bcm2835_pll_divider_clk_ops = {
 898        .is_prepared = bcm2835_pll_divider_is_on,
 899        .prepare = bcm2835_pll_divider_on,
 900        .unprepare = bcm2835_pll_divider_off,
 901        .recalc_rate = bcm2835_pll_divider_get_rate,
 902        .set_rate = bcm2835_pll_divider_set_rate,
 903        .determine_rate = bcm2835_pll_divider_determine_rate,
 904        .debug_init = bcm2835_pll_divider_debug_init,
 905};
 906
 907/*
 908 * The CM dividers do fixed-point division, so we can't use the
 909 * generic integer divider code like the PLL dividers do (and we can't
 910 * fake it by having some fixed shifts preceding it in the clock tree,
 911 * because we'd run out of bits in a 32-bit unsigned long).
 912 */
 913struct bcm2835_clock {
 914        struct clk_hw hw;
 915        struct bcm2835_cprman *cprman;
 916        const struct bcm2835_clock_data *data;
 917};
 918
 919static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
 920{
 921        return container_of(hw, struct bcm2835_clock, hw);
 922}
 923
 924static int bcm2835_clock_is_on(struct clk_hw *hw)
 925{
 926        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 927        struct bcm2835_cprman *cprman = clock->cprman;
 928        const struct bcm2835_clock_data *data = clock->data;
 929
 930        return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
 931}
 932
 933static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
 934                                    unsigned long rate,
 935                                    unsigned long parent_rate,
 936                                    bool round_up)
 937{
 938        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 939        const struct bcm2835_clock_data *data = clock->data;
 940        u32 unused_frac_mask =
 941                GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
 942        u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
 943        u64 rem;
 944        u32 div, mindiv, maxdiv;
 945
 946        rem = do_div(temp, rate);
 947        div = temp;
 948
 949        /* Round up and mask off the unused bits */
 950        if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
 951                div += unused_frac_mask + 1;
 952        div &= ~unused_frac_mask;
 953
 954        /* different clamping limits apply for a mash clock */
 955        if (data->is_mash_clock) {
 956                /* clamp to min divider of 2 */
 957                mindiv = 2 << CM_DIV_FRAC_BITS;
 958                /* clamp to the highest possible integer divider */
 959                maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
 960        } else {
 961                /* clamp to min divider of 1 */
 962                mindiv = 1 << CM_DIV_FRAC_BITS;
 963                /* clamp to the highest possible fractional divider */
 964                maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
 965                                 CM_DIV_FRAC_BITS - data->frac_bits);
 966        }
 967
 968        /* apply the clamping  limits */
 969        div = max_t(u32, div, mindiv);
 970        div = min_t(u32, div, maxdiv);
 971
 972        return div;
 973}
 974
 975static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
 976                                            unsigned long parent_rate,
 977                                            u32 div)
 978{
 979        const struct bcm2835_clock_data *data = clock->data;
 980        u64 temp;
 981
 982        if (data->int_bits == 0 && data->frac_bits == 0)
 983                return parent_rate;
 984
 985        /*
 986         * The divisor is a 12.12 fixed point field, but only some of
 987         * the bits are populated in any given clock.
 988         */
 989        div >>= CM_DIV_FRAC_BITS - data->frac_bits;
 990        div &= (1 << (data->int_bits + data->frac_bits)) - 1;
 991
 992        if (div == 0)
 993                return 0;
 994
 995        temp = (u64)parent_rate << data->frac_bits;
 996
 997        do_div(temp, div);
 998
 999        return temp;
1000}
1001
1002static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1003                                            unsigned long parent_rate)
1004{
1005        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1006        struct bcm2835_cprman *cprman = clock->cprman;
1007        const struct bcm2835_clock_data *data = clock->data;
1008        u32 div;
1009
1010        if (data->int_bits == 0 && data->frac_bits == 0)
1011                return parent_rate;
1012
1013        div = cprman_read(cprman, data->div_reg);
1014
1015        return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1016}
1017
1018static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1019{
1020        struct bcm2835_cprman *cprman = clock->cprman;
1021        const struct bcm2835_clock_data *data = clock->data;
1022        ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1023
1024        while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1025                if (ktime_after(ktime_get(), timeout)) {
1026                        dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1027                                clk_hw_get_name(&clock->hw));
1028                        return;
1029                }
1030                cpu_relax();
1031        }
1032}
1033
1034static void bcm2835_clock_off(struct clk_hw *hw)
1035{
1036        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1037        struct bcm2835_cprman *cprman = clock->cprman;
1038        const struct bcm2835_clock_data *data = clock->data;
1039
1040        spin_lock(&cprman->regs_lock);
1041        cprman_write(cprman, data->ctl_reg,
1042                     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1043        spin_unlock(&cprman->regs_lock);
1044
1045        /* BUSY will remain high until the divider completes its cycle. */
1046        bcm2835_clock_wait_busy(clock);
1047}
1048
1049static int bcm2835_clock_on(struct clk_hw *hw)
1050{
1051        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1052        struct bcm2835_cprman *cprman = clock->cprman;
1053        const struct bcm2835_clock_data *data = clock->data;
1054
1055        spin_lock(&cprman->regs_lock);
1056        cprman_write(cprman, data->ctl_reg,
1057                     cprman_read(cprman, data->ctl_reg) |
1058                     CM_ENABLE |
1059                     CM_GATE);
1060        spin_unlock(&cprman->regs_lock);
1061
1062        /* Debug code to measure the clock once it's turned on to see
1063         * if it's ticking at the rate we expect.
1064         */
1065        if (data->tcnt_mux && false) {
1066                dev_info(cprman->dev,
1067                         "clk %s: rate %ld, measure %ld\n",
1068                         data->name,
1069                         clk_hw_get_rate(hw),
1070                         bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1071        }
1072
1073        return 0;
1074}
1075
1076static int bcm2835_clock_set_rate(struct clk_hw *hw,
1077                                  unsigned long rate, unsigned long parent_rate)
1078{
1079        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1080        struct bcm2835_cprman *cprman = clock->cprman;
1081        const struct bcm2835_clock_data *data = clock->data;
1082        u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1083        u32 ctl;
1084
1085        spin_lock(&cprman->regs_lock);
1086
1087        /*
1088         * Setting up frac support
1089         *
1090         * In principle it is recommended to stop/start the clock first,
1091         * but as we set CLK_SET_RATE_GATE during registration of the
1092         * clock this requirement should be take care of by the
1093         * clk-framework.
1094         */
1095        ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1096        ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1097        cprman_write(cprman, data->ctl_reg, ctl);
1098
1099        cprman_write(cprman, data->div_reg, div);
1100
1101        spin_unlock(&cprman->regs_lock);
1102
1103        return 0;
1104}
1105
1106static bool
1107bcm2835_clk_is_pllc(struct clk_hw *hw)
1108{
1109        if (!hw)
1110                return false;
1111
1112        return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1113}
1114
1115static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1116                                                        int parent_idx,
1117                                                        unsigned long rate,
1118                                                        u32 *div,
1119                                                        unsigned long *prate,
1120                                                        unsigned long *avgrate)
1121{
1122        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1123        struct bcm2835_cprman *cprman = clock->cprman;
1124        const struct bcm2835_clock_data *data = clock->data;
1125        unsigned long best_rate = 0;
1126        u32 curdiv, mindiv, maxdiv;
1127        struct clk_hw *parent;
1128
1129        parent = clk_hw_get_parent_by_index(hw, parent_idx);
1130
1131        if (!(BIT(parent_idx) & data->set_rate_parent)) {
1132                *prate = clk_hw_get_rate(parent);
1133                *div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1134
1135                *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1136
1137                if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1138                        unsigned long high, low;
1139                        u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1140
1141                        high = bcm2835_clock_rate_from_divisor(clock, *prate,
1142                                                               int_div);
1143                        int_div += CM_DIV_FRAC_MASK + 1;
1144                        low = bcm2835_clock_rate_from_divisor(clock, *prate,
1145                                                              int_div);
1146
1147                        /*
1148                         * Return a value which is the maximum deviation
1149                         * below the ideal rate, for use as a metric.
1150                         */
1151                        return *avgrate - max(*avgrate - low, high - *avgrate);
1152                }
1153                return *avgrate;
1154        }
1155
1156        if (data->frac_bits)
1157                dev_warn(cprman->dev,
1158                        "frac bits are not used when propagating rate change");
1159
1160        /* clamp to min divider of 2 if we're dealing with a mash clock */
1161        mindiv = data->is_mash_clock ? 2 : 1;
1162        maxdiv = BIT(data->int_bits) - 1;
1163
1164        /* TODO: Be smart, and only test a subset of the available divisors. */
1165        for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1166                unsigned long tmp_rate;
1167
1168                tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1169                tmp_rate /= curdiv;
1170                if (curdiv == mindiv ||
1171                    (tmp_rate > best_rate && tmp_rate <= rate))
1172                        best_rate = tmp_rate;
1173
1174                if (best_rate == rate)
1175                        break;
1176        }
1177
1178        *div = curdiv << CM_DIV_FRAC_BITS;
1179        *prate = curdiv * best_rate;
1180        *avgrate = best_rate;
1181
1182        return best_rate;
1183}
1184
1185static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1186                                        struct clk_rate_request *req)
1187{
1188        struct clk_hw *parent, *best_parent = NULL;
1189        bool current_parent_is_pllc;
1190        unsigned long rate, best_rate = 0;
1191        unsigned long prate, best_prate = 0;
1192        unsigned long avgrate, best_avgrate = 0;
1193        size_t i;
1194        u32 div;
1195
1196        current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1197
1198        /*
1199         * Select parent clock that results in the closest but lower rate
1200         */
1201        for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1202                parent = clk_hw_get_parent_by_index(hw, i);
1203                if (!parent)
1204                        continue;
1205
1206                /*
1207                 * Don't choose a PLLC-derived clock as our parent
1208                 * unless it had been manually set that way.  PLLC's
1209                 * frequency gets adjusted by the firmware due to
1210                 * over-temp or under-voltage conditions, without
1211                 * prior notification to our clock consumer.
1212                 */
1213                if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1214                        continue;
1215
1216                rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1217                                                          &div, &prate,
1218                                                          &avgrate);
1219                if (rate > best_rate && rate <= req->rate) {
1220                        best_parent = parent;
1221                        best_prate = prate;
1222                        best_rate = rate;
1223                        best_avgrate = avgrate;
1224                }
1225        }
1226
1227        if (!best_parent)
1228                return -EINVAL;
1229
1230        req->best_parent_hw = best_parent;
1231        req->best_parent_rate = best_prate;
1232
1233        req->rate = best_avgrate;
1234
1235        return 0;
1236}
1237
1238static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1239{
1240        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1241        struct bcm2835_cprman *cprman = clock->cprman;
1242        const struct bcm2835_clock_data *data = clock->data;
1243        u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1244
1245        cprman_write(cprman, data->ctl_reg, src);
1246        return 0;
1247}
1248
1249static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1250{
1251        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1252        struct bcm2835_cprman *cprman = clock->cprman;
1253        const struct bcm2835_clock_data *data = clock->data;
1254        u32 src = cprman_read(cprman, data->ctl_reg);
1255
1256        return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1257}
1258
1259static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1260        {
1261                .name = "ctl",
1262                .offset = 0,
1263        },
1264        {
1265                .name = "div",
1266                .offset = 4,
1267        },
1268};
1269
1270static void bcm2835_clock_debug_init(struct clk_hw *hw,
1271                                    struct dentry *dentry)
1272{
1273        struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1274        struct bcm2835_cprman *cprman = clock->cprman;
1275        const struct bcm2835_clock_data *data = clock->data;
1276
1277        bcm2835_debugfs_regset(cprman, data->ctl_reg,
1278                bcm2835_debugfs_clock_reg32,
1279                ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1280                dentry);
1281}
1282
1283static const struct clk_ops bcm2835_clock_clk_ops = {
1284        .is_prepared = bcm2835_clock_is_on,
1285        .prepare = bcm2835_clock_on,
1286        .unprepare = bcm2835_clock_off,
1287        .recalc_rate = bcm2835_clock_get_rate,
1288        .set_rate = bcm2835_clock_set_rate,
1289        .determine_rate = bcm2835_clock_determine_rate,
1290        .set_parent = bcm2835_clock_set_parent,
1291        .get_parent = bcm2835_clock_get_parent,
1292        .debug_init = bcm2835_clock_debug_init,
1293};
1294
1295static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1296{
1297        return true;
1298}
1299
1300/*
1301 * The VPU clock can never be disabled (it doesn't have an ENABLE
1302 * bit), so it gets its own set of clock ops.
1303 */
1304static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1305        .is_prepared = bcm2835_vpu_clock_is_on,
1306        .recalc_rate = bcm2835_clock_get_rate,
1307        .set_rate = bcm2835_clock_set_rate,
1308        .determine_rate = bcm2835_clock_determine_rate,
1309        .set_parent = bcm2835_clock_set_parent,
1310        .get_parent = bcm2835_clock_get_parent,
1311        .debug_init = bcm2835_clock_debug_init,
1312};
1313
1314static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1315                                           const void *data)
1316{
1317        const struct bcm2835_pll_data *pll_data = data;
1318        struct bcm2835_pll *pll;
1319        struct clk_init_data init;
1320        int ret;
1321
1322        memset(&init, 0, sizeof(init));
1323
1324        /* All of the PLLs derive from the external oscillator. */
1325        init.parent_names = &cprman->real_parent_names[0];
1326        init.num_parents = 1;
1327        init.name = pll_data->name;
1328        init.ops = &bcm2835_pll_clk_ops;
1329        init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1330
1331        pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1332        if (!pll)
1333                return NULL;
1334
1335        pll->cprman = cprman;
1336        pll->data = pll_data;
1337        pll->hw.init = &init;
1338
1339        ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1340        if (ret) {
1341                kfree(pll);
1342                return NULL;
1343        }
1344        return &pll->hw;
1345}
1346
1347static struct clk_hw *
1348bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1349                             const void *data)
1350{
1351        const struct bcm2835_pll_divider_data *divider_data = data;
1352        struct bcm2835_pll_divider *divider;
1353        struct clk_init_data init;
1354        const char *divider_name;
1355        int ret;
1356
1357        if (divider_data->fixed_divider != 1) {
1358                divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1359                                              "%s_prediv", divider_data->name);
1360                if (!divider_name)
1361                        return NULL;
1362        } else {
1363                divider_name = divider_data->name;
1364        }
1365
1366        memset(&init, 0, sizeof(init));
1367
1368        init.parent_names = &divider_data->source_pll;
1369        init.num_parents = 1;
1370        init.name = divider_name;
1371        init.ops = &bcm2835_pll_divider_clk_ops;
1372        init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1373
1374        divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1375        if (!divider)
1376                return NULL;
1377
1378        divider->div.reg = cprman->regs + divider_data->a2w_reg;
1379        divider->div.shift = A2W_PLL_DIV_SHIFT;
1380        divider->div.width = A2W_PLL_DIV_BITS;
1381        divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1382        divider->div.lock = &cprman->regs_lock;
1383        divider->div.hw.init = &init;
1384        divider->div.table = NULL;
1385
1386        divider->cprman = cprman;
1387        divider->data = divider_data;
1388
1389        ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1390        if (ret)
1391                return ERR_PTR(ret);
1392
1393        /*
1394         * PLLH's channels have a fixed divide by 10 afterwards, which
1395         * is what our consumers are actually using.
1396         */
1397        if (divider_data->fixed_divider != 1) {
1398                return clk_hw_register_fixed_factor(cprman->dev,
1399                                                    divider_data->name,
1400                                                    divider_name,
1401                                                    CLK_SET_RATE_PARENT,
1402                                                    1,
1403                                                    divider_data->fixed_divider);
1404        }
1405
1406        return &divider->div.hw;
1407}
1408
1409static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1410                                             const void *data)
1411{
1412        const struct bcm2835_clock_data *clock_data = data;
1413        struct bcm2835_clock *clock;
1414        struct clk_init_data init;
1415        const char *parents[1 << CM_SRC_BITS];
1416        size_t i;
1417        int ret;
1418
1419        /*
1420         * Replace our strings referencing parent clocks with the
1421         * actual clock-output-name of the parent.
1422         */
1423        for (i = 0; i < clock_data->num_mux_parents; i++) {
1424                parents[i] = clock_data->parents[i];
1425
1426                ret = match_string(cprman_parent_names,
1427                                   ARRAY_SIZE(cprman_parent_names),
1428                                   parents[i]);
1429                if (ret >= 0)
1430                        parents[i] = cprman->real_parent_names[ret];
1431        }
1432
1433        memset(&init, 0, sizeof(init));
1434        init.parent_names = parents;
1435        init.num_parents = clock_data->num_mux_parents;
1436        init.name = clock_data->name;
1437        init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1438
1439        /*
1440         * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1441         * rate changes on at least of the parents.
1442         */
1443        if (clock_data->set_rate_parent)
1444                init.flags |= CLK_SET_RATE_PARENT;
1445
1446        if (clock_data->is_vpu_clock) {
1447                init.ops = &bcm2835_vpu_clock_clk_ops;
1448        } else {
1449                init.ops = &bcm2835_clock_clk_ops;
1450                init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1451
1452                /* If the clock wasn't actually enabled at boot, it's not
1453                 * critical.
1454                 */
1455                if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1456                        init.flags &= ~CLK_IS_CRITICAL;
1457        }
1458
1459        clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1460        if (!clock)
1461                return NULL;
1462
1463        clock->cprman = cprman;
1464        clock->data = clock_data;
1465        clock->hw.init = &init;
1466
1467        ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1468        if (ret)
1469                return ERR_PTR(ret);
1470        return &clock->hw;
1471}
1472
1473static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1474                                            const void *data)
1475{
1476        const struct bcm2835_gate_data *gate_data = data;
1477
1478        return clk_hw_register_gate(cprman->dev, gate_data->name,
1479                                    gate_data->parent,
1480                                    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1481                                    cprman->regs + gate_data->ctl_reg,
1482                                    CM_GATE_BIT, 0, &cprman->regs_lock);
1483}
1484
1485struct bcm2835_clk_desc {
1486        struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1487                                       const void *data);
1488        unsigned int supported;
1489        const void *data;
1490};
1491
1492/* assignment helper macros for different clock types */
1493#define _REGISTER(f, s, ...) { .clk_register = f, \
1494                               .supported = s,                          \
1495                               .data = __VA_ARGS__ }
1496#define REGISTER_PLL(s, ...)    _REGISTER(&bcm2835_register_pll,        \
1497                                          s,                            \
1498                                          &(struct bcm2835_pll_data)    \
1499                                          {__VA_ARGS__})
1500#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1501                                           s,                             \
1502                                           &(struct bcm2835_pll_divider_data) \
1503                                           {__VA_ARGS__})
1504#define REGISTER_CLK(s, ...)    _REGISTER(&bcm2835_register_clock,      \
1505                                          s,                            \
1506                                          &(struct bcm2835_clock_data)  \
1507                                          {__VA_ARGS__})
1508#define REGISTER_GATE(s, ...)   _REGISTER(&bcm2835_register_gate,       \
1509                                          s,                            \
1510                                          &(struct bcm2835_gate_data)   \
1511                                          {__VA_ARGS__})
1512
1513/* parent mux arrays plus helper macros */
1514
1515/* main oscillator parent mux */
1516static const char *const bcm2835_clock_osc_parents[] = {
1517        "gnd",
1518        "xosc",
1519        "testdebug0",
1520        "testdebug1"
1521};
1522
1523#define REGISTER_OSC_CLK(s, ...)        REGISTER_CLK(                   \
1524        s,                                                              \
1525        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),       \
1526        .parents = bcm2835_clock_osc_parents,                           \
1527        __VA_ARGS__)
1528
1529/* main peripherial parent mux */
1530static const char *const bcm2835_clock_per_parents[] = {
1531        "gnd",
1532        "xosc",
1533        "testdebug0",
1534        "testdebug1",
1535        "plla_per",
1536        "pllc_per",
1537        "plld_per",
1538        "pllh_aux",
1539};
1540
1541#define REGISTER_PER_CLK(s, ...)        REGISTER_CLK(                   \
1542        s,                                                              \
1543        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),       \
1544        .parents = bcm2835_clock_per_parents,                           \
1545        __VA_ARGS__)
1546
1547/*
1548 * Restrict clock sources for the PCM peripheral to the oscillator and
1549 * PLLD_PER because other source may have varying rates or be switched
1550 * off.
1551 *
1552 * Prevent other sources from being selected by replacing their names in
1553 * the list of potential parents with dummy entries (entry index is
1554 * significant).
1555 */
1556static const char *const bcm2835_pcm_per_parents[] = {
1557        "-",
1558        "xosc",
1559        "-",
1560        "-",
1561        "-",
1562        "-",
1563        "plld_per",
1564        "-",
1565};
1566
1567#define REGISTER_PCM_CLK(s, ...)        REGISTER_CLK(                   \
1568        s,                                                              \
1569        .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),         \
1570        .parents = bcm2835_pcm_per_parents,                             \
1571        __VA_ARGS__)
1572
1573/* main vpu parent mux */
1574static const char *const bcm2835_clock_vpu_parents[] = {
1575        "gnd",
1576        "xosc",
1577        "testdebug0",
1578        "testdebug1",
1579        "plla_core",
1580        "pllc_core0",
1581        "plld_core",
1582        "pllh_aux",
1583        "pllc_core1",
1584        "pllc_core2",
1585};
1586
1587#define REGISTER_VPU_CLK(s, ...)        REGISTER_CLK(                   \
1588        s,                                                              \
1589        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),       \
1590        .parents = bcm2835_clock_vpu_parents,                           \
1591        __VA_ARGS__)
1592
1593/*
1594 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1595 * analog PHY.  The _inv variants are generated internally to cprman,
1596 * but we don't use them so they aren't hooked up.
1597 */
1598static const char *const bcm2835_clock_dsi0_parents[] = {
1599        "gnd",
1600        "xosc",
1601        "testdebug0",
1602        "testdebug1",
1603        "dsi0_ddr",
1604        "dsi0_ddr_inv",
1605        "dsi0_ddr2",
1606        "dsi0_ddr2_inv",
1607        "dsi0_byte",
1608        "dsi0_byte_inv",
1609};
1610
1611static const char *const bcm2835_clock_dsi1_parents[] = {
1612        "gnd",
1613        "xosc",
1614        "testdebug0",
1615        "testdebug1",
1616        "dsi1_ddr",
1617        "dsi1_ddr_inv",
1618        "dsi1_ddr2",
1619        "dsi1_ddr2_inv",
1620        "dsi1_byte",
1621        "dsi1_byte_inv",
1622};
1623
1624#define REGISTER_DSI0_CLK(s, ...)       REGISTER_CLK(                   \
1625        s,                                                              \
1626        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),      \
1627        .parents = bcm2835_clock_dsi0_parents,                          \
1628        __VA_ARGS__)
1629
1630#define REGISTER_DSI1_CLK(s, ...)       REGISTER_CLK(                   \
1631        s,                                                              \
1632        .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),      \
1633        .parents = bcm2835_clock_dsi1_parents,                          \
1634        __VA_ARGS__)
1635
1636/*
1637 * the real definition of all the pll, pll_dividers and clocks
1638 * these make use of the above REGISTER_* macros
1639 */
1640static const struct bcm2835_clk_desc clk_desc_array[] = {
1641        /* the PLL + PLL dividers */
1642
1643        /*
1644         * PLLA is the auxiliary PLL, used to drive the CCP2
1645         * (Compact Camera Port 2) transmitter clock.
1646         *
1647         * It is in the PX LDO power domain, which is on when the
1648         * AUDIO domain is on.
1649         */
1650        [BCM2835_PLLA]          = REGISTER_PLL(
1651                SOC_ALL,
1652                .name = "plla",
1653                .cm_ctrl_reg = CM_PLLA,
1654                .a2w_ctrl_reg = A2W_PLLA_CTRL,
1655                .frac_reg = A2W_PLLA_FRAC,
1656                .ana_reg_base = A2W_PLLA_ANA0,
1657                .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1658                .lock_mask = CM_LOCK_FLOCKA,
1659
1660                .ana = &bcm2835_ana_default,
1661
1662                .min_rate = 600000000u,
1663                .max_rate = 2400000000u,
1664                .max_fb_rate = BCM2835_MAX_FB_RATE),
1665        [BCM2835_PLLA_CORE]     = REGISTER_PLL_DIV(
1666                SOC_ALL,
1667                .name = "plla_core",
1668                .source_pll = "plla",
1669                .cm_reg = CM_PLLA,
1670                .a2w_reg = A2W_PLLA_CORE,
1671                .load_mask = CM_PLLA_LOADCORE,
1672                .hold_mask = CM_PLLA_HOLDCORE,
1673                .fixed_divider = 1,
1674                .flags = CLK_SET_RATE_PARENT),
1675        [BCM2835_PLLA_PER]      = REGISTER_PLL_DIV(
1676                SOC_ALL,
1677                .name = "plla_per",
1678                .source_pll = "plla",
1679                .cm_reg = CM_PLLA,
1680                .a2w_reg = A2W_PLLA_PER,
1681                .load_mask = CM_PLLA_LOADPER,
1682                .hold_mask = CM_PLLA_HOLDPER,
1683                .fixed_divider = 1,
1684                .flags = CLK_SET_RATE_PARENT),
1685        [BCM2835_PLLA_DSI0]     = REGISTER_PLL_DIV(
1686                SOC_ALL,
1687                .name = "plla_dsi0",
1688                .source_pll = "plla",
1689                .cm_reg = CM_PLLA,
1690                .a2w_reg = A2W_PLLA_DSI0,
1691                .load_mask = CM_PLLA_LOADDSI0,
1692                .hold_mask = CM_PLLA_HOLDDSI0,
1693                .fixed_divider = 1),
1694        [BCM2835_PLLA_CCP2]     = REGISTER_PLL_DIV(
1695                SOC_ALL,
1696                .name = "plla_ccp2",
1697                .source_pll = "plla",
1698                .cm_reg = CM_PLLA,
1699                .a2w_reg = A2W_PLLA_CCP2,
1700                .load_mask = CM_PLLA_LOADCCP2,
1701                .hold_mask = CM_PLLA_HOLDCCP2,
1702                .fixed_divider = 1,
1703                .flags = CLK_SET_RATE_PARENT),
1704
1705        /* PLLB is used for the ARM's clock. */
1706        [BCM2835_PLLB]          = REGISTER_PLL(
1707                SOC_ALL,
1708                .name = "pllb",
1709                .cm_ctrl_reg = CM_PLLB,
1710                .a2w_ctrl_reg = A2W_PLLB_CTRL,
1711                .frac_reg = A2W_PLLB_FRAC,
1712                .ana_reg_base = A2W_PLLB_ANA0,
1713                .reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1714                .lock_mask = CM_LOCK_FLOCKB,
1715
1716                .ana = &bcm2835_ana_default,
1717
1718                .min_rate = 600000000u,
1719                .max_rate = 3000000000u,
1720                .max_fb_rate = BCM2835_MAX_FB_RATE,
1721                .flags = CLK_GET_RATE_NOCACHE),
1722        [BCM2835_PLLB_ARM]      = REGISTER_PLL_DIV(
1723                SOC_ALL,
1724                .name = "pllb_arm",
1725                .source_pll = "pllb",
1726                .cm_reg = CM_PLLB,
1727                .a2w_reg = A2W_PLLB_ARM,
1728                .load_mask = CM_PLLB_LOADARM,
1729                .hold_mask = CM_PLLB_HOLDARM,
1730                .fixed_divider = 1,
1731                .flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1732
1733        /*
1734         * PLLC is the core PLL, used to drive the core VPU clock.
1735         *
1736         * It is in the PX LDO power domain, which is on when the
1737         * AUDIO domain is on.
1738         */
1739        [BCM2835_PLLC]          = REGISTER_PLL(
1740                SOC_ALL,
1741                .name = "pllc",
1742                .cm_ctrl_reg = CM_PLLC,
1743                .a2w_ctrl_reg = A2W_PLLC_CTRL,
1744                .frac_reg = A2W_PLLC_FRAC,
1745                .ana_reg_base = A2W_PLLC_ANA0,
1746                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1747                .lock_mask = CM_LOCK_FLOCKC,
1748
1749                .ana = &bcm2835_ana_default,
1750
1751                .min_rate = 600000000u,
1752                .max_rate = 3000000000u,
1753                .max_fb_rate = BCM2835_MAX_FB_RATE),
1754        [BCM2835_PLLC_CORE0]    = REGISTER_PLL_DIV(
1755                SOC_ALL,
1756                .name = "pllc_core0",
1757                .source_pll = "pllc",
1758                .cm_reg = CM_PLLC,
1759                .a2w_reg = A2W_PLLC_CORE0,
1760                .load_mask = CM_PLLC_LOADCORE0,
1761                .hold_mask = CM_PLLC_HOLDCORE0,
1762                .fixed_divider = 1,
1763                .flags = CLK_SET_RATE_PARENT),
1764        [BCM2835_PLLC_CORE1]    = REGISTER_PLL_DIV(
1765                SOC_ALL,
1766                .name = "pllc_core1",
1767                .source_pll = "pllc",
1768                .cm_reg = CM_PLLC,
1769                .a2w_reg = A2W_PLLC_CORE1,
1770                .load_mask = CM_PLLC_LOADCORE1,
1771                .hold_mask = CM_PLLC_HOLDCORE1,
1772                .fixed_divider = 1,
1773                .flags = CLK_SET_RATE_PARENT),
1774        [BCM2835_PLLC_CORE2]    = REGISTER_PLL_DIV(
1775                SOC_ALL,
1776                .name = "pllc_core2",
1777                .source_pll = "pllc",
1778                .cm_reg = CM_PLLC,
1779                .a2w_reg = A2W_PLLC_CORE2,
1780                .load_mask = CM_PLLC_LOADCORE2,
1781                .hold_mask = CM_PLLC_HOLDCORE2,
1782                .fixed_divider = 1,
1783                .flags = CLK_SET_RATE_PARENT),
1784        [BCM2835_PLLC_PER]      = REGISTER_PLL_DIV(
1785                SOC_ALL,
1786                .name = "pllc_per",
1787                .source_pll = "pllc",
1788                .cm_reg = CM_PLLC,
1789                .a2w_reg = A2W_PLLC_PER,
1790                .load_mask = CM_PLLC_LOADPER,
1791                .hold_mask = CM_PLLC_HOLDPER,
1792                .fixed_divider = 1,
1793                .flags = CLK_SET_RATE_PARENT),
1794
1795        /*
1796         * PLLD is the display PLL, used to drive DSI display panels.
1797         *
1798         * It is in the PX LDO power domain, which is on when the
1799         * AUDIO domain is on.
1800         */
1801        [BCM2835_PLLD]          = REGISTER_PLL(
1802                SOC_ALL,
1803                .name = "plld",
1804                .cm_ctrl_reg = CM_PLLD,
1805                .a2w_ctrl_reg = A2W_PLLD_CTRL,
1806                .frac_reg = A2W_PLLD_FRAC,
1807                .ana_reg_base = A2W_PLLD_ANA0,
1808                .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1809                .lock_mask = CM_LOCK_FLOCKD,
1810
1811                .ana = &bcm2835_ana_default,
1812
1813                .min_rate = 600000000u,
1814                .max_rate = 2400000000u,
1815                .max_fb_rate = BCM2835_MAX_FB_RATE),
1816        [BCM2835_PLLD_CORE]     = REGISTER_PLL_DIV(
1817                SOC_ALL,
1818                .name = "plld_core",
1819                .source_pll = "plld",
1820                .cm_reg = CM_PLLD,
1821                .a2w_reg = A2W_PLLD_CORE,
1822                .load_mask = CM_PLLD_LOADCORE,
1823                .hold_mask = CM_PLLD_HOLDCORE,
1824                .fixed_divider = 1,
1825                .flags = CLK_SET_RATE_PARENT),
1826        /*
1827         * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1828         * Otherwise this could cause firmware lookups. That's why we mark
1829         * it as critical.
1830         */
1831        [BCM2835_PLLD_PER]      = REGISTER_PLL_DIV(
1832                SOC_ALL,
1833                .name = "plld_per",
1834                .source_pll = "plld",
1835                .cm_reg = CM_PLLD,
1836                .a2w_reg = A2W_PLLD_PER,
1837                .load_mask = CM_PLLD_LOADPER,
1838                .hold_mask = CM_PLLD_HOLDPER,
1839                .fixed_divider = 1,
1840                .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1841        [BCM2835_PLLD_DSI0]     = REGISTER_PLL_DIV(
1842                SOC_ALL,
1843                .name = "plld_dsi0",
1844                .source_pll = "plld",
1845                .cm_reg = CM_PLLD,
1846                .a2w_reg = A2W_PLLD_DSI0,
1847                .load_mask = CM_PLLD_LOADDSI0,
1848                .hold_mask = CM_PLLD_HOLDDSI0,
1849                .fixed_divider = 1),
1850        [BCM2835_PLLD_DSI1]     = REGISTER_PLL_DIV(
1851                SOC_ALL,
1852                .name = "plld_dsi1",
1853                .source_pll = "plld",
1854                .cm_reg = CM_PLLD,
1855                .a2w_reg = A2W_PLLD_DSI1,
1856                .load_mask = CM_PLLD_LOADDSI1,
1857                .hold_mask = CM_PLLD_HOLDDSI1,
1858                .fixed_divider = 1),
1859
1860        /*
1861         * PLLH is used to supply the pixel clock or the AUX clock for the
1862         * TV encoder.
1863         *
1864         * It is in the HDMI power domain.
1865         */
1866        [BCM2835_PLLH]          = REGISTER_PLL(
1867                SOC_BCM2835,
1868                "pllh",
1869                .cm_ctrl_reg = CM_PLLH,
1870                .a2w_ctrl_reg = A2W_PLLH_CTRL,
1871                .frac_reg = A2W_PLLH_FRAC,
1872                .ana_reg_base = A2W_PLLH_ANA0,
1873                .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1874                .lock_mask = CM_LOCK_FLOCKH,
1875
1876                .ana = &bcm2835_ana_pllh,
1877
1878                .min_rate = 600000000u,
1879                .max_rate = 3000000000u,
1880                .max_fb_rate = BCM2835_MAX_FB_RATE),
1881        [BCM2835_PLLH_RCAL]     = REGISTER_PLL_DIV(
1882                SOC_BCM2835,
1883                .name = "pllh_rcal",
1884                .source_pll = "pllh",
1885                .cm_reg = CM_PLLH,
1886                .a2w_reg = A2W_PLLH_RCAL,
1887                .load_mask = CM_PLLH_LOADRCAL,
1888                .hold_mask = 0,
1889                .fixed_divider = 10,
1890                .flags = CLK_SET_RATE_PARENT),
1891        [BCM2835_PLLH_AUX]      = REGISTER_PLL_DIV(
1892                SOC_BCM2835,
1893                .name = "pllh_aux",
1894                .source_pll = "pllh",
1895                .cm_reg = CM_PLLH,
1896                .a2w_reg = A2W_PLLH_AUX,
1897                .load_mask = CM_PLLH_LOADAUX,
1898                .hold_mask = 0,
1899                .fixed_divider = 1,
1900                .flags = CLK_SET_RATE_PARENT),
1901        [BCM2835_PLLH_PIX]      = REGISTER_PLL_DIV(
1902                SOC_BCM2835,
1903                .name = "pllh_pix",
1904                .source_pll = "pllh",
1905                .cm_reg = CM_PLLH,
1906                .a2w_reg = A2W_PLLH_PIX,
1907                .load_mask = CM_PLLH_LOADPIX,
1908                .hold_mask = 0,
1909                .fixed_divider = 10,
1910                .flags = CLK_SET_RATE_PARENT),
1911
1912        /* the clocks */
1913
1914        /* clocks with oscillator parent mux */
1915
1916        /* One Time Programmable Memory clock.  Maximum 10Mhz. */
1917        [BCM2835_CLOCK_OTP]     = REGISTER_OSC_CLK(
1918                SOC_ALL,
1919                .name = "otp",
1920                .ctl_reg = CM_OTPCTL,
1921                .div_reg = CM_OTPDIV,
1922                .int_bits = 4,
1923                .frac_bits = 0,
1924                .tcnt_mux = 6),
1925        /*
1926         * Used for a 1Mhz clock for the system clocksource, and also used
1927         * bythe watchdog timer and the camera pulse generator.
1928         */
1929        [BCM2835_CLOCK_TIMER]   = REGISTER_OSC_CLK(
1930                SOC_ALL,
1931                .name = "timer",
1932                .ctl_reg = CM_TIMERCTL,
1933                .div_reg = CM_TIMERDIV,
1934                .int_bits = 6,
1935                .frac_bits = 12),
1936        /*
1937         * Clock for the temperature sensor.
1938         * Generally run at 2Mhz, max 5Mhz.
1939         */
1940        [BCM2835_CLOCK_TSENS]   = REGISTER_OSC_CLK(
1941                SOC_ALL,
1942                .name = "tsens",
1943                .ctl_reg = CM_TSENSCTL,
1944                .div_reg = CM_TSENSDIV,
1945                .int_bits = 5,
1946                .frac_bits = 0),
1947        [BCM2835_CLOCK_TEC]     = REGISTER_OSC_CLK(
1948                SOC_ALL,
1949                .name = "tec",
1950                .ctl_reg = CM_TECCTL,
1951                .div_reg = CM_TECDIV,
1952                .int_bits = 6,
1953                .frac_bits = 0),
1954
1955        /* clocks with vpu parent mux */
1956        [BCM2835_CLOCK_H264]    = REGISTER_VPU_CLK(
1957                SOC_ALL,
1958                .name = "h264",
1959                .ctl_reg = CM_H264CTL,
1960                .div_reg = CM_H264DIV,
1961                .int_bits = 4,
1962                .frac_bits = 8,
1963                .tcnt_mux = 1),
1964        [BCM2835_CLOCK_ISP]     = REGISTER_VPU_CLK(
1965                SOC_ALL,
1966                .name = "isp",
1967                .ctl_reg = CM_ISPCTL,
1968                .div_reg = CM_ISPDIV,
1969                .int_bits = 4,
1970                .frac_bits = 8,
1971                .tcnt_mux = 2),
1972
1973        /*
1974         * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1975         * in the SDRAM controller can't be used.
1976         */
1977        [BCM2835_CLOCK_SDRAM]   = REGISTER_VPU_CLK(
1978                SOC_ALL,
1979                .name = "sdram",
1980                .ctl_reg = CM_SDCCTL,
1981                .div_reg = CM_SDCDIV,
1982                .int_bits = 6,
1983                .frac_bits = 0,
1984                .tcnt_mux = 3),
1985        [BCM2835_CLOCK_V3D]     = REGISTER_VPU_CLK(
1986                SOC_ALL,
1987                .name = "v3d",
1988                .ctl_reg = CM_V3DCTL,
1989                .div_reg = CM_V3DDIV,
1990                .int_bits = 4,
1991                .frac_bits = 8,
1992                .tcnt_mux = 4),
1993        /*
1994         * VPU clock.  This doesn't have an enable bit, since it drives
1995         * the bus for everything else, and is special so it doesn't need
1996         * to be gated for rate changes.  It is also known as "clk_audio"
1997         * in various hardware documentation.
1998         */
1999        [BCM2835_CLOCK_VPU]     = REGISTER_VPU_CLK(
2000                SOC_ALL,
2001                .name = "vpu",
2002                .ctl_reg = CM_VPUCTL,
2003                .div_reg = CM_VPUDIV,
2004                .int_bits = 12,
2005                .frac_bits = 8,
2006                .flags = CLK_IS_CRITICAL,
2007                .is_vpu_clock = true,
2008                .tcnt_mux = 5),
2009
2010        /* clocks with per parent mux */
2011        [BCM2835_CLOCK_AVEO]    = REGISTER_PER_CLK(
2012                SOC_ALL,
2013                .name = "aveo",
2014                .ctl_reg = CM_AVEOCTL,
2015                .div_reg = CM_AVEODIV,
2016                .int_bits = 4,
2017                .frac_bits = 0,
2018                .tcnt_mux = 38),
2019        [BCM2835_CLOCK_CAM0]    = REGISTER_PER_CLK(
2020                SOC_ALL,
2021                .name = "cam0",
2022                .ctl_reg = CM_CAM0CTL,
2023                .div_reg = CM_CAM0DIV,
2024                .int_bits = 4,
2025                .frac_bits = 8,
2026                .tcnt_mux = 14),
2027        [BCM2835_CLOCK_CAM1]    = REGISTER_PER_CLK(
2028                SOC_ALL,
2029                .name = "cam1",
2030                .ctl_reg = CM_CAM1CTL,
2031                .div_reg = CM_CAM1DIV,
2032                .int_bits = 4,
2033                .frac_bits = 8,
2034                .tcnt_mux = 15),
2035        [BCM2835_CLOCK_DFT]     = REGISTER_PER_CLK(
2036                SOC_ALL,
2037                .name = "dft",
2038                .ctl_reg = CM_DFTCTL,
2039                .div_reg = CM_DFTDIV,
2040                .int_bits = 5,
2041                .frac_bits = 0),
2042        [BCM2835_CLOCK_DPI]     = REGISTER_PER_CLK(
2043                SOC_ALL,
2044                .name = "dpi",
2045                .ctl_reg = CM_DPICTL,
2046                .div_reg = CM_DPIDIV,
2047                .int_bits = 4,
2048                .frac_bits = 8,
2049                .tcnt_mux = 17),
2050
2051        /* Arasan EMMC clock */
2052        [BCM2835_CLOCK_EMMC]    = REGISTER_PER_CLK(
2053                SOC_ALL,
2054                .name = "emmc",
2055                .ctl_reg = CM_EMMCCTL,
2056                .div_reg = CM_EMMCDIV,
2057                .int_bits = 4,
2058                .frac_bits = 8,
2059                .tcnt_mux = 39),
2060
2061        /* EMMC2 clock (only available for BCM2711) */
2062        [BCM2711_CLOCK_EMMC2]   = REGISTER_PER_CLK(
2063                SOC_BCM2711,
2064                .name = "emmc2",
2065                .ctl_reg = CM_EMMC2CTL,
2066                .div_reg = CM_EMMC2DIV,
2067                .int_bits = 4,
2068                .frac_bits = 8,
2069                .tcnt_mux = 42),
2070
2071        /* General purpose (GPIO) clocks */
2072        [BCM2835_CLOCK_GP0]     = REGISTER_PER_CLK(
2073                SOC_ALL,
2074                .name = "gp0",
2075                .ctl_reg = CM_GP0CTL,
2076                .div_reg = CM_GP0DIV,
2077                .int_bits = 12,
2078                .frac_bits = 12,
2079                .is_mash_clock = true,
2080                .tcnt_mux = 20),
2081        [BCM2835_CLOCK_GP1]     = REGISTER_PER_CLK(
2082                SOC_ALL,
2083                .name = "gp1",
2084                .ctl_reg = CM_GP1CTL,
2085                .div_reg = CM_GP1DIV,
2086                .int_bits = 12,
2087                .frac_bits = 12,
2088                .flags = CLK_IS_CRITICAL,
2089                .is_mash_clock = true,
2090                .tcnt_mux = 21),
2091        [BCM2835_CLOCK_GP2]     = REGISTER_PER_CLK(
2092                SOC_ALL,
2093                .name = "gp2",
2094                .ctl_reg = CM_GP2CTL,
2095                .div_reg = CM_GP2DIV,
2096                .int_bits = 12,
2097                .frac_bits = 12,
2098                .flags = CLK_IS_CRITICAL),
2099
2100        /* HDMI state machine */
2101        [BCM2835_CLOCK_HSM]     = REGISTER_PER_CLK(
2102                SOC_ALL,
2103                .name = "hsm",
2104                .ctl_reg = CM_HSMCTL,
2105                .div_reg = CM_HSMDIV,
2106                .int_bits = 4,
2107                .frac_bits = 8,
2108                .tcnt_mux = 22),
2109        [BCM2835_CLOCK_PCM]     = REGISTER_PCM_CLK(
2110                SOC_ALL,
2111                .name = "pcm",
2112                .ctl_reg = CM_PCMCTL,
2113                .div_reg = CM_PCMDIV,
2114                .int_bits = 12,
2115                .frac_bits = 12,
2116                .is_mash_clock = true,
2117                .low_jitter = true,
2118                .tcnt_mux = 23),
2119        [BCM2835_CLOCK_PWM]     = REGISTER_PER_CLK(
2120                SOC_ALL,
2121                .name = "pwm",
2122                .ctl_reg = CM_PWMCTL,
2123                .div_reg = CM_PWMDIV,
2124                .int_bits = 12,
2125                .frac_bits = 12,
2126                .is_mash_clock = true,
2127                .tcnt_mux = 24),
2128        [BCM2835_CLOCK_SLIM]    = REGISTER_PER_CLK(
2129                SOC_ALL,
2130                .name = "slim",
2131                .ctl_reg = CM_SLIMCTL,
2132                .div_reg = CM_SLIMDIV,
2133                .int_bits = 12,
2134                .frac_bits = 12,
2135                .is_mash_clock = true,
2136                .tcnt_mux = 25),
2137        [BCM2835_CLOCK_SMI]     = REGISTER_PER_CLK(
2138                SOC_ALL,
2139                .name = "smi",
2140                .ctl_reg = CM_SMICTL,
2141                .div_reg = CM_SMIDIV,
2142                .int_bits = 4,
2143                .frac_bits = 8,
2144                .tcnt_mux = 27),
2145        [BCM2835_CLOCK_UART]    = REGISTER_PER_CLK(
2146                SOC_ALL,
2147                .name = "uart",
2148                .ctl_reg = CM_UARTCTL,
2149                .div_reg = CM_UARTDIV,
2150                .int_bits = 10,
2151                .frac_bits = 12,
2152                .tcnt_mux = 28),
2153
2154        /* TV encoder clock.  Only operating frequency is 108Mhz.  */
2155        [BCM2835_CLOCK_VEC]     = REGISTER_PER_CLK(
2156                SOC_ALL,
2157                .name = "vec",
2158                .ctl_reg = CM_VECCTL,
2159                .div_reg = CM_VECDIV,
2160                .int_bits = 4,
2161                .frac_bits = 0,
2162                /*
2163                 * Allow rate change propagation only on PLLH_AUX which is
2164                 * assigned index 7 in the parent array.
2165                 */
2166                .set_rate_parent = BIT(7),
2167                .tcnt_mux = 29),
2168
2169        /* dsi clocks */
2170        [BCM2835_CLOCK_DSI0E]   = REGISTER_PER_CLK(
2171                SOC_ALL,
2172                .name = "dsi0e",
2173                .ctl_reg = CM_DSI0ECTL,
2174                .div_reg = CM_DSI0EDIV,
2175                .int_bits = 4,
2176                .frac_bits = 8,
2177                .tcnt_mux = 18),
2178        [BCM2835_CLOCK_DSI1E]   = REGISTER_PER_CLK(
2179                SOC_ALL,
2180                .name = "dsi1e",
2181                .ctl_reg = CM_DSI1ECTL,
2182                .div_reg = CM_DSI1EDIV,
2183                .int_bits = 4,
2184                .frac_bits = 8,
2185                .tcnt_mux = 19),
2186        [BCM2835_CLOCK_DSI0P]   = REGISTER_DSI0_CLK(
2187                SOC_ALL,
2188                .name = "dsi0p",
2189                .ctl_reg = CM_DSI0PCTL,
2190                .div_reg = CM_DSI0PDIV,
2191                .int_bits = 0,
2192                .frac_bits = 0,
2193                .tcnt_mux = 12),
2194        [BCM2835_CLOCK_DSI1P]   = REGISTER_DSI1_CLK(
2195                SOC_ALL,
2196                .name = "dsi1p",
2197                .ctl_reg = CM_DSI1PCTL,
2198                .div_reg = CM_DSI1PDIV,
2199                .int_bits = 0,
2200                .frac_bits = 0,
2201                .tcnt_mux = 13),
2202
2203        /* the gates */
2204
2205        /*
2206         * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2207         * you have the debug bit set in the power manager, which we
2208         * don't bother exposing) are individual gates off of the
2209         * non-stop vpu clock.
2210         */
2211        [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2212                SOC_ALL,
2213                .name = "peri_image",
2214                .parent = "vpu",
2215                .ctl_reg = CM_PERIICTL),
2216};
2217
2218/*
2219 * Permanently take a reference on the parent of the SDRAM clock.
2220 *
2221 * While the SDRAM is being driven by its dedicated PLL most of the
2222 * time, there is a little loop running in the firmware that
2223 * periodically switches the SDRAM to using our CM clock to do PVT
2224 * recalibration, with the assumption that the previously configured
2225 * SDRAM parent is still enabled and running.
2226 */
2227static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2228{
2229        struct clk *parent = clk_get_parent(sdc);
2230
2231        if (IS_ERR(parent))
2232                return PTR_ERR(parent);
2233
2234        return clk_prepare_enable(parent);
2235}
2236
2237static int bcm2835_clk_probe(struct platform_device *pdev)
2238{
2239        struct device *dev = &pdev->dev;
2240        struct clk_hw **hws;
2241        struct bcm2835_cprman *cprman;
2242        const struct bcm2835_clk_desc *desc;
2243        const size_t asize = ARRAY_SIZE(clk_desc_array);
2244        const struct cprman_plat_data *pdata;
2245        size_t i;
2246        int ret;
2247
2248        pdata = of_device_get_match_data(&pdev->dev);
2249        if (!pdata)
2250                return -ENODEV;
2251
2252        cprman = devm_kzalloc(dev,
2253                              struct_size(cprman, onecell.hws, asize),
2254                              GFP_KERNEL);
2255        if (!cprman)
2256                return -ENOMEM;
2257
2258        spin_lock_init(&cprman->regs_lock);
2259        cprman->dev = dev;
2260        cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2261        if (IS_ERR(cprman->regs))
2262                return PTR_ERR(cprman->regs);
2263
2264        memcpy(cprman->real_parent_names, cprman_parent_names,
2265               sizeof(cprman_parent_names));
2266        of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2267                           ARRAY_SIZE(cprman_parent_names));
2268
2269        /*
2270         * Make sure the external oscillator has been registered.
2271         *
2272         * The other (DSI) clocks are not present on older device
2273         * trees, which we still need to support for backwards
2274         * compatibility.
2275         */
2276        if (!cprman->real_parent_names[0])
2277                return -ENODEV;
2278
2279        platform_set_drvdata(pdev, cprman);
2280
2281        cprman->onecell.num = asize;
2282        cprman->soc = pdata->soc;
2283        hws = cprman->onecell.hws;
2284
2285        for (i = 0; i < asize; i++) {
2286                desc = &clk_desc_array[i];
2287                if (desc->clk_register && desc->data &&
2288                    (desc->supported & pdata->soc)) {
2289                        hws[i] = desc->clk_register(cprman, desc->data);
2290                }
2291        }
2292
2293        ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2294        if (ret)
2295                return ret;
2296
2297        return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2298                                      &cprman->onecell);
2299}
2300
2301static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2302        .soc = SOC_BCM2835,
2303};
2304
2305static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2306        .soc = SOC_BCM2711,
2307};
2308
2309static const struct of_device_id bcm2835_clk_of_match[] = {
2310        { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2311        { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2312        {}
2313};
2314MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2315
2316static struct platform_driver bcm2835_clk_driver = {
2317        .driver = {
2318                .name = "bcm2835-clk",
2319                .of_match_table = bcm2835_clk_of_match,
2320        },
2321        .probe          = bcm2835_clk_probe,
2322};
2323
2324builtin_platform_driver(bcm2835_clk_driver);
2325
2326MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2327MODULE_DESCRIPTION("BCM2835 clock driver");
2328MODULE_LICENSE("GPL");
2329