linux/drivers/clk/bcm/clk-kona-setup.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013 Broadcom Corporation
   3 * Copyright 2013 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include <linux/io.h>
  16#include <linux/of_address.h>
  17
  18#include "clk-kona.h"
  19
  20/* These are used when a selector or trigger is found to be unneeded */
  21#define selector_clear_exists(sel)      ((sel)->width = 0)
  22#define trigger_clear_exists(trig)      FLAG_CLEAR(trig, TRIG, EXISTS)
  23
  24/* Validity checking */
  25
  26static bool ccu_data_offsets_valid(struct ccu_data *ccu)
  27{
  28        struct ccu_policy *ccu_policy = &ccu->policy;
  29        u32 limit;
  30
  31        limit = ccu->range - sizeof(u32);
  32        limit = round_down(limit, sizeof(u32));
  33        if (ccu_policy_exists(ccu_policy)) {
  34                if (ccu_policy->enable.offset > limit) {
  35                        pr_err("%s: bad policy enable offset for %s "
  36                                        "(%u > %u)\n", __func__,
  37                                ccu->name, ccu_policy->enable.offset, limit);
  38                        return false;
  39                }
  40                if (ccu_policy->control.offset > limit) {
  41                        pr_err("%s: bad policy control offset for %s "
  42                                        "(%u > %u)\n", __func__,
  43                                ccu->name, ccu_policy->control.offset, limit);
  44                        return false;
  45                }
  46        }
  47
  48        return true;
  49}
  50
  51static bool clk_requires_trigger(struct kona_clk *bcm_clk)
  52{
  53        struct peri_clk_data *peri = bcm_clk->u.peri;
  54        struct bcm_clk_sel *sel;
  55        struct bcm_clk_div *div;
  56
  57        if (bcm_clk->type != bcm_clk_peri)
  58                return false;
  59
  60        sel = &peri->sel;
  61        if (sel->parent_count && selector_exists(sel))
  62                return true;
  63
  64        div = &peri->div;
  65        if (!divider_exists(div))
  66                return false;
  67
  68        /* Fixed dividers don't need triggers */
  69        if (!divider_is_fixed(div))
  70                return true;
  71
  72        div = &peri->pre_div;
  73
  74        return divider_exists(div) && !divider_is_fixed(div);
  75}
  76
  77static bool peri_clk_data_offsets_valid(struct kona_clk *bcm_clk)
  78{
  79        struct peri_clk_data *peri;
  80        struct bcm_clk_policy *policy;
  81        struct bcm_clk_gate *gate;
  82        struct bcm_clk_hyst *hyst;
  83        struct bcm_clk_div *div;
  84        struct bcm_clk_sel *sel;
  85        struct bcm_clk_trig *trig;
  86        const char *name;
  87        u32 range;
  88        u32 limit;
  89
  90        BUG_ON(bcm_clk->type != bcm_clk_peri);
  91        peri = bcm_clk->u.peri;
  92        name = bcm_clk->init_data.name;
  93        range = bcm_clk->ccu->range;
  94
  95        limit = range - sizeof(u32);
  96        limit = round_down(limit, sizeof(u32));
  97
  98        policy = &peri->policy;
  99        if (policy_exists(policy)) {
 100                if (policy->offset > limit) {
 101                        pr_err("%s: bad policy offset for %s (%u > %u)\n",
 102                                __func__, name, policy->offset, limit);
 103                        return false;
 104                }
 105        }
 106
 107        gate = &peri->gate;
 108        hyst = &peri->hyst;
 109        if (gate_exists(gate)) {
 110                if (gate->offset > limit) {
 111                        pr_err("%s: bad gate offset for %s (%u > %u)\n",
 112                                __func__, name, gate->offset, limit);
 113                        return false;
 114                }
 115
 116                if (hyst_exists(hyst)) {
 117                        if (hyst->offset > limit) {
 118                                pr_err("%s: bad hysteresis offset for %s "
 119                                        "(%u > %u)\n", __func__,
 120                                        name, hyst->offset, limit);
 121                                return false;
 122                        }
 123                }
 124        } else if (hyst_exists(hyst)) {
 125                pr_err("%s: hysteresis but no gate for %s\n", __func__, name);
 126                return false;
 127        }
 128
 129        div = &peri->div;
 130        if (divider_exists(div)) {
 131                if (div->u.s.offset > limit) {
 132                        pr_err("%s: bad divider offset for %s (%u > %u)\n",
 133                                __func__, name, div->u.s.offset, limit);
 134                        return false;
 135                }
 136        }
 137
 138        div = &peri->pre_div;
 139        if (divider_exists(div)) {
 140                if (div->u.s.offset > limit) {
 141                        pr_err("%s: bad pre-divider offset for %s "
 142                                        "(%u > %u)\n",
 143                                __func__, name, div->u.s.offset, limit);
 144                        return false;
 145                }
 146        }
 147
 148        sel = &peri->sel;
 149        if (selector_exists(sel)) {
 150                if (sel->offset > limit) {
 151                        pr_err("%s: bad selector offset for %s (%u > %u)\n",
 152                                __func__, name, sel->offset, limit);
 153                        return false;
 154                }
 155        }
 156
 157        trig = &peri->trig;
 158        if (trigger_exists(trig)) {
 159                if (trig->offset > limit) {
 160                        pr_err("%s: bad trigger offset for %s (%u > %u)\n",
 161                                __func__, name, trig->offset, limit);
 162                        return false;
 163                }
 164        }
 165
 166        trig = &peri->pre_trig;
 167        if (trigger_exists(trig)) {
 168                if (trig->offset > limit) {
 169                        pr_err("%s: bad pre-trigger offset for %s (%u > %u)\n",
 170                                __func__, name, trig->offset, limit);
 171                        return false;
 172                }
 173        }
 174
 175        return true;
 176}
 177
 178/* A bit position must be less than the number of bits in a 32-bit register. */
 179static bool bit_posn_valid(u32 bit_posn, const char *field_name,
 180                        const char *clock_name)
 181{
 182        u32 limit = BITS_PER_BYTE * sizeof(u32) - 1;
 183
 184        if (bit_posn > limit) {
 185                pr_err("%s: bad %s bit for %s (%u > %u)\n", __func__,
 186                        field_name, clock_name, bit_posn, limit);
 187                return false;
 188        }
 189        return true;
 190}
 191
 192/*
 193 * A bitfield must be at least 1 bit wide.  Both the low-order and
 194 * high-order bits must lie within a 32-bit register.  We require
 195 * fields to be less than 32 bits wide, mainly because we use
 196 * shifting to produce field masks, and shifting a full word width
 197 * is not well-defined by the C standard.
 198 */
 199static bool bitfield_valid(u32 shift, u32 width, const char *field_name,
 200                        const char *clock_name)
 201{
 202        u32 limit = BITS_PER_BYTE * sizeof(u32);
 203
 204        if (!width) {
 205                pr_err("%s: bad %s field width 0 for %s\n", __func__,
 206                        field_name, clock_name);
 207                return false;
 208        }
 209        if (shift + width > limit) {
 210                pr_err("%s: bad %s for %s (%u + %u > %u)\n", __func__,
 211                        field_name, clock_name, shift, width, limit);
 212                return false;
 213        }
 214        return true;
 215}
 216
 217static bool
 218ccu_policy_valid(struct ccu_policy *ccu_policy, const char *ccu_name)
 219{
 220        struct bcm_lvm_en *enable = &ccu_policy->enable;
 221        struct bcm_policy_ctl *control;
 222
 223        if (!bit_posn_valid(enable->bit, "policy enable", ccu_name))
 224                return false;
 225
 226        control = &ccu_policy->control;
 227        if (!bit_posn_valid(control->go_bit, "policy control GO", ccu_name))
 228                return false;
 229
 230        if (!bit_posn_valid(control->atl_bit, "policy control ATL", ccu_name))
 231                return false;
 232
 233        if (!bit_posn_valid(control->ac_bit, "policy control AC", ccu_name))
 234                return false;
 235
 236        return true;
 237}
 238
 239static bool policy_valid(struct bcm_clk_policy *policy, const char *clock_name)
 240{
 241        if (!bit_posn_valid(policy->bit, "policy", clock_name))
 242                return false;
 243
 244        return true;
 245}
 246
 247/*
 248 * All gates, if defined, have a status bit, and for hardware-only
 249 * gates, that's it.  Gates that can be software controlled also
 250 * have an enable bit.  And a gate that can be hardware or software
 251 * controlled will have a hardware/software select bit.
 252 */
 253static bool gate_valid(struct bcm_clk_gate *gate, const char *field_name,
 254                        const char *clock_name)
 255{
 256        if (!bit_posn_valid(gate->status_bit, "gate status", clock_name))
 257                return false;
 258
 259        if (gate_is_sw_controllable(gate)) {
 260                if (!bit_posn_valid(gate->en_bit, "gate enable", clock_name))
 261                        return false;
 262
 263                if (gate_is_hw_controllable(gate)) {
 264                        if (!bit_posn_valid(gate->hw_sw_sel_bit,
 265                                                "gate hw/sw select",
 266                                                clock_name))
 267                                return false;
 268                }
 269        } else {
 270                BUG_ON(!gate_is_hw_controllable(gate));
 271        }
 272
 273        return true;
 274}
 275
 276static bool hyst_valid(struct bcm_clk_hyst *hyst, const char *clock_name)
 277{
 278        if (!bit_posn_valid(hyst->en_bit, "hysteresis enable", clock_name))
 279                return false;
 280
 281        if (!bit_posn_valid(hyst->val_bit, "hysteresis value", clock_name))
 282                return false;
 283
 284        return true;
 285}
 286
 287/*
 288 * A selector bitfield must be valid.  Its parent_sel array must
 289 * also be reasonable for the field.
 290 */
 291static bool sel_valid(struct bcm_clk_sel *sel, const char *field_name,
 292                        const char *clock_name)
 293{
 294        if (!bitfield_valid(sel->shift, sel->width, field_name, clock_name))
 295                return false;
 296
 297        if (sel->parent_count) {
 298                u32 max_sel;
 299                u32 limit;
 300
 301                /*
 302                 * Make sure the selector field can hold all the
 303                 * selector values we expect to be able to use.  A
 304                 * clock only needs to have a selector defined if it
 305                 * has more than one parent.  And in that case the
 306                 * highest selector value will be in the last entry
 307                 * in the array.
 308                 */
 309                max_sel = sel->parent_sel[sel->parent_count - 1];
 310                limit = (1 << sel->width) - 1;
 311                if (max_sel > limit) {
 312                        pr_err("%s: bad selector for %s "
 313                                        "(%u needs > %u bits)\n",
 314                                __func__, clock_name, max_sel,
 315                                sel->width);
 316                        return false;
 317                }
 318        } else {
 319                pr_warn("%s: ignoring selector for %s (no parents)\n",
 320                        __func__, clock_name);
 321                selector_clear_exists(sel);
 322                kfree(sel->parent_sel);
 323                sel->parent_sel = NULL;
 324        }
 325
 326        return true;
 327}
 328
 329/*
 330 * A fixed divider just needs to be non-zero.  A variable divider
 331 * has to have a valid divider bitfield, and if it has a fraction,
 332 * the width of the fraction must not be no more than the width of
 333 * the divider as a whole.
 334 */
 335static bool div_valid(struct bcm_clk_div *div, const char *field_name,
 336                        const char *clock_name)
 337{
 338        if (divider_is_fixed(div)) {
 339                /* Any fixed divider value but 0 is OK */
 340                if (div->u.fixed == 0) {
 341                        pr_err("%s: bad %s fixed value 0 for %s\n", __func__,
 342                                field_name, clock_name);
 343                        return false;
 344                }
 345                return true;
 346        }
 347        if (!bitfield_valid(div->u.s.shift, div->u.s.width,
 348                                field_name, clock_name))
 349                return false;
 350
 351        if (divider_has_fraction(div))
 352                if (div->u.s.frac_width > div->u.s.width) {
 353                        pr_warn("%s: bad %s fraction width for %s (%u > %u)\n",
 354                                __func__, field_name, clock_name,
 355                                div->u.s.frac_width, div->u.s.width);
 356                        return false;
 357                }
 358
 359        return true;
 360}
 361
 362/*
 363 * If a clock has two dividers, the combined number of fractional
 364 * bits must be representable in a 32-bit unsigned value.  This
 365 * is because we scale up a dividend using both dividers before
 366 * dividing to improve accuracy, and we need to avoid overflow.
 367 */
 368static bool kona_dividers_valid(struct kona_clk *bcm_clk)
 369{
 370        struct peri_clk_data *peri = bcm_clk->u.peri;
 371        struct bcm_clk_div *div;
 372        struct bcm_clk_div *pre_div;
 373        u32 limit;
 374
 375        BUG_ON(bcm_clk->type != bcm_clk_peri);
 376
 377        if (!divider_exists(&peri->div) || !divider_exists(&peri->pre_div))
 378                return true;
 379
 380        div = &peri->div;
 381        pre_div = &peri->pre_div;
 382        if (divider_is_fixed(div) || divider_is_fixed(pre_div))
 383                return true;
 384
 385        limit = BITS_PER_BYTE * sizeof(u32);
 386
 387        return div->u.s.frac_width + pre_div->u.s.frac_width <= limit;
 388}
 389
 390
 391/* A trigger just needs to represent a valid bit position */
 392static bool trig_valid(struct bcm_clk_trig *trig, const char *field_name,
 393                        const char *clock_name)
 394{
 395        return bit_posn_valid(trig->bit, field_name, clock_name);
 396}
 397
 398/* Determine whether the set of peripheral clock registers are valid. */
 399static bool
 400peri_clk_data_valid(struct kona_clk *bcm_clk)
 401{
 402        struct peri_clk_data *peri;
 403        struct bcm_clk_policy *policy;
 404        struct bcm_clk_gate *gate;
 405        struct bcm_clk_hyst *hyst;
 406        struct bcm_clk_sel *sel;
 407        struct bcm_clk_div *div;
 408        struct bcm_clk_div *pre_div;
 409        struct bcm_clk_trig *trig;
 410        const char *name;
 411
 412        BUG_ON(bcm_clk->type != bcm_clk_peri);
 413
 414        /*
 415         * First validate register offsets.  This is the only place
 416         * where we need something from the ccu, so we do these
 417         * together.
 418         */
 419        if (!peri_clk_data_offsets_valid(bcm_clk))
 420                return false;
 421
 422        peri = bcm_clk->u.peri;
 423        name = bcm_clk->init_data.name;
 424
 425        policy = &peri->policy;
 426        if (policy_exists(policy) && !policy_valid(policy, name))
 427                return false;
 428
 429        gate = &peri->gate;
 430        if (gate_exists(gate) && !gate_valid(gate, "gate", name))
 431                return false;
 432
 433        hyst = &peri->hyst;
 434        if (hyst_exists(hyst) && !hyst_valid(hyst, name))
 435                return false;
 436
 437        sel = &peri->sel;
 438        if (selector_exists(sel)) {
 439                if (!sel_valid(sel, "selector", name))
 440                        return false;
 441
 442        } else if (sel->parent_count > 1) {
 443                pr_err("%s: multiple parents but no selector for %s\n",
 444                        __func__, name);
 445
 446                return false;
 447        }
 448
 449        div = &peri->div;
 450        pre_div = &peri->pre_div;
 451        if (divider_exists(div)) {
 452                if (!div_valid(div, "divider", name))
 453                        return false;
 454
 455                if (divider_exists(pre_div))
 456                        if (!div_valid(pre_div, "pre-divider", name))
 457                                return false;
 458        } else if (divider_exists(pre_div)) {
 459                pr_err("%s: pre-divider but no divider for %s\n", __func__,
 460                        name);
 461                return false;
 462        }
 463
 464        trig = &peri->trig;
 465        if (trigger_exists(trig)) {
 466                if (!trig_valid(trig, "trigger", name))
 467                        return false;
 468
 469                if (trigger_exists(&peri->pre_trig)) {
 470                        if (!trig_valid(trig, "pre-trigger", name)) {
 471                                return false;
 472                        }
 473                }
 474                if (!clk_requires_trigger(bcm_clk)) {
 475                        pr_warn("%s: ignoring trigger for %s (not needed)\n",
 476                                __func__, name);
 477                        trigger_clear_exists(trig);
 478                }
 479        } else if (trigger_exists(&peri->pre_trig)) {
 480                pr_err("%s: pre-trigger but no trigger for %s\n", __func__,
 481                        name);
 482                return false;
 483        } else if (clk_requires_trigger(bcm_clk)) {
 484                pr_err("%s: required trigger missing for %s\n", __func__,
 485                        name);
 486                return false;
 487        }
 488
 489        return kona_dividers_valid(bcm_clk);
 490}
 491
 492static bool kona_clk_valid(struct kona_clk *bcm_clk)
 493{
 494        switch (bcm_clk->type) {
 495        case bcm_clk_peri:
 496                if (!peri_clk_data_valid(bcm_clk))
 497                        return false;
 498                break;
 499        default:
 500                pr_err("%s: unrecognized clock type (%d)\n", __func__,
 501                        (int)bcm_clk->type);
 502                return false;
 503        }
 504        return true;
 505}
 506
 507/*
 508 * Scan an array of parent clock names to determine whether there
 509 * are any entries containing BAD_CLK_NAME.  Such entries are
 510 * placeholders for non-supported clocks.  Keep track of the
 511 * position of each clock name in the original array.
 512 *
 513 * Allocates an array of pointers to to hold the names of all
 514 * non-null entries in the original array, and returns a pointer to
 515 * that array in *names.  This will be used for registering the
 516 * clock with the common clock code.  On successful return,
 517 * *count indicates how many entries are in that names array.
 518 *
 519 * If there is more than one entry in the resulting names array,
 520 * another array is allocated to record the parent selector value
 521 * for each (defined) parent clock.  This is the value that
 522 * represents this parent clock in the clock's source selector
 523 * register.  The position of the clock in the original parent array
 524 * defines that selector value.  The number of entries in this array
 525 * is the same as the number of entries in the parent names array.
 526 *
 527 * The array of selector values is returned.  If the clock has no
 528 * parents, no selector is required and a null pointer is returned.
 529 *
 530 * Returns a null pointer if the clock names array supplied was
 531 * null.  (This is not an error.)
 532 *
 533 * Returns a pointer-coded error if an error occurs.
 534 */
 535static u32 *parent_process(const char *clocks[],
 536                        u32 *count, const char ***names)
 537{
 538        static const char **parent_names;
 539        static u32 *parent_sel;
 540        const char **clock;
 541        u32 parent_count;
 542        u32 bad_count = 0;
 543        u32 orig_count;
 544        u32 i;
 545        u32 j;
 546
 547        *count = 0;     /* In case of early return */
 548        *names = NULL;
 549        if (!clocks)
 550                return NULL;
 551
 552        /*
 553         * Count the number of names in the null-terminated array,
 554         * and find out how many of those are actually clock names.
 555         */
 556        for (clock = clocks; *clock; clock++)
 557                if (*clock == BAD_CLK_NAME)
 558                        bad_count++;
 559        orig_count = (u32)(clock - clocks);
 560        parent_count = orig_count - bad_count;
 561
 562        /* If all clocks are unsupported, we treat it as no clock */
 563        if (!parent_count)
 564                return NULL;
 565
 566        /* Avoid exceeding our parent clock limit */
 567        if (parent_count > PARENT_COUNT_MAX) {
 568                pr_err("%s: too many parents (%u > %u)\n", __func__,
 569                        parent_count, PARENT_COUNT_MAX);
 570                return ERR_PTR(-EINVAL);
 571        }
 572
 573        /*
 574         * There is one parent name for each defined parent clock.
 575         * We also maintain an array containing the selector value
 576         * for each defined clock.  If there's only one clock, the
 577         * selector is not required, but we allocate space for the
 578         * array anyway to keep things simple.
 579         */
 580        parent_names = kmalloc_array(parent_count, sizeof(*parent_names),
 581                               GFP_KERNEL);
 582        if (!parent_names)
 583                return ERR_PTR(-ENOMEM);
 584
 585        /* There is at least one parent, so allocate a selector array */
 586        parent_sel = kmalloc_array(parent_count, sizeof(*parent_sel),
 587                                   GFP_KERNEL);
 588        if (!parent_sel) {
 589                kfree(parent_names);
 590
 591                return ERR_PTR(-ENOMEM);
 592        }
 593
 594        /* Now fill in the parent names and selector arrays */
 595        for (i = 0, j = 0; i < orig_count; i++) {
 596                if (clocks[i] != BAD_CLK_NAME) {
 597                        parent_names[j] = clocks[i];
 598                        parent_sel[j] = i;
 599                        j++;
 600                }
 601        }
 602        *names = parent_names;
 603        *count = parent_count;
 604
 605        return parent_sel;
 606}
 607
 608static int
 609clk_sel_setup(const char **clocks, struct bcm_clk_sel *sel,
 610                struct clk_init_data *init_data)
 611{
 612        const char **parent_names = NULL;
 613        u32 parent_count = 0;
 614        u32 *parent_sel;
 615
 616        /*
 617         * If a peripheral clock has multiple parents, the value
 618         * used by the hardware to select that parent is represented
 619         * by the parent clock's position in the "clocks" list.  Some
 620         * values don't have defined or supported clocks; these will
 621         * have BAD_CLK_NAME entries in the parents[] array.  The
 622         * list is terminated by a NULL entry.
 623         *
 624         * We need to supply (only) the names of defined parent
 625         * clocks when registering a clock though, so we use an
 626         * array of parent selector values to map between the
 627         * indexes the common clock code uses and the selector
 628         * values we need.
 629         */
 630        parent_sel = parent_process(clocks, &parent_count, &parent_names);
 631        if (IS_ERR(parent_sel)) {
 632                int ret = PTR_ERR(parent_sel);
 633
 634                pr_err("%s: error processing parent clocks for %s (%d)\n",
 635                        __func__, init_data->name, ret);
 636
 637                return ret;
 638        }
 639
 640        init_data->parent_names = parent_names;
 641        init_data->num_parents = parent_count;
 642
 643        sel->parent_count = parent_count;
 644        sel->parent_sel = parent_sel;
 645
 646        return 0;
 647}
 648
 649static void clk_sel_teardown(struct bcm_clk_sel *sel,
 650                struct clk_init_data *init_data)
 651{
 652        kfree(sel->parent_sel);
 653        sel->parent_sel = NULL;
 654        sel->parent_count = 0;
 655
 656        init_data->num_parents = 0;
 657        kfree(init_data->parent_names);
 658        init_data->parent_names = NULL;
 659}
 660
 661static void peri_clk_teardown(struct peri_clk_data *data,
 662                                struct clk_init_data *init_data)
 663{
 664        clk_sel_teardown(&data->sel, init_data);
 665}
 666
 667/*
 668 * Caller is responsible for freeing the parent_names[] and
 669 * parent_sel[] arrays in the peripheral clock's "data" structure
 670 * that can be assigned if the clock has one or more parent clocks
 671 * associated with it.
 672 */
 673static int
 674peri_clk_setup(struct peri_clk_data *data, struct clk_init_data *init_data)
 675{
 676        init_data->flags = CLK_IGNORE_UNUSED;
 677
 678        return clk_sel_setup(data->clocks, &data->sel, init_data);
 679}
 680
 681static void bcm_clk_teardown(struct kona_clk *bcm_clk)
 682{
 683        switch (bcm_clk->type) {
 684        case bcm_clk_peri:
 685                peri_clk_teardown(bcm_clk->u.data, &bcm_clk->init_data);
 686                break;
 687        default:
 688                break;
 689        }
 690        bcm_clk->u.data = NULL;
 691        bcm_clk->type = bcm_clk_none;
 692}
 693
 694static void kona_clk_teardown(struct clk_hw *hw)
 695{
 696        struct kona_clk *bcm_clk;
 697
 698        if (!hw)
 699                return;
 700
 701        clk_hw_unregister(hw);
 702
 703        bcm_clk = to_kona_clk(hw);
 704        bcm_clk_teardown(bcm_clk);
 705}
 706
 707static int kona_clk_setup(struct kona_clk *bcm_clk)
 708{
 709        int ret;
 710        struct clk_init_data *init_data = &bcm_clk->init_data;
 711
 712        switch (bcm_clk->type) {
 713        case bcm_clk_peri:
 714                ret = peri_clk_setup(bcm_clk->u.data, init_data);
 715                if (ret)
 716                        return ret;
 717                break;
 718        default:
 719                pr_err("%s: clock type %d invalid for %s\n", __func__,
 720                        (int)bcm_clk->type, init_data->name);
 721                return -EINVAL;
 722        }
 723
 724        /* Make sure everything makes sense before we set it up */
 725        if (!kona_clk_valid(bcm_clk)) {
 726                pr_err("%s: clock data invalid for %s\n", __func__,
 727                        init_data->name);
 728                ret = -EINVAL;
 729                goto out_teardown;
 730        }
 731
 732        bcm_clk->hw.init = init_data;
 733        ret = clk_hw_register(NULL, &bcm_clk->hw);
 734        if (ret) {
 735                pr_err("%s: error registering clock %s (%d)\n", __func__,
 736                        init_data->name, ret);
 737                goto out_teardown;
 738        }
 739
 740        return 0;
 741out_teardown:
 742        bcm_clk_teardown(bcm_clk);
 743
 744        return ret;
 745}
 746
 747static void ccu_clks_teardown(struct ccu_data *ccu)
 748{
 749        u32 i;
 750
 751        for (i = 0; i < ccu->clk_num; i++)
 752                kona_clk_teardown(&ccu->kona_clks[i].hw);
 753}
 754
 755static void kona_ccu_teardown(struct ccu_data *ccu)
 756{
 757        if (!ccu->base)
 758                return;
 759
 760        of_clk_del_provider(ccu->node); /* safe if never added */
 761        ccu_clks_teardown(ccu);
 762        of_node_put(ccu->node);
 763        ccu->node = NULL;
 764        iounmap(ccu->base);
 765        ccu->base = NULL;
 766}
 767
 768static bool ccu_data_valid(struct ccu_data *ccu)
 769{
 770        struct ccu_policy *ccu_policy;
 771
 772        if (!ccu_data_offsets_valid(ccu))
 773                return false;
 774
 775        ccu_policy = &ccu->policy;
 776        if (ccu_policy_exists(ccu_policy))
 777                if (!ccu_policy_valid(ccu_policy, ccu->name))
 778                        return false;
 779
 780        return true;
 781}
 782
 783static struct clk_hw *
 784of_clk_kona_onecell_get(struct of_phandle_args *clkspec, void *data)
 785{
 786        struct ccu_data *ccu = data;
 787        unsigned int idx = clkspec->args[0];
 788
 789        if (idx >= ccu->clk_num) {
 790                pr_err("%s: invalid index %u\n", __func__, idx);
 791                return ERR_PTR(-EINVAL);
 792        }
 793
 794        return &ccu->kona_clks[idx].hw;
 795}
 796
 797/*
 798 * Set up a CCU.  Call the provided ccu_clks_setup callback to
 799 * initialize the array of clocks provided by the CCU.
 800 */
 801void __init kona_dt_ccu_setup(struct ccu_data *ccu,
 802                        struct device_node *node)
 803{
 804        struct resource res = { 0 };
 805        resource_size_t range;
 806        unsigned int i;
 807        int ret;
 808
 809        ret = of_address_to_resource(node, 0, &res);
 810        if (ret) {
 811                pr_err("%s: no valid CCU registers found for %pOFn\n", __func__,
 812                        node);
 813                goto out_err;
 814        }
 815
 816        range = resource_size(&res);
 817        if (range > (resource_size_t)U32_MAX) {
 818                pr_err("%s: address range too large for %pOFn\n", __func__,
 819                        node);
 820                goto out_err;
 821        }
 822
 823        ccu->range = (u32)range;
 824
 825        if (!ccu_data_valid(ccu)) {
 826                pr_err("%s: ccu data not valid for %pOFn\n", __func__, node);
 827                goto out_err;
 828        }
 829
 830        ccu->base = ioremap(res.start, ccu->range);
 831        if (!ccu->base) {
 832                pr_err("%s: unable to map CCU registers for %pOFn\n", __func__,
 833                        node);
 834                goto out_err;
 835        }
 836        ccu->node = of_node_get(node);
 837
 838        /*
 839         * Set up each defined kona clock and save the result in
 840         * the clock framework clock array (in ccu->data).  Then
 841         * register as a provider for these clocks.
 842         */
 843        for (i = 0; i < ccu->clk_num; i++) {
 844                if (!ccu->kona_clks[i].ccu)
 845                        continue;
 846                kona_clk_setup(&ccu->kona_clks[i]);
 847        }
 848
 849        ret = of_clk_add_hw_provider(node, of_clk_kona_onecell_get, ccu);
 850        if (ret) {
 851                pr_err("%s: error adding ccu %pOFn as provider (%d)\n", __func__,
 852                                node, ret);
 853                goto out_err;
 854        }
 855
 856        if (!kona_ccu_init(ccu))
 857                pr_err("Broadcom %pOFn initialization had errors\n", node);
 858
 859        return;
 860out_err:
 861        kona_ccu_teardown(ccu);
 862        pr_err("Broadcom %pOFn setup aborted\n", node);
 863}
 864