linux/drivers/clk/bcm/clk-kona.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2013 Broadcom Corporation
   3 * Copyright 2013 Linaro Limited
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation version 2.
   8 *
   9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
  10 * kind, whether express or implied; without even the implied warranty
  11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 */
  14
  15#include "clk-kona.h"
  16
  17#include <linux/delay.h>
  18#include <linux/io.h>
  19#include <linux/kernel.h>
  20#include <linux/clk-provider.h>
  21
  22/*
  23 * "Policies" affect the frequencies of bus clocks provided by a
  24 * CCU.  (I believe these polices are named "Deep Sleep", "Economy",
  25 * "Normal", and "Turbo".)  A lower policy number has lower power
  26 * consumption, and policy 2 is the default.
  27 */
  28#define CCU_POLICY_COUNT        4
  29
  30#define CCU_ACCESS_PASSWORD      0xA5A500
  31#define CLK_GATE_DELAY_LOOP      2000
  32
  33/* Bitfield operations */
  34
  35/* Produces a mask of set bits covering a range of a 32-bit value */
  36static inline u32 bitfield_mask(u32 shift, u32 width)
  37{
  38        return ((1 << width) - 1) << shift;
  39}
  40
  41/* Extract the value of a bitfield found within a given register value */
  42static inline u32 bitfield_extract(u32 reg_val, u32 shift, u32 width)
  43{
  44        return (reg_val & bitfield_mask(shift, width)) >> shift;
  45}
  46
  47/* Replace the value of a bitfield found within a given register value */
  48static inline u32 bitfield_replace(u32 reg_val, u32 shift, u32 width, u32 val)
  49{
  50        u32 mask = bitfield_mask(shift, width);
  51
  52        return (reg_val & ~mask) | (val << shift);
  53}
  54
  55/* Divider and scaling helpers */
  56
  57/* Convert a divider into the scaled divisor value it represents. */
  58static inline u64 scaled_div_value(struct bcm_clk_div *div, u32 reg_div)
  59{
  60        return (u64)reg_div + ((u64)1 << div->u.s.frac_width);
  61}
  62
  63/*
  64 * Build a scaled divider value as close as possible to the
  65 * given whole part (div_value) and fractional part (expressed
  66 * in billionths).
  67 */
  68u64 scaled_div_build(struct bcm_clk_div *div, u32 div_value, u32 billionths)
  69{
  70        u64 combined;
  71
  72        BUG_ON(!div_value);
  73        BUG_ON(billionths >= BILLION);
  74
  75        combined = (u64)div_value * BILLION + billionths;
  76        combined <<= div->u.s.frac_width;
  77
  78        return DIV_ROUND_CLOSEST_ULL(combined, BILLION);
  79}
  80
  81/* The scaled minimum divisor representable by a divider */
  82static inline u64
  83scaled_div_min(struct bcm_clk_div *div)
  84{
  85        if (divider_is_fixed(div))
  86                return (u64)div->u.fixed;
  87
  88        return scaled_div_value(div, 0);
  89}
  90
  91/* The scaled maximum divisor representable by a divider */
  92u64 scaled_div_max(struct bcm_clk_div *div)
  93{
  94        u32 reg_div;
  95
  96        if (divider_is_fixed(div))
  97                return (u64)div->u.fixed;
  98
  99        reg_div = ((u32)1 << div->u.s.width) - 1;
 100
 101        return scaled_div_value(div, reg_div);
 102}
 103
 104/*
 105 * Convert a scaled divisor into its divider representation as
 106 * stored in a divider register field.
 107 */
 108static inline u32
 109divider(struct bcm_clk_div *div, u64 scaled_div)
 110{
 111        BUG_ON(scaled_div < scaled_div_min(div));
 112        BUG_ON(scaled_div > scaled_div_max(div));
 113
 114        return (u32)(scaled_div - ((u64)1 << div->u.s.frac_width));
 115}
 116
 117/* Return a rate scaled for use when dividing by a scaled divisor. */
 118static inline u64
 119scale_rate(struct bcm_clk_div *div, u32 rate)
 120{
 121        if (divider_is_fixed(div))
 122                return (u64)rate;
 123
 124        return (u64)rate << div->u.s.frac_width;
 125}
 126
 127/* CCU access */
 128
 129/* Read a 32-bit register value from a CCU's address space. */
 130static inline u32 __ccu_read(struct ccu_data *ccu, u32 reg_offset)
 131{
 132        return readl(ccu->base + reg_offset);
 133}
 134
 135/* Write a 32-bit register value into a CCU's address space. */
 136static inline void
 137__ccu_write(struct ccu_data *ccu, u32 reg_offset, u32 reg_val)
 138{
 139        writel(reg_val, ccu->base + reg_offset);
 140}
 141
 142static inline unsigned long ccu_lock(struct ccu_data *ccu)
 143{
 144        unsigned long flags;
 145
 146        spin_lock_irqsave(&ccu->lock, flags);
 147
 148        return flags;
 149}
 150static inline void ccu_unlock(struct ccu_data *ccu, unsigned long flags)
 151{
 152        spin_unlock_irqrestore(&ccu->lock, flags);
 153}
 154
 155/*
 156 * Enable/disable write access to CCU protected registers.  The
 157 * WR_ACCESS register for all CCUs is at offset 0.
 158 */
 159static inline void __ccu_write_enable(struct ccu_data *ccu)
 160{
 161        if (ccu->write_enabled) {
 162                pr_err("%s: access already enabled for %s\n", __func__,
 163                        ccu->name);
 164                return;
 165        }
 166        ccu->write_enabled = true;
 167        __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD | 1);
 168}
 169
 170static inline void __ccu_write_disable(struct ccu_data *ccu)
 171{
 172        if (!ccu->write_enabled) {
 173                pr_err("%s: access wasn't enabled for %s\n", __func__,
 174                        ccu->name);
 175                return;
 176        }
 177
 178        __ccu_write(ccu, 0, CCU_ACCESS_PASSWORD);
 179        ccu->write_enabled = false;
 180}
 181
 182/*
 183 * Poll a register in a CCU's address space, returning when the
 184 * specified bit in that register's value is set (or clear).  Delay
 185 * a microsecond after each read of the register.  Returns true if
 186 * successful, or false if we gave up trying.
 187 *
 188 * Caller must ensure the CCU lock is held.
 189 */
 190static inline bool
 191__ccu_wait_bit(struct ccu_data *ccu, u32 reg_offset, u32 bit, bool want)
 192{
 193        unsigned int tries;
 194        u32 bit_mask = 1 << bit;
 195
 196        for (tries = 0; tries < CLK_GATE_DELAY_LOOP; tries++) {
 197                u32 val;
 198                bool bit_val;
 199
 200                val = __ccu_read(ccu, reg_offset);
 201                bit_val = (val & bit_mask) != 0;
 202                if (bit_val == want)
 203                        return true;
 204                udelay(1);
 205        }
 206        pr_warn("%s: %s/0x%04x bit %u was never %s\n", __func__,
 207                ccu->name, reg_offset, bit, want ? "set" : "clear");
 208
 209        return false;
 210}
 211
 212/* Policy operations */
 213
 214static bool __ccu_policy_engine_start(struct ccu_data *ccu, bool sync)
 215{
 216        struct bcm_policy_ctl *control = &ccu->policy.control;
 217        u32 offset;
 218        u32 go_bit;
 219        u32 mask;
 220        bool ret;
 221
 222        /* If we don't need to control policy for this CCU, we're done. */
 223        if (!policy_ctl_exists(control))
 224                return true;
 225
 226        offset = control->offset;
 227        go_bit = control->go_bit;
 228
 229        /* Ensure we're not busy before we start */
 230        ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 231        if (!ret) {
 232                pr_err("%s: ccu %s policy engine wouldn't go idle\n",
 233                        __func__, ccu->name);
 234                return false;
 235        }
 236
 237        /*
 238         * If it's a synchronous request, we'll wait for the voltage
 239         * and frequency of the active load to stabilize before
 240         * returning.  To do this we select the active load by
 241         * setting the ATL bit.
 242         *
 243         * An asynchronous request instead ramps the voltage in the
 244         * background, and when that process stabilizes, the target
 245         * load is copied to the active load and the CCU frequency
 246         * is switched.  We do this by selecting the target load
 247         * (ATL bit clear) and setting the request auto-copy (AC bit
 248         * set).
 249         *
 250         * Note, we do NOT read-modify-write this register.
 251         */
 252        mask = (u32)1 << go_bit;
 253        if (sync)
 254                mask |= 1 << control->atl_bit;
 255        else
 256                mask |= 1 << control->ac_bit;
 257        __ccu_write(ccu, offset, mask);
 258
 259        /* Wait for indication that operation is complete. */
 260        ret = __ccu_wait_bit(ccu, offset, go_bit, false);
 261        if (!ret)
 262                pr_err("%s: ccu %s policy engine never started\n",
 263                        __func__, ccu->name);
 264
 265        return ret;
 266}
 267
 268static bool __ccu_policy_engine_stop(struct ccu_data *ccu)
 269{
 270        struct bcm_lvm_en *enable = &ccu->policy.enable;
 271        u32 offset;
 272        u32 enable_bit;
 273        bool ret;
 274
 275        /* If we don't need to control policy for this CCU, we're done. */
 276        if (!policy_lvm_en_exists(enable))
 277                return true;
 278
 279        /* Ensure we're not busy before we start */
 280        offset = enable->offset;
 281        enable_bit = enable->bit;
 282        ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 283        if (!ret) {
 284                pr_err("%s: ccu %s policy engine already stopped\n",
 285                        __func__, ccu->name);
 286                return false;
 287        }
 288
 289        /* Now set the bit to stop the engine (NO read-modify-write) */
 290        __ccu_write(ccu, offset, (u32)1 << enable_bit);
 291
 292        /* Wait for indication that it has stopped. */
 293        ret = __ccu_wait_bit(ccu, offset, enable_bit, false);
 294        if (!ret)
 295                pr_err("%s: ccu %s policy engine never stopped\n",
 296                        __func__, ccu->name);
 297
 298        return ret;
 299}
 300
 301/*
 302 * A CCU has four operating conditions ("policies"), and some clocks
 303 * can be disabled or enabled based on which policy is currently in
 304 * effect.  Such clocks have a bit in a "policy mask" register for
 305 * each policy indicating whether the clock is enabled for that
 306 * policy or not.  The bit position for a clock is the same for all
 307 * four registers, and the 32-bit registers are at consecutive
 308 * addresses.
 309 */
 310static bool policy_init(struct ccu_data *ccu, struct bcm_clk_policy *policy)
 311{
 312        u32 offset;
 313        u32 mask;
 314        int i;
 315        bool ret;
 316
 317        if (!policy_exists(policy))
 318                return true;
 319
 320        /*
 321         * We need to stop the CCU policy engine to allow update
 322         * of our policy bits.
 323         */
 324        if (!__ccu_policy_engine_stop(ccu)) {
 325                pr_err("%s: unable to stop CCU %s policy engine\n",
 326                        __func__, ccu->name);
 327                return false;
 328        }
 329
 330        /*
 331         * For now, if a clock defines its policy bit we just mark
 332         * it "enabled" for all four policies.
 333         */
 334        offset = policy->offset;
 335        mask = (u32)1 << policy->bit;
 336        for (i = 0; i < CCU_POLICY_COUNT; i++) {
 337                u32 reg_val;
 338
 339                reg_val = __ccu_read(ccu, offset);
 340                reg_val |= mask;
 341                __ccu_write(ccu, offset, reg_val);
 342                offset += sizeof(u32);
 343        }
 344
 345        /* We're done updating; fire up the policy engine again. */
 346        ret = __ccu_policy_engine_start(ccu, true);
 347        if (!ret)
 348                pr_err("%s: unable to restart CCU %s policy engine\n",
 349                        __func__, ccu->name);
 350
 351        return ret;
 352}
 353
 354/* Gate operations */
 355
 356/* Determine whether a clock is gated.  CCU lock must be held.  */
 357static bool
 358__is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 359{
 360        u32 bit_mask;
 361        u32 reg_val;
 362
 363        /* If there is no gate we can assume it's enabled. */
 364        if (!gate_exists(gate))
 365                return true;
 366
 367        bit_mask = 1 << gate->status_bit;
 368        reg_val = __ccu_read(ccu, gate->offset);
 369
 370        return (reg_val & bit_mask) != 0;
 371}
 372
 373/* Determine whether a clock is gated. */
 374static bool
 375is_clk_gate_enabled(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 376{
 377        long flags;
 378        bool ret;
 379
 380        /* Avoid taking the lock if we can */
 381        if (!gate_exists(gate))
 382                return true;
 383
 384        flags = ccu_lock(ccu);
 385        ret = __is_clk_gate_enabled(ccu, gate);
 386        ccu_unlock(ccu, flags);
 387
 388        return ret;
 389}
 390
 391/*
 392 * Commit our desired gate state to the hardware.
 393 * Returns true if successful, false otherwise.
 394 */
 395static bool
 396__gate_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 397{
 398        u32 reg_val;
 399        u32 mask;
 400        bool enabled = false;
 401
 402        BUG_ON(!gate_exists(gate));
 403        if (!gate_is_sw_controllable(gate))
 404                return true;            /* Nothing we can change */
 405
 406        reg_val = __ccu_read(ccu, gate->offset);
 407
 408        /* For a hardware/software gate, set which is in control */
 409        if (gate_is_hw_controllable(gate)) {
 410                mask = (u32)1 << gate->hw_sw_sel_bit;
 411                if (gate_is_sw_managed(gate))
 412                        reg_val |= mask;
 413                else
 414                        reg_val &= ~mask;
 415        }
 416
 417        /*
 418         * If software is in control, enable or disable the gate.
 419         * If hardware is, clear the enabled bit for good measure.
 420         * If a software controlled gate can't be disabled, we're
 421         * required to write a 0 into the enable bit (but the gate
 422         * will be enabled).
 423         */
 424        mask = (u32)1 << gate->en_bit;
 425        if (gate_is_sw_managed(gate) && (enabled = gate_is_enabled(gate)) &&
 426                        !gate_is_no_disable(gate))
 427                reg_val |= mask;
 428        else
 429                reg_val &= ~mask;
 430
 431        __ccu_write(ccu, gate->offset, reg_val);
 432
 433        /* For a hardware controlled gate, we're done */
 434        if (!gate_is_sw_managed(gate))
 435                return true;
 436
 437        /* Otherwise wait for the gate to be in desired state */
 438        return __ccu_wait_bit(ccu, gate->offset, gate->status_bit, enabled);
 439}
 440
 441/*
 442 * Initialize a gate.  Our desired state (hardware/software select,
 443 * and if software, its enable state) is committed to hardware
 444 * without the usual checks to see if it's already set up that way.
 445 * Returns true if successful, false otherwise.
 446 */
 447static bool gate_init(struct ccu_data *ccu, struct bcm_clk_gate *gate)
 448{
 449        if (!gate_exists(gate))
 450                return true;
 451        return __gate_commit(ccu, gate);
 452}
 453
 454/*
 455 * Set a gate to enabled or disabled state.  Does nothing if the
 456 * gate is not currently under software control, or if it is already
 457 * in the requested state.  Returns true if successful, false
 458 * otherwise.  CCU lock must be held.
 459 */
 460static bool
 461__clk_gate(struct ccu_data *ccu, struct bcm_clk_gate *gate, bool enable)
 462{
 463        bool ret;
 464
 465        if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 466                return true;    /* Nothing to do */
 467
 468        if (!enable && gate_is_no_disable(gate)) {
 469                pr_warn("%s: invalid gate disable request (ignoring)\n",
 470                        __func__);
 471                return true;
 472        }
 473
 474        if (enable == gate_is_enabled(gate))
 475                return true;    /* No change */
 476
 477        gate_flip_enabled(gate);
 478        ret = __gate_commit(ccu, gate);
 479        if (!ret)
 480                gate_flip_enabled(gate);        /* Revert the change */
 481
 482        return ret;
 483}
 484
 485/* Enable or disable a gate.  Returns 0 if successful, -EIO otherwise */
 486static int clk_gate(struct ccu_data *ccu, const char *name,
 487                        struct bcm_clk_gate *gate, bool enable)
 488{
 489        unsigned long flags;
 490        bool success;
 491
 492        /*
 493         * Avoid taking the lock if we can.  We quietly ignore
 494         * requests to change state that don't make sense.
 495         */
 496        if (!gate_exists(gate) || !gate_is_sw_managed(gate))
 497                return 0;
 498        if (!enable && gate_is_no_disable(gate))
 499                return 0;
 500
 501        flags = ccu_lock(ccu);
 502        __ccu_write_enable(ccu);
 503
 504        success = __clk_gate(ccu, gate, enable);
 505
 506        __ccu_write_disable(ccu);
 507        ccu_unlock(ccu, flags);
 508
 509        if (success)
 510                return 0;
 511
 512        pr_err("%s: failed to %s gate for %s\n", __func__,
 513                enable ? "enable" : "disable", name);
 514
 515        return -EIO;
 516}
 517
 518/* Hysteresis operations */
 519
 520/*
 521 * If a clock gate requires a turn-off delay it will have
 522 * "hysteresis" register bits defined.  The first, if set, enables
 523 * the delay; and if enabled, the second bit determines whether the
 524 * delay is "low" or "high" (1 means high).  For now, if it's
 525 * defined for a clock, we set it.
 526 */
 527static bool hyst_init(struct ccu_data *ccu, struct bcm_clk_hyst *hyst)
 528{
 529        u32 offset;
 530        u32 reg_val;
 531        u32 mask;
 532
 533        if (!hyst_exists(hyst))
 534                return true;
 535
 536        offset = hyst->offset;
 537        mask = (u32)1 << hyst->en_bit;
 538        mask |= (u32)1 << hyst->val_bit;
 539
 540        reg_val = __ccu_read(ccu, offset);
 541        reg_val |= mask;
 542        __ccu_write(ccu, offset, reg_val);
 543
 544        return true;
 545}
 546
 547/* Trigger operations */
 548
 549/*
 550 * Caller must ensure CCU lock is held and access is enabled.
 551 * Returns true if successful, false otherwise.
 552 */
 553static bool __clk_trigger(struct ccu_data *ccu, struct bcm_clk_trig *trig)
 554{
 555        /* Trigger the clock and wait for it to finish */
 556        __ccu_write(ccu, trig->offset, 1 << trig->bit);
 557
 558        return __ccu_wait_bit(ccu, trig->offset, trig->bit, false);
 559}
 560
 561/* Divider operations */
 562
 563/* Read a divider value and return the scaled divisor it represents. */
 564static u64 divider_read_scaled(struct ccu_data *ccu, struct bcm_clk_div *div)
 565{
 566        unsigned long flags;
 567        u32 reg_val;
 568        u32 reg_div;
 569
 570        if (divider_is_fixed(div))
 571                return (u64)div->u.fixed;
 572
 573        flags = ccu_lock(ccu);
 574        reg_val = __ccu_read(ccu, div->u.s.offset);
 575        ccu_unlock(ccu, flags);
 576
 577        /* Extract the full divider field from the register value */
 578        reg_div = bitfield_extract(reg_val, div->u.s.shift, div->u.s.width);
 579
 580        /* Return the scaled divisor value it represents */
 581        return scaled_div_value(div, reg_div);
 582}
 583
 584/*
 585 * Convert a divider's scaled divisor value into its recorded form
 586 * and commit it into the hardware divider register.
 587 *
 588 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 589 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 590 */
 591static int __div_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 592                        struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 593{
 594        bool enabled;
 595        u32 reg_div;
 596        u32 reg_val;
 597        int ret = 0;
 598
 599        BUG_ON(divider_is_fixed(div));
 600
 601        /*
 602         * If we're just initializing the divider, and no initial
 603         * state was defined in the device tree, we just find out
 604         * what its current value is rather than updating it.
 605         */
 606        if (div->u.s.scaled_div == BAD_SCALED_DIV_VALUE) {
 607                reg_val = __ccu_read(ccu, div->u.s.offset);
 608                reg_div = bitfield_extract(reg_val, div->u.s.shift,
 609                                                div->u.s.width);
 610                div->u.s.scaled_div = scaled_div_value(div, reg_div);
 611
 612                return 0;
 613        }
 614
 615        /* Convert the scaled divisor to the value we need to record */
 616        reg_div = divider(div, div->u.s.scaled_div);
 617
 618        /* Clock needs to be enabled before changing the rate */
 619        enabled = __is_clk_gate_enabled(ccu, gate);
 620        if (!enabled && !__clk_gate(ccu, gate, true)) {
 621                ret = -ENXIO;
 622                goto out;
 623        }
 624
 625        /* Replace the divider value and record the result */
 626        reg_val = __ccu_read(ccu, div->u.s.offset);
 627        reg_val = bitfield_replace(reg_val, div->u.s.shift, div->u.s.width,
 628                                        reg_div);
 629        __ccu_write(ccu, div->u.s.offset, reg_val);
 630
 631        /* If the trigger fails we still want to disable the gate */
 632        if (!__clk_trigger(ccu, trig))
 633                ret = -EIO;
 634
 635        /* Disable the clock again if it was disabled to begin with */
 636        if (!enabled && !__clk_gate(ccu, gate, false))
 637                ret = ret ? ret : -ENXIO;       /* return first error */
 638out:
 639        return ret;
 640}
 641
 642/*
 643 * Initialize a divider by committing our desired state to hardware
 644 * without the usual checks to see if it's already set up that way.
 645 * Returns true if successful, false otherwise.
 646 */
 647static bool div_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 648                        struct bcm_clk_div *div, struct bcm_clk_trig *trig)
 649{
 650        if (!divider_exists(div) || divider_is_fixed(div))
 651                return true;
 652        return !__div_commit(ccu, gate, div, trig);
 653}
 654
 655static int divider_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 656                        struct bcm_clk_div *div, struct bcm_clk_trig *trig,
 657                        u64 scaled_div)
 658{
 659        unsigned long flags;
 660        u64 previous;
 661        int ret;
 662
 663        BUG_ON(divider_is_fixed(div));
 664
 665        previous = div->u.s.scaled_div;
 666        if (previous == scaled_div)
 667                return 0;       /* No change */
 668
 669        div->u.s.scaled_div = scaled_div;
 670
 671        flags = ccu_lock(ccu);
 672        __ccu_write_enable(ccu);
 673
 674        ret = __div_commit(ccu, gate, div, trig);
 675
 676        __ccu_write_disable(ccu);
 677        ccu_unlock(ccu, flags);
 678
 679        if (ret)
 680                div->u.s.scaled_div = previous;         /* Revert the change */
 681
 682        return ret;
 683
 684}
 685
 686/* Common clock rate helpers */
 687
 688/*
 689 * Implement the common clock framework recalc_rate method, taking
 690 * into account a divider and an optional pre-divider.  The
 691 * pre-divider register pointer may be NULL.
 692 */
 693static unsigned long clk_recalc_rate(struct ccu_data *ccu,
 694                        struct bcm_clk_div *div, struct bcm_clk_div *pre_div,
 695                        unsigned long parent_rate)
 696{
 697        u64 scaled_parent_rate;
 698        u64 scaled_div;
 699        u64 result;
 700
 701        if (!divider_exists(div))
 702                return parent_rate;
 703
 704        if (parent_rate > (unsigned long)LONG_MAX)
 705                return 0;       /* actually this would be a caller bug */
 706
 707        /*
 708         * If there is a pre-divider, divide the scaled parent rate
 709         * by the pre-divider value first.  In this case--to improve
 710         * accuracy--scale the parent rate by *both* the pre-divider
 711         * value and the divider before actually computing the
 712         * result of the pre-divider.
 713         *
 714         * If there's only one divider, just scale the parent rate.
 715         */
 716        if (pre_div && divider_exists(pre_div)) {
 717                u64 scaled_rate;
 718
 719                scaled_rate = scale_rate(pre_div, parent_rate);
 720                scaled_rate = scale_rate(div, scaled_rate);
 721                scaled_div = divider_read_scaled(ccu, pre_div);
 722                scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 723                                                        scaled_div);
 724        } else  {
 725                scaled_parent_rate = scale_rate(div, parent_rate);
 726        }
 727
 728        /*
 729         * Get the scaled divisor value, and divide the scaled
 730         * parent rate by that to determine this clock's resulting
 731         * rate.
 732         */
 733        scaled_div = divider_read_scaled(ccu, div);
 734        result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, scaled_div);
 735
 736        return (unsigned long)result;
 737}
 738
 739/*
 740 * Compute the output rate produced when a given parent rate is fed
 741 * into two dividers.  The pre-divider can be NULL, and even if it's
 742 * non-null it may be nonexistent.  It's also OK for the divider to
 743 * be nonexistent, and in that case the pre-divider is also ignored.
 744 *
 745 * If scaled_div is non-null, it is used to return the scaled divisor
 746 * value used by the (downstream) divider to produce that rate.
 747 */
 748static long round_rate(struct ccu_data *ccu, struct bcm_clk_div *div,
 749                                struct bcm_clk_div *pre_div,
 750                                unsigned long rate, unsigned long parent_rate,
 751                                u64 *scaled_div)
 752{
 753        u64 scaled_parent_rate;
 754        u64 min_scaled_div;
 755        u64 max_scaled_div;
 756        u64 best_scaled_div;
 757        u64 result;
 758
 759        BUG_ON(!divider_exists(div));
 760        BUG_ON(!rate);
 761        BUG_ON(parent_rate > (u64)LONG_MAX);
 762
 763        /*
 764         * If there is a pre-divider, divide the scaled parent rate
 765         * by the pre-divider value first.  In this case--to improve
 766         * accuracy--scale the parent rate by *both* the pre-divider
 767         * value and the divider before actually computing the
 768         * result of the pre-divider.
 769         *
 770         * If there's only one divider, just scale the parent rate.
 771         *
 772         * For simplicity we treat the pre-divider as fixed (for now).
 773         */
 774        if (divider_exists(pre_div)) {
 775                u64 scaled_rate;
 776                u64 scaled_pre_div;
 777
 778                scaled_rate = scale_rate(pre_div, parent_rate);
 779                scaled_rate = scale_rate(div, scaled_rate);
 780                scaled_pre_div = divider_read_scaled(ccu, pre_div);
 781                scaled_parent_rate = DIV_ROUND_CLOSEST_ULL(scaled_rate,
 782                                                        scaled_pre_div);
 783        } else {
 784                scaled_parent_rate = scale_rate(div, parent_rate);
 785        }
 786
 787        /*
 788         * Compute the best possible divider and ensure it is in
 789         * range.  A fixed divider can't be changed, so just report
 790         * the best we can do.
 791         */
 792        if (!divider_is_fixed(div)) {
 793                best_scaled_div = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate,
 794                                                        rate);
 795                min_scaled_div = scaled_div_min(div);
 796                max_scaled_div = scaled_div_max(div);
 797                if (best_scaled_div > max_scaled_div)
 798                        best_scaled_div = max_scaled_div;
 799                else if (best_scaled_div < min_scaled_div)
 800                        best_scaled_div = min_scaled_div;
 801        } else {
 802                best_scaled_div = divider_read_scaled(ccu, div);
 803        }
 804
 805        /* OK, figure out the resulting rate */
 806        result = DIV_ROUND_CLOSEST_ULL(scaled_parent_rate, best_scaled_div);
 807
 808        if (scaled_div)
 809                *scaled_div = best_scaled_div;
 810
 811        return (long)result;
 812}
 813
 814/* Common clock parent helpers */
 815
 816/*
 817 * For a given parent selector (register field) value, find the
 818 * index into a selector's parent_sel array that contains it.
 819 * Returns the index, or BAD_CLK_INDEX if it's not found.
 820 */
 821static u8 parent_index(struct bcm_clk_sel *sel, u8 parent_sel)
 822{
 823        u8 i;
 824
 825        BUG_ON(sel->parent_count > (u32)U8_MAX);
 826        for (i = 0; i < sel->parent_count; i++)
 827                if (sel->parent_sel[i] == parent_sel)
 828                        return i;
 829        return BAD_CLK_INDEX;
 830}
 831
 832/*
 833 * Fetch the current value of the selector, and translate that into
 834 * its corresponding index in the parent array we registered with
 835 * the clock framework.
 836 *
 837 * Returns parent array index that corresponds with the value found,
 838 * or BAD_CLK_INDEX if the found value is out of range.
 839 */
 840static u8 selector_read_index(struct ccu_data *ccu, struct bcm_clk_sel *sel)
 841{
 842        unsigned long flags;
 843        u32 reg_val;
 844        u32 parent_sel;
 845        u8 index;
 846
 847        /* If there's no selector, there's only one parent */
 848        if (!selector_exists(sel))
 849                return 0;
 850
 851        /* Get the value in the selector register */
 852        flags = ccu_lock(ccu);
 853        reg_val = __ccu_read(ccu, sel->offset);
 854        ccu_unlock(ccu, flags);
 855
 856        parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 857
 858        /* Look up that selector's parent array index and return it */
 859        index = parent_index(sel, parent_sel);
 860        if (index == BAD_CLK_INDEX)
 861                pr_err("%s: out-of-range parent selector %u (%s 0x%04x)\n",
 862                        __func__, parent_sel, ccu->name, sel->offset);
 863
 864        return index;
 865}
 866
 867/*
 868 * Commit our desired selector value to the hardware.
 869 *
 870 * Returns 0 on success.  Returns -EINVAL for invalid arguments.
 871 * Returns -ENXIO if gating failed, and -EIO if a trigger failed.
 872 */
 873static int
 874__sel_commit(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 875                        struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 876{
 877        u32 parent_sel;
 878        u32 reg_val;
 879        bool enabled;
 880        int ret = 0;
 881
 882        BUG_ON(!selector_exists(sel));
 883
 884        /*
 885         * If we're just initializing the selector, and no initial
 886         * state was defined in the device tree, we just find out
 887         * what its current value is rather than updating it.
 888         */
 889        if (sel->clk_index == BAD_CLK_INDEX) {
 890                u8 index;
 891
 892                reg_val = __ccu_read(ccu, sel->offset);
 893                parent_sel = bitfield_extract(reg_val, sel->shift, sel->width);
 894                index = parent_index(sel, parent_sel);
 895                if (index == BAD_CLK_INDEX)
 896                        return -EINVAL;
 897                sel->clk_index = index;
 898
 899                return 0;
 900        }
 901
 902        BUG_ON((u32)sel->clk_index >= sel->parent_count);
 903        parent_sel = sel->parent_sel[sel->clk_index];
 904
 905        /* Clock needs to be enabled before changing the parent */
 906        enabled = __is_clk_gate_enabled(ccu, gate);
 907        if (!enabled && !__clk_gate(ccu, gate, true))
 908                return -ENXIO;
 909
 910        /* Replace the selector value and record the result */
 911        reg_val = __ccu_read(ccu, sel->offset);
 912        reg_val = bitfield_replace(reg_val, sel->shift, sel->width, parent_sel);
 913        __ccu_write(ccu, sel->offset, reg_val);
 914
 915        /* If the trigger fails we still want to disable the gate */
 916        if (!__clk_trigger(ccu, trig))
 917                ret = -EIO;
 918
 919        /* Disable the clock again if it was disabled to begin with */
 920        if (!enabled && !__clk_gate(ccu, gate, false))
 921                ret = ret ? ret : -ENXIO;       /* return first error */
 922
 923        return ret;
 924}
 925
 926/*
 927 * Initialize a selector by committing our desired state to hardware
 928 * without the usual checks to see if it's already set up that way.
 929 * Returns true if successful, false otherwise.
 930 */
 931static bool sel_init(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 932                        struct bcm_clk_sel *sel, struct bcm_clk_trig *trig)
 933{
 934        if (!selector_exists(sel))
 935                return true;
 936        return !__sel_commit(ccu, gate, sel, trig);
 937}
 938
 939/*
 940 * Write a new value into a selector register to switch to a
 941 * different parent clock.  Returns 0 on success, or an error code
 942 * (from __sel_commit()) otherwise.
 943 */
 944static int selector_write(struct ccu_data *ccu, struct bcm_clk_gate *gate,
 945                        struct bcm_clk_sel *sel, struct bcm_clk_trig *trig,
 946                        u8 index)
 947{
 948        unsigned long flags;
 949        u8 previous;
 950        int ret;
 951
 952        previous = sel->clk_index;
 953        if (previous == index)
 954                return 0;       /* No change */
 955
 956        sel->clk_index = index;
 957
 958        flags = ccu_lock(ccu);
 959        __ccu_write_enable(ccu);
 960
 961        ret = __sel_commit(ccu, gate, sel, trig);
 962
 963        __ccu_write_disable(ccu);
 964        ccu_unlock(ccu, flags);
 965
 966        if (ret)
 967                sel->clk_index = previous;      /* Revert the change */
 968
 969        return ret;
 970}
 971
 972/* Clock operations */
 973
 974static int kona_peri_clk_enable(struct clk_hw *hw)
 975{
 976        struct kona_clk *bcm_clk = to_kona_clk(hw);
 977        struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 978
 979        return clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, true);
 980}
 981
 982static void kona_peri_clk_disable(struct clk_hw *hw)
 983{
 984        struct kona_clk *bcm_clk = to_kona_clk(hw);
 985        struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 986
 987        (void)clk_gate(bcm_clk->ccu, bcm_clk->init_data.name, gate, false);
 988}
 989
 990static int kona_peri_clk_is_enabled(struct clk_hw *hw)
 991{
 992        struct kona_clk *bcm_clk = to_kona_clk(hw);
 993        struct bcm_clk_gate *gate = &bcm_clk->u.peri->gate;
 994
 995        return is_clk_gate_enabled(bcm_clk->ccu, gate) ? 1 : 0;
 996}
 997
 998static unsigned long kona_peri_clk_recalc_rate(struct clk_hw *hw,
 999                        unsigned long parent_rate)
1000{
1001        struct kona_clk *bcm_clk = to_kona_clk(hw);
1002        struct peri_clk_data *data = bcm_clk->u.peri;
1003
1004        return clk_recalc_rate(bcm_clk->ccu, &data->div, &data->pre_div,
1005                                parent_rate);
1006}
1007
1008static long kona_peri_clk_round_rate(struct clk_hw *hw, unsigned long rate,
1009                        unsigned long *parent_rate)
1010{
1011        struct kona_clk *bcm_clk = to_kona_clk(hw);
1012        struct bcm_clk_div *div = &bcm_clk->u.peri->div;
1013
1014        if (!divider_exists(div))
1015                return clk_hw_get_rate(hw);
1016
1017        /* Quietly avoid a zero rate */
1018        return round_rate(bcm_clk->ccu, div, &bcm_clk->u.peri->pre_div,
1019                                rate ? rate : 1, *parent_rate, NULL);
1020}
1021
1022static int kona_peri_clk_determine_rate(struct clk_hw *hw,
1023                                        struct clk_rate_request *req)
1024{
1025        struct kona_clk *bcm_clk = to_kona_clk(hw);
1026        struct clk_hw *current_parent;
1027        unsigned long parent_rate;
1028        unsigned long best_delta;
1029        unsigned long best_rate;
1030        u32 parent_count;
1031        long rate;
1032        u32 which;
1033
1034        /*
1035         * If there is no other parent to choose, use the current one.
1036         * Note:  We don't honor (or use) CLK_SET_RATE_NO_REPARENT.
1037         */
1038        WARN_ON_ONCE(bcm_clk->init_data.flags & CLK_SET_RATE_NO_REPARENT);
1039        parent_count = (u32)bcm_clk->init_data.num_parents;
1040        if (parent_count < 2) {
1041                rate = kona_peri_clk_round_rate(hw, req->rate,
1042                                                &req->best_parent_rate);
1043                if (rate < 0)
1044                        return rate;
1045
1046                req->rate = rate;
1047                return 0;
1048        }
1049
1050        /* Unless we can do better, stick with current parent */
1051        current_parent = clk_hw_get_parent(hw);
1052        parent_rate = clk_hw_get_rate(current_parent);
1053        best_rate = kona_peri_clk_round_rate(hw, req->rate, &parent_rate);
1054        best_delta = abs(best_rate - req->rate);
1055
1056        /* Check whether any other parent clock can produce a better result */
1057        for (which = 0; which < parent_count; which++) {
1058                struct clk_hw *parent = clk_hw_get_parent_by_index(hw, which);
1059                unsigned long delta;
1060                unsigned long other_rate;
1061
1062                BUG_ON(!parent);
1063                if (parent == current_parent)
1064                        continue;
1065
1066                /* We don't support CLK_SET_RATE_PARENT */
1067                parent_rate = clk_hw_get_rate(parent);
1068                other_rate = kona_peri_clk_round_rate(hw, req->rate,
1069                                                      &parent_rate);
1070                delta = abs(other_rate - req->rate);
1071                if (delta < best_delta) {
1072                        best_delta = delta;
1073                        best_rate = other_rate;
1074                        req->best_parent_hw = parent;
1075                        req->best_parent_rate = parent_rate;
1076                }
1077        }
1078
1079        req->rate = best_rate;
1080        return 0;
1081}
1082
1083static int kona_peri_clk_set_parent(struct clk_hw *hw, u8 index)
1084{
1085        struct kona_clk *bcm_clk = to_kona_clk(hw);
1086        struct peri_clk_data *data = bcm_clk->u.peri;
1087        struct bcm_clk_sel *sel = &data->sel;
1088        struct bcm_clk_trig *trig;
1089        int ret;
1090
1091        BUG_ON(index >= sel->parent_count);
1092
1093        /* If there's only one parent we don't require a selector */
1094        if (!selector_exists(sel))
1095                return 0;
1096
1097        /*
1098         * The regular trigger is used by default, but if there's a
1099         * pre-trigger we want to use that instead.
1100         */
1101        trig = trigger_exists(&data->pre_trig) ? &data->pre_trig
1102                                               : &data->trig;
1103
1104        ret = selector_write(bcm_clk->ccu, &data->gate, sel, trig, index);
1105        if (ret == -ENXIO) {
1106                pr_err("%s: gating failure for %s\n", __func__,
1107                        bcm_clk->init_data.name);
1108                ret = -EIO;     /* Don't proliferate weird errors */
1109        } else if (ret == -EIO) {
1110                pr_err("%s: %strigger failed for %s\n", __func__,
1111                        trig == &data->pre_trig ? "pre-" : "",
1112                        bcm_clk->init_data.name);
1113        }
1114
1115        return ret;
1116}
1117
1118static u8 kona_peri_clk_get_parent(struct clk_hw *hw)
1119{
1120        struct kona_clk *bcm_clk = to_kona_clk(hw);
1121        struct peri_clk_data *data = bcm_clk->u.peri;
1122        u8 index;
1123
1124        index = selector_read_index(bcm_clk->ccu, &data->sel);
1125
1126        /* Not all callers would handle an out-of-range value gracefully */
1127        return index == BAD_CLK_INDEX ? 0 : index;
1128}
1129
1130static int kona_peri_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1131                        unsigned long parent_rate)
1132{
1133        struct kona_clk *bcm_clk = to_kona_clk(hw);
1134        struct peri_clk_data *data = bcm_clk->u.peri;
1135        struct bcm_clk_div *div = &data->div;
1136        u64 scaled_div = 0;
1137        int ret;
1138
1139        if (parent_rate > (unsigned long)LONG_MAX)
1140                return -EINVAL;
1141
1142        if (rate == clk_hw_get_rate(hw))
1143                return 0;
1144
1145        if (!divider_exists(div))
1146                return rate == parent_rate ? 0 : -EINVAL;
1147
1148        /*
1149         * A fixed divider can't be changed.  (Nor can a fixed
1150         * pre-divider be, but for now we never actually try to
1151         * change that.)  Tolerate a request for a no-op change.
1152         */
1153        if (divider_is_fixed(&data->div))
1154                return rate == parent_rate ? 0 : -EINVAL;
1155
1156        /*
1157         * Get the scaled divisor value needed to achieve a clock
1158         * rate as close as possible to what was requested, given
1159         * the parent clock rate supplied.
1160         */
1161        (void)round_rate(bcm_clk->ccu, div, &data->pre_div,
1162                                rate ? rate : 1, parent_rate, &scaled_div);
1163
1164        /*
1165         * We aren't updating any pre-divider at this point, so
1166         * we'll use the regular trigger.
1167         */
1168        ret = divider_write(bcm_clk->ccu, &data->gate, &data->div,
1169                                &data->trig, scaled_div);
1170        if (ret == -ENXIO) {
1171                pr_err("%s: gating failure for %s\n", __func__,
1172                        bcm_clk->init_data.name);
1173                ret = -EIO;     /* Don't proliferate weird errors */
1174        } else if (ret == -EIO) {
1175                pr_err("%s: trigger failed for %s\n", __func__,
1176                        bcm_clk->init_data.name);
1177        }
1178
1179        return ret;
1180}
1181
1182struct clk_ops kona_peri_clk_ops = {
1183        .enable = kona_peri_clk_enable,
1184        .disable = kona_peri_clk_disable,
1185        .is_enabled = kona_peri_clk_is_enabled,
1186        .recalc_rate = kona_peri_clk_recalc_rate,
1187        .determine_rate = kona_peri_clk_determine_rate,
1188        .set_parent = kona_peri_clk_set_parent,
1189        .get_parent = kona_peri_clk_get_parent,
1190        .set_rate = kona_peri_clk_set_rate,
1191};
1192
1193/* Put a peripheral clock into its initial state */
1194static bool __peri_clk_init(struct kona_clk *bcm_clk)
1195{
1196        struct ccu_data *ccu = bcm_clk->ccu;
1197        struct peri_clk_data *peri = bcm_clk->u.peri;
1198        const char *name = bcm_clk->init_data.name;
1199        struct bcm_clk_trig *trig;
1200
1201        BUG_ON(bcm_clk->type != bcm_clk_peri);
1202
1203        if (!policy_init(ccu, &peri->policy)) {
1204                pr_err("%s: error initializing policy for %s\n",
1205                        __func__, name);
1206                return false;
1207        }
1208        if (!gate_init(ccu, &peri->gate)) {
1209                pr_err("%s: error initializing gate for %s\n", __func__, name);
1210                return false;
1211        }
1212        if (!hyst_init(ccu, &peri->hyst)) {
1213                pr_err("%s: error initializing hyst for %s\n", __func__, name);
1214                return false;
1215        }
1216        if (!div_init(ccu, &peri->gate, &peri->div, &peri->trig)) {
1217                pr_err("%s: error initializing divider for %s\n", __func__,
1218                        name);
1219                return false;
1220        }
1221
1222        /*
1223         * For the pre-divider and selector, the pre-trigger is used
1224         * if it's present, otherwise we just use the regular trigger.
1225         */
1226        trig = trigger_exists(&peri->pre_trig) ? &peri->pre_trig
1227                                               : &peri->trig;
1228
1229        if (!div_init(ccu, &peri->gate, &peri->pre_div, trig)) {
1230                pr_err("%s: error initializing pre-divider for %s\n", __func__,
1231                        name);
1232                return false;
1233        }
1234
1235        if (!sel_init(ccu, &peri->gate, &peri->sel, trig)) {
1236                pr_err("%s: error initializing selector for %s\n", __func__,
1237                        name);
1238                return false;
1239        }
1240
1241        return true;
1242}
1243
1244static bool __kona_clk_init(struct kona_clk *bcm_clk)
1245{
1246        switch (bcm_clk->type) {
1247        case bcm_clk_peri:
1248                return __peri_clk_init(bcm_clk);
1249        default:
1250                BUG();
1251        }
1252        return false;
1253}
1254
1255/* Set a CCU and all its clocks into their desired initial state */
1256bool __init kona_ccu_init(struct ccu_data *ccu)
1257{
1258        unsigned long flags;
1259        unsigned int which;
1260        struct kona_clk *kona_clks = ccu->kona_clks;
1261        bool success = true;
1262
1263        flags = ccu_lock(ccu);
1264        __ccu_write_enable(ccu);
1265
1266        for (which = 0; which < ccu->clk_num; which++) {
1267                struct kona_clk *bcm_clk = &kona_clks[which];
1268
1269                if (!bcm_clk->ccu)
1270                        continue;
1271
1272                success &= __kona_clk_init(bcm_clk);
1273        }
1274
1275        __ccu_write_disable(ccu);
1276        ccu_unlock(ccu, flags);
1277        return success;
1278}
1279