linux/drivers/clk/mvebu/armada-37xx-periph.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Marvell Armada 37xx SoC Peripheral clocks
   4 *
   5 * Copyright (C) 2016 Marvell
   6 *
   7 * Gregory CLEMENT <gregory.clement@free-electrons.com>
   8 *
   9 * Most of the peripheral clocks can be modelled like this:
  10 *             _____    _______    _______
  11 * TBG-A-P  --|     |  |       |  |       |   ______
  12 * TBG-B-P  --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
  13 * TBG-A-S  --|     |  |       |  |       |  |______|
  14 * TBG-B-S  --|_____|  |_______|  |_______|
  15 *
  16 * However some clocks may use only one or two block or and use the
  17 * xtal clock as parent.
  18 */
  19
  20#include <linux/clk-provider.h>
  21#include <linux/io.h>
  22#include <linux/mfd/syscon.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/platform_device.h>
  26#include <linux/regmap.h>
  27#include <linux/slab.h>
  28
  29#define TBG_SEL         0x0
  30#define DIV_SEL0        0x4
  31#define DIV_SEL1        0x8
  32#define DIV_SEL2        0xC
  33#define CLK_SEL         0x10
  34#define CLK_DIS         0x14
  35
  36#define  ARMADA_37XX_DVFS_LOAD_1 1
  37#define LOAD_LEVEL_NR   4
  38
  39#define ARMADA_37XX_NB_L0L1     0x18
  40#define ARMADA_37XX_NB_L2L3     0x1C
  41#define         ARMADA_37XX_NB_TBG_DIV_OFF      13
  42#define         ARMADA_37XX_NB_TBG_DIV_MASK     0x7
  43#define         ARMADA_37XX_NB_CLK_SEL_OFF      11
  44#define         ARMADA_37XX_NB_CLK_SEL_MASK     0x1
  45#define         ARMADA_37XX_NB_TBG_SEL_OFF      9
  46#define         ARMADA_37XX_NB_TBG_SEL_MASK     0x3
  47#define         ARMADA_37XX_NB_CONFIG_SHIFT     16
  48#define ARMADA_37XX_NB_DYN_MOD  0x24
  49#define         ARMADA_37XX_NB_DFS_EN   31
  50#define ARMADA_37XX_NB_CPU_LOAD 0x30
  51#define         ARMADA_37XX_NB_CPU_LOAD_MASK    0x3
  52#define         ARMADA_37XX_DVFS_LOAD_0         0
  53#define         ARMADA_37XX_DVFS_LOAD_1         1
  54#define         ARMADA_37XX_DVFS_LOAD_2         2
  55#define         ARMADA_37XX_DVFS_LOAD_3         3
  56
  57struct clk_periph_driver_data {
  58        struct clk_hw_onecell_data *hw_data;
  59        spinlock_t lock;
  60        void __iomem *reg;
  61
  62        /* Storage registers for suspend/resume operations */
  63        u32 tbg_sel;
  64        u32 div_sel0;
  65        u32 div_sel1;
  66        u32 div_sel2;
  67        u32 clk_sel;
  68        u32 clk_dis;
  69};
  70
  71struct clk_double_div {
  72        struct clk_hw hw;
  73        void __iomem *reg1;
  74        u8 shift1;
  75        void __iomem *reg2;
  76        u8 shift2;
  77};
  78
  79struct clk_pm_cpu {
  80        struct clk_hw hw;
  81        void __iomem *reg_mux;
  82        u8 shift_mux;
  83        u32 mask_mux;
  84        void __iomem *reg_div;
  85        u8 shift_div;
  86        struct regmap *nb_pm_base;
  87        unsigned long l1_expiration;
  88};
  89
  90#define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
  91#define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
  92
  93struct clk_periph_data {
  94        const char *name;
  95        const char * const *parent_names;
  96        int num_parents;
  97        struct clk_hw *mux_hw;
  98        struct clk_hw *rate_hw;
  99        struct clk_hw *gate_hw;
 100        struct clk_hw *muxrate_hw;
 101        bool is_double_div;
 102};
 103
 104static const struct clk_div_table clk_table6[] = {
 105        { .val = 1, .div = 1, },
 106        { .val = 2, .div = 2, },
 107        { .val = 3, .div = 3, },
 108        { .val = 4, .div = 4, },
 109        { .val = 5, .div = 5, },
 110        { .val = 6, .div = 6, },
 111        { .val = 0, .div = 0, }, /* last entry */
 112};
 113
 114static const struct clk_div_table clk_table1[] = {
 115        { .val = 0, .div = 1, },
 116        { .val = 1, .div = 2, },
 117        { .val = 0, .div = 0, }, /* last entry */
 118};
 119
 120static const struct clk_div_table clk_table2[] = {
 121        { .val = 0, .div = 2, },
 122        { .val = 1, .div = 4, },
 123        { .val = 0, .div = 0, }, /* last entry */
 124};
 125
 126static const struct clk_ops clk_double_div_ops;
 127static const struct clk_ops clk_pm_cpu_ops;
 128
 129#define PERIPH_GATE(_name, _bit)                \
 130struct clk_gate gate_##_name = {                \
 131        .reg = (void *)CLK_DIS,                 \
 132        .bit_idx = _bit,                        \
 133        .hw.init = &(struct clk_init_data){     \
 134                .ops =  &clk_gate_ops,          \
 135        }                                       \
 136};
 137
 138#define PERIPH_MUX(_name, _shift)               \
 139struct clk_mux mux_##_name = {                  \
 140        .reg = (void *)TBG_SEL,                 \
 141        .shift = _shift,                        \
 142        .mask = 3,                              \
 143        .hw.init = &(struct clk_init_data){     \
 144                .ops =  &clk_mux_ro_ops,        \
 145        }                                       \
 146};
 147
 148#define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
 149struct clk_double_div rate_##_name = {          \
 150        .reg1 = (void *)_reg1,                  \
 151        .reg2 = (void *)_reg2,                  \
 152        .shift1 = _shift1,                      \
 153        .shift2 = _shift2,                      \
 154        .hw.init = &(struct clk_init_data){     \
 155                .ops =  &clk_double_div_ops,    \
 156        }                                       \
 157};
 158
 159#define PERIPH_DIV(_name, _reg, _shift, _table) \
 160struct clk_divider rate_##_name = {             \
 161        .reg = (void *)_reg,                    \
 162        .table = _table,                        \
 163        .shift = _shift,                        \
 164        .hw.init = &(struct clk_init_data){     \
 165                .ops =  &clk_divider_ro_ops,    \
 166        }                                       \
 167};
 168
 169#define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2)    \
 170struct clk_pm_cpu muxrate_##_name = {           \
 171        .reg_mux = (void *)TBG_SEL,             \
 172        .mask_mux = 3,                          \
 173        .shift_mux = _shift1,                   \
 174        .reg_div = (void *)_reg,                \
 175        .shift_div = _shift2,                   \
 176        .hw.init = &(struct clk_init_data){     \
 177                .ops =  &clk_pm_cpu_ops,        \
 178        }                                       \
 179};
 180
 181#define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
 182static PERIPH_GATE(_name, _bit);                            \
 183static PERIPH_MUX(_name, _shift);                           \
 184static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
 185
 186#define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table)     \
 187static PERIPH_GATE(_name, _bit);                            \
 188static PERIPH_MUX(_name, _shift);                           \
 189static PERIPH_DIV(_name, _reg, _shift1, _table);
 190
 191#define PERIPH_CLK_GATE_DIV(_name, _bit,  _reg, _shift, _table) \
 192static PERIPH_GATE(_name, _bit);                        \
 193static PERIPH_DIV(_name, _reg, _shift, _table);
 194
 195#define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
 196static PERIPH_MUX(_name, _shift);                           \
 197static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
 198
 199#define REF_CLK_FULL(_name)                             \
 200        { .name = #_name,                               \
 201          .parent_names = (const char *[]){ "TBG-A-P",  \
 202              "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
 203          .num_parents = 4,                             \
 204          .mux_hw = &mux_##_name.hw,                    \
 205          .gate_hw = &gate_##_name.hw,                  \
 206          .rate_hw = &rate_##_name.hw,                  \
 207        }
 208
 209#define REF_CLK_FULL_DD(_name)                          \
 210        { .name = #_name,                               \
 211          .parent_names = (const char *[]){ "TBG-A-P",  \
 212              "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
 213          .num_parents = 4,                             \
 214          .mux_hw = &mux_##_name.hw,                    \
 215          .gate_hw = &gate_##_name.hw,                  \
 216          .rate_hw = &rate_##_name.hw,                  \
 217          .is_double_div = true,                        \
 218        }
 219
 220#define REF_CLK_GATE(_name, _parent_name)                       \
 221        { .name = #_name,                                       \
 222          .parent_names = (const char *[]){ _parent_name},      \
 223          .num_parents = 1,                                     \
 224          .gate_hw = &gate_##_name.hw,                          \
 225        }
 226
 227#define REF_CLK_GATE_DIV(_name, _parent_name)                   \
 228        { .name = #_name,                                       \
 229          .parent_names = (const char *[]){ _parent_name},      \
 230          .num_parents = 1,                                     \
 231          .gate_hw = &gate_##_name.hw,                          \
 232          .rate_hw = &rate_##_name.hw,                          \
 233        }
 234
 235#define REF_CLK_PM_CPU(_name)                           \
 236        { .name = #_name,                               \
 237          .parent_names = (const char *[]){ "TBG-A-P",  \
 238              "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
 239          .num_parents = 4,                             \
 240          .muxrate_hw = &muxrate_##_name.hw,            \
 241        }
 242
 243#define REF_CLK_MUX_DD(_name)                           \
 244        { .name = #_name,                               \
 245          .parent_names = (const char *[]){ "TBG-A-P",  \
 246              "TBG-B-P", "TBG-A-S", "TBG-B-S"},         \
 247          .num_parents = 4,                             \
 248          .mux_hw = &mux_##_name.hw,                    \
 249          .rate_hw = &rate_##_name.hw,                  \
 250          .is_double_div = true,                        \
 251        }
 252
 253/* NB periph clocks */
 254PERIPH_CLK_FULL_DD(mmc, 2, 0, DIV_SEL2, DIV_SEL2, 16, 13);
 255PERIPH_CLK_FULL_DD(sata_host, 3, 2, DIV_SEL2, DIV_SEL2, 10, 7);
 256PERIPH_CLK_FULL_DD(sec_at, 6, 4, DIV_SEL1, DIV_SEL1, 3, 0);
 257PERIPH_CLK_FULL_DD(sec_dap, 7, 6, DIV_SEL1, DIV_SEL1, 9, 6);
 258PERIPH_CLK_FULL_DD(tscem, 8, 8, DIV_SEL1, DIV_SEL1, 15, 12);
 259PERIPH_CLK_FULL(tscem_tmx, 10, 10, DIV_SEL1, 18, clk_table6);
 260static PERIPH_GATE(avs, 11);
 261PERIPH_CLK_FULL_DD(pwm, 13, 14, DIV_SEL0, DIV_SEL0, 3, 0);
 262PERIPH_CLK_FULL_DD(sqf, 12, 12, DIV_SEL1, DIV_SEL1, 27, 24);
 263static PERIPH_GATE(i2c_2, 16);
 264static PERIPH_GATE(i2c_1, 17);
 265PERIPH_CLK_GATE_DIV(ddr_phy, 19, DIV_SEL0, 18, clk_table2);
 266PERIPH_CLK_FULL_DD(ddr_fclk, 21, 16, DIV_SEL0, DIV_SEL0, 15, 12);
 267PERIPH_CLK_FULL(trace, 22, 18, DIV_SEL0, 20, clk_table6);
 268PERIPH_CLK_FULL(counter, 23, 20, DIV_SEL0, 23, clk_table6);
 269PERIPH_CLK_FULL_DD(eip97, 24, 24, DIV_SEL2, DIV_SEL2, 22, 19);
 270static PERIPH_PM_CPU(cpu, 22, DIV_SEL0, 28);
 271
 272static struct clk_periph_data data_nb[] = {
 273        REF_CLK_FULL_DD(mmc),
 274        REF_CLK_FULL_DD(sata_host),
 275        REF_CLK_FULL_DD(sec_at),
 276        REF_CLK_FULL_DD(sec_dap),
 277        REF_CLK_FULL_DD(tscem),
 278        REF_CLK_FULL(tscem_tmx),
 279        REF_CLK_GATE(avs, "xtal"),
 280        REF_CLK_FULL_DD(sqf),
 281        REF_CLK_FULL_DD(pwm),
 282        REF_CLK_GATE(i2c_2, "xtal"),
 283        REF_CLK_GATE(i2c_1, "xtal"),
 284        REF_CLK_GATE_DIV(ddr_phy, "TBG-A-S"),
 285        REF_CLK_FULL_DD(ddr_fclk),
 286        REF_CLK_FULL(trace),
 287        REF_CLK_FULL(counter),
 288        REF_CLK_FULL_DD(eip97),
 289        REF_CLK_PM_CPU(cpu),
 290        { },
 291};
 292
 293/* SB periph clocks */
 294PERIPH_CLK_MUX_DD(gbe_50, 6, DIV_SEL2, DIV_SEL2, 6, 9);
 295PERIPH_CLK_MUX_DD(gbe_core, 8, DIV_SEL1, DIV_SEL1, 18, 21);
 296PERIPH_CLK_MUX_DD(gbe_125, 10, DIV_SEL1, DIV_SEL1, 6, 9);
 297static PERIPH_GATE(gbe1_50, 0);
 298static PERIPH_GATE(gbe0_50, 1);
 299static PERIPH_GATE(gbe1_125, 2);
 300static PERIPH_GATE(gbe0_125, 3);
 301PERIPH_CLK_GATE_DIV(gbe1_core, 4, DIV_SEL1, 13, clk_table1);
 302PERIPH_CLK_GATE_DIV(gbe0_core, 5, DIV_SEL1, 14, clk_table1);
 303PERIPH_CLK_GATE_DIV(gbe_bm, 12, DIV_SEL1, 0, clk_table1);
 304PERIPH_CLK_FULL_DD(sdio, 11, 14, DIV_SEL0, DIV_SEL0, 3, 6);
 305PERIPH_CLK_FULL_DD(usb32_usb2_sys, 16, 16, DIV_SEL0, DIV_SEL0, 9, 12);
 306PERIPH_CLK_FULL_DD(usb32_ss_sys, 17, 18, DIV_SEL0, DIV_SEL0, 15, 18);
 307static PERIPH_GATE(pcie, 14);
 308
 309static struct clk_periph_data data_sb[] = {
 310        REF_CLK_MUX_DD(gbe_50),
 311        REF_CLK_MUX_DD(gbe_core),
 312        REF_CLK_MUX_DD(gbe_125),
 313        REF_CLK_GATE(gbe1_50, "gbe_50"),
 314        REF_CLK_GATE(gbe0_50, "gbe_50"),
 315        REF_CLK_GATE(gbe1_125, "gbe_125"),
 316        REF_CLK_GATE(gbe0_125, "gbe_125"),
 317        REF_CLK_GATE_DIV(gbe1_core, "gbe_core"),
 318        REF_CLK_GATE_DIV(gbe0_core, "gbe_core"),
 319        REF_CLK_GATE_DIV(gbe_bm, "gbe_core"),
 320        REF_CLK_FULL_DD(sdio),
 321        REF_CLK_FULL_DD(usb32_usb2_sys),
 322        REF_CLK_FULL_DD(usb32_ss_sys),
 323        REF_CLK_GATE(pcie, "gbe_core"),
 324        { },
 325};
 326
 327static unsigned int get_div(void __iomem *reg, int shift)
 328{
 329        u32 val;
 330
 331        val = (readl(reg) >> shift) & 0x7;
 332        if (val > 6)
 333                return 0;
 334        return val;
 335}
 336
 337static unsigned long clk_double_div_recalc_rate(struct clk_hw *hw,
 338                                                unsigned long parent_rate)
 339{
 340        struct clk_double_div *double_div = to_clk_double_div(hw);
 341        unsigned int div;
 342
 343        div = get_div(double_div->reg1, double_div->shift1);
 344        div *= get_div(double_div->reg2, double_div->shift2);
 345
 346        return DIV_ROUND_UP_ULL((u64)parent_rate, div);
 347}
 348
 349static const struct clk_ops clk_double_div_ops = {
 350        .recalc_rate = clk_double_div_recalc_rate,
 351};
 352
 353static void armada_3700_pm_dvfs_update_regs(unsigned int load_level,
 354                                            unsigned int *reg,
 355                                            unsigned int *offset)
 356{
 357        if (load_level <= ARMADA_37XX_DVFS_LOAD_1)
 358                *reg = ARMADA_37XX_NB_L0L1;
 359        else
 360                *reg = ARMADA_37XX_NB_L2L3;
 361
 362        if (load_level == ARMADA_37XX_DVFS_LOAD_0 ||
 363            load_level ==  ARMADA_37XX_DVFS_LOAD_2)
 364                *offset += ARMADA_37XX_NB_CONFIG_SHIFT;
 365}
 366
 367static bool armada_3700_pm_dvfs_is_enabled(struct regmap *base)
 368{
 369        unsigned int val, reg = ARMADA_37XX_NB_DYN_MOD;
 370
 371        if (IS_ERR(base))
 372                return false;
 373
 374        regmap_read(base, reg, &val);
 375
 376        return !!(val & BIT(ARMADA_37XX_NB_DFS_EN));
 377}
 378
 379static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap *base)
 380{
 381        unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
 382        unsigned int offset = ARMADA_37XX_NB_TBG_DIV_OFF;
 383        unsigned int load_level, div;
 384
 385        /*
 386         * This function is always called after the function
 387         * armada_3700_pm_dvfs_is_enabled, so no need to check again
 388         * if the base is valid.
 389         */
 390        regmap_read(base, reg, &load_level);
 391
 392        /*
 393         * The register and the offset inside this register accessed to
 394         * read the current divider depend on the load level
 395         */
 396        load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
 397        armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
 398
 399        regmap_read(base, reg, &div);
 400
 401        return (div >> offset) & ARMADA_37XX_NB_TBG_DIV_MASK;
 402}
 403
 404static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap *base)
 405{
 406        unsigned int reg = ARMADA_37XX_NB_CPU_LOAD;
 407        unsigned int offset = ARMADA_37XX_NB_TBG_SEL_OFF;
 408        unsigned int load_level, sel;
 409
 410        /*
 411         * This function is always called after the function
 412         * armada_3700_pm_dvfs_is_enabled, so no need to check again
 413         * if the base is valid
 414         */
 415        regmap_read(base, reg, &load_level);
 416
 417        /*
 418         * The register and the offset inside this register accessed to
 419         * read the current divider depend on the load level
 420         */
 421        load_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
 422        armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
 423
 424        regmap_read(base, reg, &sel);
 425
 426        return (sel >> offset) & ARMADA_37XX_NB_TBG_SEL_MASK;
 427}
 428
 429static u8 clk_pm_cpu_get_parent(struct clk_hw *hw)
 430{
 431        struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
 432        u32 val;
 433
 434        if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base)) {
 435                val = armada_3700_pm_dvfs_get_cpu_parent(pm_cpu->nb_pm_base);
 436        } else {
 437                val = readl(pm_cpu->reg_mux) >> pm_cpu->shift_mux;
 438                val &= pm_cpu->mask_mux;
 439        }
 440
 441        return val;
 442}
 443
 444static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw *hw,
 445                                            unsigned long parent_rate)
 446{
 447        struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
 448        unsigned int div;
 449
 450        if (armada_3700_pm_dvfs_is_enabled(pm_cpu->nb_pm_base))
 451                div = armada_3700_pm_dvfs_get_cpu_div(pm_cpu->nb_pm_base);
 452        else
 453                div = get_div(pm_cpu->reg_div, pm_cpu->shift_div);
 454        return DIV_ROUND_UP_ULL((u64)parent_rate, div);
 455}
 456
 457static long clk_pm_cpu_round_rate(struct clk_hw *hw, unsigned long rate,
 458                                  unsigned long *parent_rate)
 459{
 460        struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
 461        struct regmap *base = pm_cpu->nb_pm_base;
 462        unsigned int div = *parent_rate / rate;
 463        unsigned int load_level;
 464        /* only available when DVFS is enabled */
 465        if (!armada_3700_pm_dvfs_is_enabled(base))
 466                return -EINVAL;
 467
 468        for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
 469                unsigned int reg, val, offset = ARMADA_37XX_NB_TBG_DIV_OFF;
 470
 471                armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
 472
 473                regmap_read(base, reg, &val);
 474
 475                val >>= offset;
 476                val &= ARMADA_37XX_NB_TBG_DIV_MASK;
 477                if (val == div)
 478                        /*
 479                         * We found a load level matching the target
 480                         * divider, switch to this load level and
 481                         * return.
 482                         */
 483                        return *parent_rate / div;
 484        }
 485
 486        /* We didn't find any valid divider */
 487        return -EINVAL;
 488}
 489
 490/*
 491 * Workaround when base CPU frequnecy is 1000 or 1200 MHz
 492 *
 493 * Switching the CPU from the L2 or L3 frequencies (250/300 or 200 MHz
 494 * respectively) to L0 frequency (1/1.2 GHz) requires a significant
 495 * amount of time to let VDD stabilize to the appropriate
 496 * voltage. This amount of time is large enough that it cannot be
 497 * covered by the hardware countdown register. Due to this, the CPU
 498 * might start operating at L0 before the voltage is stabilized,
 499 * leading to CPU stalls.
 500 *
 501 * To work around this problem, we prevent switching directly from the
 502 * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
 503 * frequency in-between. The sequence therefore becomes:
 504 * 1. First switch from L2/L3 (200/250/300 MHz) to L1 (500/600 MHz)
 505 * 2. Sleep 20ms for stabling VDD voltage
 506 * 3. Then switch from L1 (500/600 MHz) to L0 (1000/1200 MHz).
 507 */
 508static void clk_pm_cpu_set_rate_wa(struct clk_pm_cpu *pm_cpu,
 509                                   unsigned int new_level, unsigned long rate,
 510                                   struct regmap *base)
 511{
 512        unsigned int cur_level;
 513
 514        regmap_read(base, ARMADA_37XX_NB_CPU_LOAD, &cur_level);
 515        cur_level &= ARMADA_37XX_NB_CPU_LOAD_MASK;
 516
 517        if (cur_level == new_level)
 518                return;
 519
 520        /*
 521         * System wants to go to L1 on its own. If we are going from L2/L3,
 522         * remember when 20ms will expire. If from L0, set the value so that
 523         * next switch to L0 won't have to wait.
 524         */
 525        if (new_level == ARMADA_37XX_DVFS_LOAD_1) {
 526                if (cur_level == ARMADA_37XX_DVFS_LOAD_0)
 527                        pm_cpu->l1_expiration = jiffies;
 528                else
 529                        pm_cpu->l1_expiration = jiffies + msecs_to_jiffies(20);
 530                return;
 531        }
 532
 533        /*
 534         * If we are setting to L2/L3, just invalidate L1 expiration time,
 535         * sleeping is not needed.
 536         */
 537        if (rate < 1000*1000*1000)
 538                goto invalidate_l1_exp;
 539
 540        /*
 541         * We are going to L0 with rate >= 1GHz. Check whether we have been at
 542         * L1 for long enough time. If not, go to L1 for 20ms.
 543         */
 544        if (pm_cpu->l1_expiration && jiffies >= pm_cpu->l1_expiration)
 545                goto invalidate_l1_exp;
 546
 547        regmap_update_bits(base, ARMADA_37XX_NB_CPU_LOAD,
 548                           ARMADA_37XX_NB_CPU_LOAD_MASK,
 549                           ARMADA_37XX_DVFS_LOAD_1);
 550        msleep(20);
 551
 552invalidate_l1_exp:
 553        pm_cpu->l1_expiration = 0;
 554}
 555
 556static int clk_pm_cpu_set_rate(struct clk_hw *hw, unsigned long rate,
 557                               unsigned long parent_rate)
 558{
 559        struct clk_pm_cpu *pm_cpu = to_clk_pm_cpu(hw);
 560        struct regmap *base = pm_cpu->nb_pm_base;
 561        unsigned int div = parent_rate / rate;
 562        unsigned int load_level;
 563
 564        /* only available when DVFS is enabled */
 565        if (!armada_3700_pm_dvfs_is_enabled(base))
 566                return -EINVAL;
 567
 568        for (load_level = 0; load_level < LOAD_LEVEL_NR; load_level++) {
 569                unsigned int reg, mask, val,
 570                        offset = ARMADA_37XX_NB_TBG_DIV_OFF;
 571
 572                armada_3700_pm_dvfs_update_regs(load_level, &reg, &offset);
 573
 574                regmap_read(base, reg, &val);
 575                val >>= offset;
 576                val &= ARMADA_37XX_NB_TBG_DIV_MASK;
 577
 578                if (val == div) {
 579                        /*
 580                         * We found a load level matching the target
 581                         * divider, switch to this load level and
 582                         * return.
 583                         */
 584                        reg = ARMADA_37XX_NB_CPU_LOAD;
 585                        mask = ARMADA_37XX_NB_CPU_LOAD_MASK;
 586
 587                        /* Apply workaround when base CPU frequency is 1000 or 1200 MHz */
 588                        if (parent_rate >= 1000*1000*1000)
 589                                clk_pm_cpu_set_rate_wa(pm_cpu, load_level, rate, base);
 590
 591                        regmap_update_bits(base, reg, mask, load_level);
 592
 593                        return rate;
 594                }
 595        }
 596
 597        /* We didn't find any valid divider */
 598        return -EINVAL;
 599}
 600
 601static const struct clk_ops clk_pm_cpu_ops = {
 602        .get_parent = clk_pm_cpu_get_parent,
 603        .round_rate = clk_pm_cpu_round_rate,
 604        .set_rate = clk_pm_cpu_set_rate,
 605        .recalc_rate = clk_pm_cpu_recalc_rate,
 606};
 607
 608static const struct of_device_id armada_3700_periph_clock_of_match[] = {
 609        { .compatible = "marvell,armada-3700-periph-clock-nb",
 610          .data = data_nb, },
 611        { .compatible = "marvell,armada-3700-periph-clock-sb",
 612        .data = data_sb, },
 613        { }
 614};
 615
 616static int armada_3700_add_composite_clk(const struct clk_periph_data *data,
 617                                         void __iomem *reg, spinlock_t *lock,
 618                                         struct device *dev, struct clk_hw **hw)
 619{
 620        const struct clk_ops *mux_ops = NULL, *gate_ops = NULL,
 621                *rate_ops = NULL;
 622        struct clk_hw *mux_hw = NULL, *gate_hw = NULL, *rate_hw = NULL;
 623
 624        if (data->mux_hw) {
 625                struct clk_mux *mux;
 626
 627                mux_hw = data->mux_hw;
 628                mux = to_clk_mux(mux_hw);
 629                mux->lock = lock;
 630                mux_ops = mux_hw->init->ops;
 631                mux->reg = reg + (u64)mux->reg;
 632        }
 633
 634        if (data->gate_hw) {
 635                struct clk_gate *gate;
 636
 637                gate_hw = data->gate_hw;
 638                gate = to_clk_gate(gate_hw);
 639                gate->lock = lock;
 640                gate_ops = gate_hw->init->ops;
 641                gate->reg = reg + (u64)gate->reg;
 642                gate->flags = CLK_GATE_SET_TO_DISABLE;
 643        }
 644
 645        if (data->rate_hw) {
 646                rate_hw = data->rate_hw;
 647                rate_ops = rate_hw->init->ops;
 648                if (data->is_double_div) {
 649                        struct clk_double_div *rate;
 650
 651                        rate =  to_clk_double_div(rate_hw);
 652                        rate->reg1 = reg + (u64)rate->reg1;
 653                        rate->reg2 = reg + (u64)rate->reg2;
 654                } else {
 655                        struct clk_divider *rate = to_clk_divider(rate_hw);
 656                        const struct clk_div_table *clkt;
 657                        int table_size = 0;
 658
 659                        rate->reg = reg + (u64)rate->reg;
 660                        for (clkt = rate->table; clkt->div; clkt++)
 661                                table_size++;
 662                        rate->width = order_base_2(table_size);
 663                        rate->lock = lock;
 664                }
 665        }
 666
 667        if (data->muxrate_hw) {
 668                struct clk_pm_cpu *pmcpu_clk;
 669                struct clk_hw *muxrate_hw = data->muxrate_hw;
 670                struct regmap *map;
 671
 672                pmcpu_clk =  to_clk_pm_cpu(muxrate_hw);
 673                pmcpu_clk->reg_mux = reg + (u64)pmcpu_clk->reg_mux;
 674                pmcpu_clk->reg_div = reg + (u64)pmcpu_clk->reg_div;
 675
 676                mux_hw = muxrate_hw;
 677                rate_hw = muxrate_hw;
 678                mux_ops = muxrate_hw->init->ops;
 679                rate_ops = muxrate_hw->init->ops;
 680
 681                map = syscon_regmap_lookup_by_compatible(
 682                                "marvell,armada-3700-nb-pm");
 683                pmcpu_clk->nb_pm_base = map;
 684        }
 685
 686        *hw = clk_hw_register_composite(dev, data->name, data->parent_names,
 687                                        data->num_parents, mux_hw,
 688                                        mux_ops, rate_hw, rate_ops,
 689                                        gate_hw, gate_ops, CLK_IGNORE_UNUSED);
 690
 691        return PTR_ERR_OR_ZERO(*hw);
 692}
 693
 694static int __maybe_unused armada_3700_periph_clock_suspend(struct device *dev)
 695{
 696        struct clk_periph_driver_data *data = dev_get_drvdata(dev);
 697
 698        data->tbg_sel = readl(data->reg + TBG_SEL);
 699        data->div_sel0 = readl(data->reg + DIV_SEL0);
 700        data->div_sel1 = readl(data->reg + DIV_SEL1);
 701        data->div_sel2 = readl(data->reg + DIV_SEL2);
 702        data->clk_sel = readl(data->reg + CLK_SEL);
 703        data->clk_dis = readl(data->reg + CLK_DIS);
 704
 705        return 0;
 706}
 707
 708static int __maybe_unused armada_3700_periph_clock_resume(struct device *dev)
 709{
 710        struct clk_periph_driver_data *data = dev_get_drvdata(dev);
 711
 712        /* Follow the same order than what the Cortex-M3 does (ATF code) */
 713        writel(data->clk_dis, data->reg + CLK_DIS);
 714        writel(data->div_sel0, data->reg + DIV_SEL0);
 715        writel(data->div_sel1, data->reg + DIV_SEL1);
 716        writel(data->div_sel2, data->reg + DIV_SEL2);
 717        writel(data->tbg_sel, data->reg + TBG_SEL);
 718        writel(data->clk_sel, data->reg + CLK_SEL);
 719
 720        return 0;
 721}
 722
 723static const struct dev_pm_ops armada_3700_periph_clock_pm_ops = {
 724        SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend,
 725                                      armada_3700_periph_clock_resume)
 726};
 727
 728static int armada_3700_periph_clock_probe(struct platform_device *pdev)
 729{
 730        struct clk_periph_driver_data *driver_data;
 731        struct device_node *np = pdev->dev.of_node;
 732        const struct clk_periph_data *data;
 733        struct device *dev = &pdev->dev;
 734        int num_periph = 0, i, ret;
 735        struct resource *res;
 736
 737        data = of_device_get_match_data(dev);
 738        if (!data)
 739                return -ENODEV;
 740
 741        while (data[num_periph].name)
 742                num_periph++;
 743
 744        driver_data = devm_kzalloc(dev, sizeof(*driver_data), GFP_KERNEL);
 745        if (!driver_data)
 746                return -ENOMEM;
 747
 748        driver_data->hw_data = devm_kzalloc(dev,
 749                                            struct_size(driver_data->hw_data,
 750                                                        hws, num_periph),
 751                                            GFP_KERNEL);
 752        if (!driver_data->hw_data)
 753                return -ENOMEM;
 754        driver_data->hw_data->num = num_periph;
 755
 756        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 757        driver_data->reg = devm_ioremap_resource(dev, res);
 758        if (IS_ERR(driver_data->reg))
 759                return PTR_ERR(driver_data->reg);
 760
 761        spin_lock_init(&driver_data->lock);
 762
 763        for (i = 0; i < num_periph; i++) {
 764                struct clk_hw **hw = &driver_data->hw_data->hws[i];
 765                if (armada_3700_add_composite_clk(&data[i], driver_data->reg,
 766                                                  &driver_data->lock, dev, hw))
 767                        dev_err(dev, "Can't register periph clock %s\n",
 768                                data[i].name);
 769        }
 770
 771        ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get,
 772                                     driver_data->hw_data);
 773        if (ret) {
 774                for (i = 0; i < num_periph; i++)
 775                        clk_hw_unregister(driver_data->hw_data->hws[i]);
 776                return ret;
 777        }
 778
 779        platform_set_drvdata(pdev, driver_data);
 780        return 0;
 781}
 782
 783static int armada_3700_periph_clock_remove(struct platform_device *pdev)
 784{
 785        struct clk_periph_driver_data *data = platform_get_drvdata(pdev);
 786        struct clk_hw_onecell_data *hw_data = data->hw_data;
 787        int i;
 788
 789        of_clk_del_provider(pdev->dev.of_node);
 790
 791        for (i = 0; i < hw_data->num; i++)
 792                clk_hw_unregister(hw_data->hws[i]);
 793
 794        return 0;
 795}
 796
 797static struct platform_driver armada_3700_periph_clock_driver = {
 798        .probe = armada_3700_periph_clock_probe,
 799        .remove = armada_3700_periph_clock_remove,
 800        .driver         = {
 801                .name   = "marvell-armada-3700-periph-clock",
 802                .of_match_table = armada_3700_periph_clock_of_match,
 803                .pm     = &armada_3700_periph_clock_pm_ops,
 804        },
 805};
 806
 807builtin_platform_driver(armada_3700_periph_clock_driver);
 808