linux/drivers/clk/renesas/r9a06g032-clocks.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * R9A06G032 clock driver
   4 *
   5 * Copyright (C) 2018 Renesas Electronics Europe Limited
   6 *
   7 * Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
   8 */
   9
  10#include <linux/clk.h>
  11#include <linux/clk-provider.h>
  12#include <linux/delay.h>
  13#include <linux/init.h>
  14#include <linux/io.h>
  15#include <linux/kernel.h>
  16#include <linux/math64.h>
  17#include <linux/of.h>
  18#include <linux/of_address.h>
  19#include <linux/platform_device.h>
  20#include <linux/pm_clock.h>
  21#include <linux/pm_domain.h>
  22#include <linux/slab.h>
  23#include <linux/spinlock.h>
  24#include <dt-bindings/clock/r9a06g032-sysctrl.h>
  25
  26struct r9a06g032_gate {
  27        u16 gate, reset, ready, midle,
  28                scon, mirack, mistat;
  29};
  30
  31/* This is used to describe a clock for instantiation */
  32struct r9a06g032_clkdesc {
  33        const char *name;
  34        uint32_t managed: 1;
  35        uint32_t type: 3;
  36        uint32_t index: 8;
  37        uint32_t source : 8; /* source index + 1 (0 == none) */
  38        /* these are used to populate the bitsel struct */
  39        union {
  40                struct r9a06g032_gate gate;
  41                /* for dividers */
  42                struct {
  43                        unsigned int div_min : 10, div_max : 10, reg: 10;
  44                        u16 div_table[4];
  45                };
  46                /* For fixed-factor ones */
  47                struct {
  48                        u16 div, mul;
  49                };
  50                unsigned int factor;
  51                unsigned int frequency;
  52                /* for dual gate */
  53                struct {
  54                        uint16_t group : 1, index: 3;
  55                        u16 sel, g1, r1, g2, r2;
  56                } dual;
  57        };
  58};
  59
  60#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
  61        { .gate = _clk, .reset = _rst, \
  62                .ready = _rdy, .midle = _midle, \
  63                .scon = _scon, .mirack = _mirack, .mistat = _mistat }
  64#define D_GATE(_idx, _n, _src, ...) \
  65        { .type = K_GATE, .index = R9A06G032_##_idx, \
  66                .source = 1 + R9A06G032_##_src, .name = _n, \
  67                .gate = I_GATE(__VA_ARGS__) }
  68#define D_MODULE(_idx, _n, _src, ...) \
  69        { .type = K_GATE, .index = R9A06G032_##_idx, \
  70                .source = 1 + R9A06G032_##_src, .name = _n, \
  71                .managed = 1, .gate = I_GATE(__VA_ARGS__) }
  72#define D_ROOT(_idx, _n, _mul, _div) \
  73        { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
  74                .div = _div, .mul = _mul }
  75#define D_FFC(_idx, _n, _src, _div) \
  76        { .type = K_FFC, .index = R9A06G032_##_idx, \
  77                .source = 1 + R9A06G032_##_src, .name = _n, \
  78                .div = _div, .mul = 1}
  79#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
  80        { .type = K_DIV, .index = R9A06G032_##_idx, \
  81                .source = 1 + R9A06G032_##_src, .name = _n, \
  82                .reg = _reg, .div_min = _min, .div_max = _max, \
  83                .div_table = { __VA_ARGS__ } }
  84#define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
  85        { .type = K_DUALGATE, .index = R9A06G032_##_idx, \
  86                .source = 1 + R9A06G032_##_src, .name = _n, \
  87                .dual = { .group = _g, .index = _gi, \
  88                        .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
  89
  90enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
  91
  92/* Internal clock IDs */
  93#define R9A06G032_CLKOUT                0
  94#define R9A06G032_CLKOUT_D10            2
  95#define R9A06G032_CLKOUT_D16            3
  96#define R9A06G032_CLKOUT_D160           4
  97#define R9A06G032_CLKOUT_D1OR2          5
  98#define R9A06G032_CLKOUT_D20            6
  99#define R9A06G032_CLKOUT_D40            7
 100#define R9A06G032_CLKOUT_D5             8
 101#define R9A06G032_CLKOUT_D8             9
 102#define R9A06G032_DIV_ADC               10
 103#define R9A06G032_DIV_I2C               11
 104#define R9A06G032_DIV_NAND              12
 105#define R9A06G032_DIV_P1_PG             13
 106#define R9A06G032_DIV_P2_PG             14
 107#define R9A06G032_DIV_P3_PG             15
 108#define R9A06G032_DIV_P4_PG             16
 109#define R9A06G032_DIV_P5_PG             17
 110#define R9A06G032_DIV_P6_PG             18
 111#define R9A06G032_DIV_QSPI0             19
 112#define R9A06G032_DIV_QSPI1             20
 113#define R9A06G032_DIV_REF_SYNC          21
 114#define R9A06G032_DIV_SDIO0             22
 115#define R9A06G032_DIV_SDIO1             23
 116#define R9A06G032_DIV_SWITCH            24
 117#define R9A06G032_DIV_UART              25
 118#define R9A06G032_DIV_MOTOR             64
 119#define R9A06G032_CLK_DDRPHY_PLLCLK_D4  78
 120#define R9A06G032_CLK_ECAT100_D4        79
 121#define R9A06G032_CLK_HSR100_D2         80
 122#define R9A06G032_CLK_REF_SYNC_D4       81
 123#define R9A06G032_CLK_REF_SYNC_D8       82
 124#define R9A06G032_CLK_SERCOS100_D2      83
 125#define R9A06G032_DIV_CA7               84
 126
 127#define R9A06G032_UART_GROUP_012        154
 128#define R9A06G032_UART_GROUP_34567      155
 129
 130#define R9A06G032_CLOCK_COUNT           (R9A06G032_UART_GROUP_34567 + 1)
 131
 132static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
 133        D_ROOT(CLKOUT, "clkout", 25, 1),
 134        D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
 135        D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
 136        D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
 137        D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
 138        D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
 139        D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
 140        D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
 141        D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
 142        D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
 143        D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
 144        D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
 145        D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
 146        D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
 147        D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
 148        D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
 149        D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
 150        D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
 151        D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
 152        D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
 153        D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
 154        D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
 155        D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
 156        D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
 157        D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
 158        D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
 159        D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
 160        D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
 161        D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
 162        D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
 163        D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
 164        D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
 165        D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
 166        D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
 167        D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
 168        D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
 169        D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
 170        D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
 171        D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
 172        D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
 173        D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
 174        D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
 175        D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
 176        D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
 177        D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
 178        D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
 179        D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
 180        D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
 181        D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
 182        D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
 183        D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
 184        D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
 185        D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
 186        D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
 187        D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
 188        D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
 189        D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
 190        D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
 191        D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
 192        D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
 193        D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
 194        D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
 195        D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
 196        D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
 197        D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
 198        D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
 199        D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
 200        D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
 201        D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
 202        D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
 203        D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
 204        D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
 205        D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
 206        D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
 207        D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
 208        D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
 209        D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
 210        D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
 211        D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
 212        D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
 213        D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
 214        D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
 215        D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
 216        D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
 217        D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
 218        D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
 219        D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
 220        D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
 221        D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
 222        D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
 223        D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
 224        D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
 225        D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
 226        D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
 227        D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
 228        D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
 229        D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
 230        D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
 231        D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
 232        D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
 233        D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
 234        D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
 235        D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
 236        D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
 237        D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
 238        D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
 239        D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
 240        D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
 241        D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
 242        D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
 243        D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
 244        D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
 245        D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
 246        D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
 247        D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
 248        D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
 249        D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
 250        D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
 251        D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
 252        D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
 253        D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
 254        D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
 255        D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
 256        D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
 257        D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
 258        D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
 259        D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
 260        D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
 261        D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
 262        D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
 263        D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
 264        D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
 265        D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
 266        D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
 267        D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
 268        D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
 269        D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
 270        D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
 271        D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
 272        D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
 273        D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
 274        D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
 275        D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
 276        D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
 277        D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
 278        D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
 279        /*
 280         * These are not hardware clocks, but are needed to handle the special
 281         * case where we have a 'selector bit' that doesn't just change the
 282         * parent for a clock, but also the gate it's supposed to use.
 283         */
 284        {
 285                .index = R9A06G032_UART_GROUP_012,
 286                .name = "uart_group_012",
 287                .type = K_BITSEL,
 288                .source = 1 + R9A06G032_DIV_UART,
 289                /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
 290                .dual.sel = ((0xec / 4) << 5) | 24,
 291                .dual.group = 0,
 292        },
 293        {
 294                .index = R9A06G032_UART_GROUP_34567,
 295                .name = "uart_group_34567",
 296                .type = K_BITSEL,
 297                .source = 1 + R9A06G032_DIV_P2_PG,
 298                /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
 299                .dual.sel = ((0x34 / 4) << 5) | 30,
 300                .dual.group = 1,
 301        },
 302        D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
 303        D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
 304        D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
 305        D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
 306        D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
 307        D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
 308        D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
 309        D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
 310};
 311
 312struct r9a06g032_priv {
 313        struct clk_onecell_data data;
 314        spinlock_t lock; /* protects concurrent access to gates */
 315        void __iomem *reg;
 316};
 317
 318/* register/bit pairs are encoded as an uint16_t */
 319static void
 320clk_rdesc_set(struct r9a06g032_priv *clocks,
 321              u16 one, unsigned int on)
 322{
 323        u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
 324        u32 val = readl(reg);
 325
 326        val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
 327        writel(val, reg);
 328}
 329
 330static int
 331clk_rdesc_get(struct r9a06g032_priv *clocks,
 332              uint16_t one)
 333{
 334        u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
 335        u32 val = readl(reg);
 336
 337        return !!(val & (1U << (one & 0x1f)));
 338}
 339
 340/*
 341 * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
 342 * clock gate framework as the gates on the R9A06G032 have a special enabling
 343 * sequence, therefore we use this little proxy.
 344 */
 345struct r9a06g032_clk_gate {
 346        struct clk_hw hw;
 347        struct r9a06g032_priv *clocks;
 348        u16 index;
 349
 350        struct r9a06g032_gate gate;
 351};
 352
 353#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
 354
 355static int create_add_module_clock(struct of_phandle_args *clkspec,
 356                                   struct device *dev)
 357{
 358        struct clk *clk;
 359        int error;
 360
 361        clk = of_clk_get_from_provider(clkspec);
 362        if (IS_ERR(clk))
 363                return PTR_ERR(clk);
 364
 365        error = pm_clk_create(dev);
 366        if (error) {
 367                clk_put(clk);
 368                return error;
 369        }
 370
 371        error = pm_clk_add_clk(dev, clk);
 372        if (error) {
 373                pm_clk_destroy(dev);
 374                clk_put(clk);
 375        }
 376
 377        return error;
 378}
 379
 380static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
 381                                struct device *dev)
 382{
 383        struct device_node *np = dev->of_node;
 384        struct of_phandle_args clkspec;
 385        int i = 0;
 386        int error;
 387        int index;
 388
 389        while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
 390                                           &clkspec)) {
 391                if (clkspec.np != pd->dev.of_node)
 392                        continue;
 393
 394                index = clkspec.args[0];
 395                if (index < R9A06G032_CLOCK_COUNT &&
 396                    r9a06g032_clocks[index].managed) {
 397                        error = create_add_module_clock(&clkspec, dev);
 398                        of_node_put(clkspec.np);
 399                        if (error)
 400                                return error;
 401                }
 402                i++;
 403        }
 404
 405        return 0;
 406}
 407
 408static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
 409{
 410        if (!pm_clk_no_clocks(dev))
 411                pm_clk_destroy(dev);
 412}
 413
 414static int r9a06g032_add_clk_domain(struct device *dev)
 415{
 416        struct device_node *np = dev->of_node;
 417        struct generic_pm_domain *pd;
 418
 419        pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 420        if (!pd)
 421                return -ENOMEM;
 422
 423        pd->name = np->name;
 424        pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
 425                    GENPD_FLAG_ACTIVE_WAKEUP;
 426        pd->attach_dev = r9a06g032_attach_dev;
 427        pd->detach_dev = r9a06g032_detach_dev;
 428        pm_genpd_init(pd, &pm_domain_always_on_gov, false);
 429
 430        of_genpd_add_provider_simple(np, pd);
 431        return 0;
 432}
 433
 434static void
 435r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
 436                       struct r9a06g032_gate *g, int on)
 437{
 438        unsigned long flags;
 439
 440        WARN_ON(!g->gate);
 441
 442        spin_lock_irqsave(&clocks->lock, flags);
 443        clk_rdesc_set(clocks, g->gate, on);
 444        /* De-assert reset */
 445        if (g->reset)
 446                clk_rdesc_set(clocks, g->reset, 1);
 447        spin_unlock_irqrestore(&clocks->lock, flags);
 448
 449        /* Hardware manual recommends 5us delay after enabling clock & reset */
 450        udelay(5);
 451
 452        /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
 453         * associated SLVRDY bit in the System Controller that needs to be set
 454         * so that the FlexWAY bus fabric passes on the read/write requests.
 455         */
 456        if (g->ready || g->midle) {
 457                spin_lock_irqsave(&clocks->lock, flags);
 458                if (g->ready)
 459                        clk_rdesc_set(clocks, g->ready, on);
 460                /* Clear 'Master Idle Request' bit */
 461                if (g->midle)
 462                        clk_rdesc_set(clocks, g->midle, !on);
 463                spin_unlock_irqrestore(&clocks->lock, flags);
 464        }
 465        /* Note: We don't wait for FlexWAY Socket Connection signal */
 466}
 467
 468static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
 469{
 470        struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
 471
 472        r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
 473        return 0;
 474}
 475
 476static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
 477{
 478        struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
 479
 480        r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
 481}
 482
 483static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
 484{
 485        struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
 486
 487        /* if clock is in reset, the gate might be on, and still not 'be' on */
 488        if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
 489                return 0;
 490
 491        return clk_rdesc_get(g->clocks, g->gate.gate);
 492}
 493
 494static const struct clk_ops r9a06g032_clk_gate_ops = {
 495        .enable = r9a06g032_clk_gate_enable,
 496        .disable = r9a06g032_clk_gate_disable,
 497        .is_enabled = r9a06g032_clk_gate_is_enabled,
 498};
 499
 500static struct clk *
 501r9a06g032_register_gate(struct r9a06g032_priv *clocks,
 502                        const char *parent_name,
 503                        const struct r9a06g032_clkdesc *desc)
 504{
 505        struct clk *clk;
 506        struct r9a06g032_clk_gate *g;
 507        struct clk_init_data init = {};
 508
 509        g = kzalloc(sizeof(*g), GFP_KERNEL);
 510        if (!g)
 511                return NULL;
 512
 513        init.name = desc->name;
 514        init.ops = &r9a06g032_clk_gate_ops;
 515        init.flags = CLK_SET_RATE_PARENT;
 516        init.parent_names = parent_name ? &parent_name : NULL;
 517        init.num_parents = parent_name ? 1 : 0;
 518
 519        g->clocks = clocks;
 520        g->index = desc->index;
 521        g->gate = desc->gate;
 522        g->hw.init = &init;
 523
 524        /*
 525         * important here, some clocks are already in use by the CM3, we
 526         * have to assume they are not Linux's to play with and try to disable
 527         * at the end of the boot!
 528         */
 529        if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
 530                init.flags |= CLK_IS_CRITICAL;
 531                pr_debug("%s was enabled, making read-only\n", desc->name);
 532        }
 533
 534        clk = clk_register(NULL, &g->hw);
 535        if (IS_ERR(clk)) {
 536                kfree(g);
 537                return NULL;
 538        }
 539        return clk;
 540}
 541
 542struct r9a06g032_clk_div {
 543        struct clk_hw hw;
 544        struct r9a06g032_priv *clocks;
 545        u16 index;
 546        u16 reg;
 547        u16 min, max;
 548        u8 table_size;
 549        u16 table[8];   /* we know there are no more than 8 */
 550};
 551
 552#define to_r9a06g032_div(_hw) \
 553                container_of(_hw, struct r9a06g032_clk_div, hw)
 554
 555static unsigned long
 556r9a06g032_div_recalc_rate(struct clk_hw *hw,
 557                          unsigned long parent_rate)
 558{
 559        struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
 560        u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
 561        u32 div = readl(reg);
 562
 563        if (div < clk->min)
 564                div = clk->min;
 565        else if (div > clk->max)
 566                div = clk->max;
 567        return DIV_ROUND_UP(parent_rate, div);
 568}
 569
 570/*
 571 * Attempts to find a value that is in range of min,max,
 572 * and if a table of set dividers was specified for this
 573 * register, try to find the fixed divider that is the closest
 574 * to the target frequency
 575 */
 576static long
 577r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
 578                        unsigned long rate, unsigned long prate)
 579{
 580        /* + 1 to cope with rates that have the remainder dropped */
 581        u32 div = DIV_ROUND_UP(prate, rate + 1);
 582        int i;
 583
 584        if (div <= clk->min)
 585                return clk->min;
 586        if (div >= clk->max)
 587                return clk->max;
 588
 589        for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
 590                if (div >= clk->table[i] && div <= clk->table[i + 1]) {
 591                        unsigned long m = rate -
 592                                DIV_ROUND_UP(prate, clk->table[i]);
 593                        unsigned long p =
 594                                DIV_ROUND_UP(prate, clk->table[i + 1]) -
 595                                rate;
 596                        /*
 597                         * select the divider that generates
 598                         * the value closest to the ideal frequency
 599                         */
 600                        div = p >= m ? clk->table[i] : clk->table[i + 1];
 601                        return div;
 602                }
 603        }
 604        return div;
 605}
 606
 607static int
 608r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
 609{
 610        struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
 611        u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
 612
 613        pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
 614                 hw->clk, req->rate, req->best_parent_rate, div);
 615        pr_devel("   min %d (%ld) max %d (%ld)\n",
 616                 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
 617                 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
 618
 619        div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
 620        /*
 621         * this is a hack. Currently the serial driver asks for a clock rate
 622         * that is 16 times the baud rate -- and that is wildly outside the
 623         * range of the UART divider, somehow there is no provision for that
 624         * case of 'let the divider as is if outside range'.
 625         * The serial driver *shouldn't* play with these clocks anyway, there's
 626         * several uarts attached to this divider, and changing this impacts
 627         * everyone.
 628         */
 629        if (clk->index == R9A06G032_DIV_UART ||
 630            clk->index == R9A06G032_DIV_P2_PG) {
 631                pr_devel("%s div uart hack!\n", __func__);
 632                req->rate = clk_get_rate(hw->clk);
 633                return 0;
 634        }
 635        req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
 636        pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
 637                 req->best_parent_rate, div, req->rate);
 638        return 0;
 639}
 640
 641static int
 642r9a06g032_div_set_rate(struct clk_hw *hw,
 643                       unsigned long rate, unsigned long parent_rate)
 644{
 645        struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
 646        /* + 1 to cope with rates that have the remainder dropped */
 647        u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
 648        u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
 649
 650        pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
 651                 rate, parent_rate, div);
 652
 653        /*
 654         * Need to write the bit 31 with the divider value to
 655         * latch it. Technically we should wait until it has been
 656         * cleared too.
 657         * TODO: Find whether this callback is sleepable, in case
 658         * the hardware /does/ require some sort of spinloop here.
 659         */
 660        writel(div | BIT(31), reg);
 661
 662        return 0;
 663}
 664
 665static const struct clk_ops r9a06g032_clk_div_ops = {
 666        .recalc_rate = r9a06g032_div_recalc_rate,
 667        .determine_rate = r9a06g032_div_determine_rate,
 668        .set_rate = r9a06g032_div_set_rate,
 669};
 670
 671static struct clk *
 672r9a06g032_register_div(struct r9a06g032_priv *clocks,
 673                       const char *parent_name,
 674                       const struct r9a06g032_clkdesc *desc)
 675{
 676        struct r9a06g032_clk_div *div;
 677        struct clk *clk;
 678        struct clk_init_data init = {};
 679        unsigned int i;
 680
 681        div = kzalloc(sizeof(*div), GFP_KERNEL);
 682        if (!div)
 683                return NULL;
 684
 685        init.name = desc->name;
 686        init.ops = &r9a06g032_clk_div_ops;
 687        init.flags = CLK_SET_RATE_PARENT;
 688        init.parent_names = parent_name ? &parent_name : NULL;
 689        init.num_parents = parent_name ? 1 : 0;
 690
 691        div->clocks = clocks;
 692        div->index = desc->index;
 693        div->reg = desc->reg;
 694        div->hw.init = &init;
 695        div->min = desc->div_min;
 696        div->max = desc->div_max;
 697        /* populate (optional) divider table fixed values */
 698        for (i = 0; i < ARRAY_SIZE(div->table) &&
 699             i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
 700                div->table[div->table_size++] = desc->div_table[i];
 701        }
 702
 703        clk = clk_register(NULL, &div->hw);
 704        if (IS_ERR(clk)) {
 705                kfree(div);
 706                return NULL;
 707        }
 708        return clk;
 709}
 710
 711/*
 712 * This clock provider handles the case of the R9A06G032 where you have
 713 * peripherals that have two potential clock source and two gates, one for
 714 * each of the clock source - the used clock source (for all sub clocks)
 715 * is selected by a single bit.
 716 * That single bit affects all sub-clocks, and therefore needs to change the
 717 * active gate (and turn the others off) and force a recalculation of the rates.
 718 *
 719 * This implements two clock providers, one 'bitselect' that
 720 * handles the switch between both parents, and another 'dualgate'
 721 * that knows which gate to poke at, depending on the parent's bit position.
 722 */
 723struct r9a06g032_clk_bitsel {
 724        struct clk_hw   hw;
 725        struct r9a06g032_priv *clocks;
 726        u16 index;
 727        u16 selector;           /* selector register + bit */
 728};
 729
 730#define to_clk_bitselect(_hw) \
 731                container_of(_hw, struct r9a06g032_clk_bitsel, hw)
 732
 733static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
 734{
 735        struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
 736
 737        return clk_rdesc_get(set->clocks, set->selector);
 738}
 739
 740static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
 741{
 742        struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
 743
 744        /* a single bit in the register selects one of two parent clocks */
 745        clk_rdesc_set(set->clocks, set->selector, !!index);
 746
 747        return 0;
 748}
 749
 750static const struct clk_ops clk_bitselect_ops = {
 751        .get_parent = r9a06g032_clk_mux_get_parent,
 752        .set_parent = r9a06g032_clk_mux_set_parent,
 753};
 754
 755static struct clk *
 756r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
 757                          const char *parent_name,
 758                          const struct r9a06g032_clkdesc *desc)
 759{
 760        struct clk *clk;
 761        struct r9a06g032_clk_bitsel *g;
 762        struct clk_init_data init = {};
 763        const char *names[2];
 764
 765        /* allocate the gate */
 766        g = kzalloc(sizeof(*g), GFP_KERNEL);
 767        if (!g)
 768                return NULL;
 769
 770        names[0] = parent_name;
 771        names[1] = "clk_pll_usb";
 772
 773        init.name = desc->name;
 774        init.ops = &clk_bitselect_ops;
 775        init.flags = CLK_SET_RATE_PARENT;
 776        init.parent_names = names;
 777        init.num_parents = 2;
 778
 779        g->clocks = clocks;
 780        g->index = desc->index;
 781        g->selector = desc->dual.sel;
 782        g->hw.init = &init;
 783
 784        clk = clk_register(NULL, &g->hw);
 785        if (IS_ERR(clk)) {
 786                kfree(g);
 787                return NULL;
 788        }
 789        return clk;
 790}
 791
 792struct r9a06g032_clk_dualgate {
 793        struct clk_hw   hw;
 794        struct r9a06g032_priv *clocks;
 795        u16 index;
 796        u16 selector;           /* selector register + bit */
 797        struct r9a06g032_gate gate[2];
 798};
 799
 800#define to_clk_dualgate(_hw) \
 801                container_of(_hw, struct r9a06g032_clk_dualgate, hw)
 802
 803static int
 804r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
 805{
 806        u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
 807
 808        /* we always turn off the 'other' gate, regardless */
 809        r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
 810        r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
 811
 812        return 0;
 813}
 814
 815static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
 816{
 817        struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
 818
 819        r9a06g032_clk_dualgate_setenable(gate, 1);
 820
 821        return 0;
 822}
 823
 824static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
 825{
 826        struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
 827
 828        r9a06g032_clk_dualgate_setenable(gate, 0);
 829}
 830
 831static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
 832{
 833        struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
 834        u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
 835
 836        return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
 837}
 838
 839static const struct clk_ops r9a06g032_clk_dualgate_ops = {
 840        .enable = r9a06g032_clk_dualgate_enable,
 841        .disable = r9a06g032_clk_dualgate_disable,
 842        .is_enabled = r9a06g032_clk_dualgate_is_enabled,
 843};
 844
 845static struct clk *
 846r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
 847                            const char *parent_name,
 848                            const struct r9a06g032_clkdesc *desc,
 849                            uint16_t sel)
 850{
 851        struct r9a06g032_clk_dualgate *g;
 852        struct clk *clk;
 853        struct clk_init_data init = {};
 854
 855        /* allocate the gate */
 856        g = kzalloc(sizeof(*g), GFP_KERNEL);
 857        if (!g)
 858                return NULL;
 859        g->clocks = clocks;
 860        g->index = desc->index;
 861        g->selector = sel;
 862        g->gate[0].gate = desc->dual.g1;
 863        g->gate[0].reset = desc->dual.r1;
 864        g->gate[1].gate = desc->dual.g2;
 865        g->gate[1].reset = desc->dual.r2;
 866
 867        init.name = desc->name;
 868        init.ops = &r9a06g032_clk_dualgate_ops;
 869        init.flags = CLK_SET_RATE_PARENT;
 870        init.parent_names = &parent_name;
 871        init.num_parents = 1;
 872        g->hw.init = &init;
 873        /*
 874         * important here, some clocks are already in use by the CM3, we
 875         * have to assume they are not Linux's to play with and try to disable
 876         * at the end of the boot!
 877         */
 878        if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
 879                init.flags |= CLK_IS_CRITICAL;
 880                pr_debug("%s was enabled, making read-only\n", desc->name);
 881        }
 882
 883        clk = clk_register(NULL, &g->hw);
 884        if (IS_ERR(clk)) {
 885                kfree(g);
 886                return NULL;
 887        }
 888        return clk;
 889}
 890
 891static void r9a06g032_clocks_del_clk_provider(void *data)
 892{
 893        of_clk_del_provider(data);
 894}
 895
 896static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
 897{
 898        struct device *dev = &pdev->dev;
 899        struct device_node *np = dev->of_node;
 900        struct r9a06g032_priv *clocks;
 901        struct clk **clks;
 902        struct clk *mclk;
 903        unsigned int i;
 904        u16 uart_group_sel[2];
 905        int error;
 906
 907        clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
 908        clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
 909                            GFP_KERNEL);
 910        if (!clocks || !clks)
 911                return -ENOMEM;
 912
 913        spin_lock_init(&clocks->lock);
 914
 915        clocks->data.clks = clks;
 916        clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
 917
 918        mclk = devm_clk_get(dev, "mclk");
 919        if (IS_ERR(mclk))
 920                return PTR_ERR(mclk);
 921
 922        clocks->reg = of_iomap(np, 0);
 923        if (WARN_ON(!clocks->reg))
 924                return -ENOMEM;
 925        for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
 926                const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
 927                const char *parent_name = d->source ?
 928                        __clk_get_name(clocks->data.clks[d->source - 1]) :
 929                        __clk_get_name(mclk);
 930                struct clk *clk = NULL;
 931
 932                switch (d->type) {
 933                case K_FFC:
 934                        clk = clk_register_fixed_factor(NULL, d->name,
 935                                                        parent_name, 0,
 936                                                        d->mul, d->div);
 937                        break;
 938                case K_GATE:
 939                        clk = r9a06g032_register_gate(clocks, parent_name, d);
 940                        break;
 941                case K_DIV:
 942                        clk = r9a06g032_register_div(clocks, parent_name, d);
 943                        break;
 944                case K_BITSEL:
 945                        /* keep that selector register around */
 946                        uart_group_sel[d->dual.group] = d->dual.sel;
 947                        clk = r9a06g032_register_bitsel(clocks, parent_name, d);
 948                        break;
 949                case K_DUALGATE:
 950                        clk = r9a06g032_register_dualgate(clocks, parent_name,
 951                                                          d,
 952                                                          uart_group_sel[d->dual.group]);
 953                        break;
 954                }
 955                clocks->data.clks[d->index] = clk;
 956        }
 957        error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
 958        if (error)
 959                return error;
 960
 961        error = devm_add_action_or_reset(dev,
 962                                        r9a06g032_clocks_del_clk_provider, np);
 963        if (error)
 964                return error;
 965
 966        return r9a06g032_add_clk_domain(dev);
 967}
 968
 969static const struct of_device_id r9a06g032_match[] = {
 970        { .compatible = "renesas,r9a06g032-sysctrl" },
 971        { }
 972};
 973
 974static struct platform_driver r9a06g032_clock_driver = {
 975        .driver         = {
 976                .name   = "renesas,r9a06g032-sysctrl",
 977                .of_match_table = r9a06g032_match,
 978        },
 979};
 980
 981static int __init r9a06g032_clocks_init(void)
 982{
 983        return platform_driver_probe(&r9a06g032_clock_driver,
 984                        r9a06g032_clocks_probe);
 985}
 986
 987subsys_initcall(r9a06g032_clocks_init);
 988